BECAUSE EVERY SECOND COUNTS.

Nellcor™ SpO₂ Forehead Sensor
Timing for your patients is critical. You need accurate data quickly — so you can react sooner. That’s why we developed the Nellcor™ SpO₂ forehead sensor.

Some patients represent a monitoring challenge because of:
- Intense vasoconstriction
- Hypovolemia
- Hypothermia
- Therapeutic hypothermia
- Low cardiac index
- Septic shock
- Severe peripheral vascular diseases
- Peripheral access in the OR

Forehead sensors help you succeed when challenges occur.

The Nellcor™ SpO₂ forehead sensor is accurate. It’s:
- 25% more accurate than Masimo™* when it matters most, like in challenging low-saturation patients*2,3
- More closely aligned to arterial blood gas (ABG) draws than digit sensors4-6

It’s also:
- Reliable, able to give readings when conventional finger sensors fail7
- Easy to use; the forehead is generally easier to reach and less prone to motion than hands
- Designed to detect changes in SpO₂, earlier than conventional sensors⁴, helping you react sooner to hypoxemic events

It’s versatile. You can use the sensor with:
- Mechanically ventilated patients
- Both pediatric (weighing more than 10 kg) and adult patients

And it’s convenient. It:
- Is designed for single patient use
- Features a long-lasting, four-layer adhesive
Real-time. Accurate.

Arterial blood traveling from the heart reaches the head sooner than distal sites such as fingers, especially when patients have poor pulse perfusion.¹⁰

Because every second counts

When timing is critical, the Nellcor™ SpO₂ forehead sensor can detect changes in SpO₂ faster than with digit sensors.¹¹ And with an accuracy that correlates closer to arterial blood data.¹²

Forehead SpO₂ measurements are more accurate than finger SpO₂ measurements in critically ill patients.¹³

Response to a hypoxic event with peripheral vasoconstriction

Not all sensor sites are the same

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Average Response Time (seconds)</th>
<th>Average +/-1 SD bars shown (*P<0.001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Line</td>
<td>10.7 sec</td>
<td></td>
</tr>
<tr>
<td>OxiMax™</td>
<td>10.1 sec</td>
<td></td>
</tr>
<tr>
<td>MAX-FAST Forehead</td>
<td>25.6* sec</td>
<td></td>
</tr>
<tr>
<td>Masimo LNOP™ Ear</td>
<td></td>
<td>77.5* sec</td>
</tr>
<tr>
<td>Various Finger Sensors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Chart property of Medtronic. Data plotted from results summarized in source indicated.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part number</th>
<th>Weight range</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXFAST</td>
<td>>10 kg</td>
<td>Case of 24</td>
</tr>
</tbody>
</table>

3. FDA 510(k): Masimo K101896 – Masimo Sensor Accuracy

10. Bebout DE, Mannheimer PD. Effects of cold-induced peripheral vasoconstriction on pulse amplitude at various pulse oximeter sensor sites. Anesthesiology. 2002;96(Sup 2):A558.

12. A technology overview of the Nellcor Oximax pulse oximetry system. Internal testing.