Cerebral desaturation during cardiac surgery can be identified and reversed based on the information provided by the INVOS™ Cerebral/Somatic Oximeter. A recent publication involving over 300 high-risk cardiac surgical patients suggests that monitoring with INVOS™ technology and intervening to minimize cerebral desaturation events often resulted in successful resaturation of the brain and can reduce the desaturation load during surgery.\(^1\)

Implementation of INVOS™ monitoring technology has also been shown to improve patient outcomes and use of hospital resources. A single-center retrospective database analysis compared clinical outcomes in cardiac surgery patients before and after implementation of INVOS monitoring.\(^2\) The analysis concluded that patients monitored with INVOS and where the clinician intervened based on the departure from baseline cerebral oxygen values during surgery presented a reduced incidence of permanent stroke, the need for prolonged postoperative ventilation, and length of hospital stay compared to an historical unmonitored control group. Additionally, a randomized controlled trial demonstrated that fewer patients randomized to a blood conservation protocol incorporating INVOS™-guided cerebral oxygenation thresholds received transfusions and received fewer units of blood than control patients.\(^3\)
Cerebral desaturation during high-risk cardiac surgery is common and can be successfully identified using INVOS™ monitoring technology and reversed, reducing desaturation load during surgery.

| Study design | Single center trial (Canada):
| | • Part 1: Prospective, observational
| | • Part 2: Pilot randomized, controlled |
| Arms | Part 1: Single arm: INVOS™ monitoring and use of an interventional protocol to restore cerebral saturation levels (rSO₂)
| | Part 2: Control: blinded INVOS™ monitoring
| | Intervention: INVOS™ monitoring and use of an interventional protocol to restore rSO₂ |
| Objective | Part 1: Test of the efficacy of an interventional algorithm to restore decreases in rSO₂
| | Part 2: Verify that interventions resulted in a reduction of the desaturation load during surgery |
| N | Part 1: 279
	Part 2: 48
Population	High-risk cardiac surgery on cardiopulmonary bypass (CPB)
Definition of desaturation	<80% of baseline rSO₂ for >15 seconds
Threshold for intervention	<80% of baseline rSO₂ for >15 seconds
Results	Part 1:
	• Desaturation occurred in 136 patients (48.8%)
	• Reversal was successful in 120/136 patients (88.2%)
Part 2:	• Incidence of desaturation was not statistically different between the intervention (69.9%) and control groups (76%)
	• Total mean desaturation load during surgery was lower in the intervention group (154.3 vs 729.7 %•min; P=0.041)
Conclusions	Cerebral desaturation was common in this high-risk cardiac surgery population and was successfully reversed in the majority of patients by employing an interventional protocol. Monitoring and intervention was associated with a reduction in the total cerebral desaturation load during surgery.
Monitoring with INVOS™ technology and intervention is associated with reduced permanent stroke rates, need for mechanical ventilation, and length of hospital stay

<table>
<thead>
<tr>
<th>Study design</th>
<th>Single center, retrospective data analysis (US)</th>
</tr>
</thead>
</table>
| Arms | **Control**: 18 months prior to implementing INVOS™ monitoring technology
Intervention: 18 months after INVOS™ monitoring technology was implemented and interventions were prescribed to maintain baseline rSO₂ |
| Objective | Demonstrate that monitoring with INVOS™ technology and intervening to optimize cerebral oxygen delivery variables could reduce the incidence of stroke |
| N | 2,279 (including 1,245 controls) |
| Population | All cardiac surgery |
| Threshold for intervention | Any rSO₂ decrease from baseline |
| Results | • Intervention group had a higher incidence of baseline cardiovascular risk factors, including more New York Heart Association (NYHA) class III and IV patients
• Monitoring and intervention was associated with:
 – Lower rate of permanent stroke (0.97% vs 2.01%; P<0.044) in NYHA class I through III patients
 – Shorter time on ventilation (4 vs 5 hours; P<0.0016)
 – Fewer patients requiring prolonged ventilation (6.8 vs 10.6%; P<0.0112)
 – Reduction in hospital length of stay by between 0.2 days and 2.3 days, depending on NYHA class (P<0.046)
• In a subsequent publication, the authors estimate that they had avoided 12 cerebrovascular incidents in the intervention group, with a potential avoidance of US$254,214 in direct costs and $US425,000 in total costs⁴ |
| Conclusions | Despite that patients in the intervention group were sicker and had more comorbidity, they had a lower incidence of permanent stroke, less need for prolonged ventilation, and a shorter hospital stay. |
Inclusion of INVOS™ monitoring technology into a blood conservation protocol is associated with fewer blood transfusions and fewer units of blood transfused

<table>
<thead>
<tr>
<th>Study design</th>
<th>Single-center randomized controlled trial (Greece)</th>
</tr>
</thead>
</table>
| Arms | **Control:** blood transfusion need determined by hematocrit (Hct)
Intervention: blood transfusion need determined by rSO₂ and Hct |
| Objective | Determine whether incorporation of INVOS™ monitoring technology into an intraoperative Hct-based blood conservation algorithm reduces blood use |
| N | 150 |
| Population | Cardiac surgery on CPB |
| Threshold for intervention | **Control:**
- During aortic cross-clamp: Hct ≤ 17%
- After clamp removal, before weaning from CPB: Hct ≤ 21%
- After CPB weaning and re-transfusion of salvaged blood: Hct ≤ 24%
- In the intensive care unit (ICU): Hct ≤ 24%
Intervention (must meet both criteria):
- rSO₂ < 60% or <20% decrease from mean value during pulmonary arterial catheter insertion, AND
- Fulfills Hct-based threshold for transfusion as listed above |
| Results | Based on a “per-protocol” analysis (protocol violations were identified in 8.7% of patients and were not included in the final analysis), incorporation of an rSO₂ threshold into a blood conservation algorithm was associated with:
- Fewer patients receiving transfusions during surgery (15.7 vs 29.8%; P=0.048) and during their hospital stay (65.7 vs 82.1%; P=0.029)
- Fewer units per patient transfused in the OR (P=0.021) |
| Conclusions | INVOS™ monitoring technology could be incorporated into a blood conservation strategy with hematocrit levels to guide blood transfusions during cardiac surgery. |
Inclusion of INVOS™ monitoring technology into a blood conservation protocol is associated with fewer blood transfusions and fewer units of blood transfused.

Monitoring with INVOS™ technology and intervention is associated with reduced permanent stroke rates, need for mechanical ventilation, and length of hospital stay.

A selection of clinical studies using INVOS™ technology intraoperatively in broad cardiac surgery patient populations:

Now That You’ve Read the Evidence

Cerebral desaturation during high-risk cardiac surgery is common and can be successfully identified using INVOS™ monitoring technology and reversed, reducing desaturation load during surgery.

Monitoring with INVOS™ technology and intervention is associated with reduced permanent stroke rates, need for mechanical ventilation, and length of hospital stay.

Inclusion of INVOS™ monitoring technology into a blood conservation protocol is associated with fewer blood transfusions and fewer units of blood transfused.

A selection of clinical studies using INVOS™ technology intraoperatively in broad cardiac surgery patient populations.

Consider using INVOS™ monitoring with all adult cardiac surgery cases.

For more information, contact your Covidien representative or visit covidien.com/rms/products/cerebral-somatic-oximetry

COVIDIEN, COVIDIEN with logo, Covidien logo and positive results for life are U.S. and internationally registered trademarks of Covidien AG. Other brands are trademarks of a Covidien company. ©2015 Covidien. 15-PM-0093