This attachment accompanies Medtronic’s physician letter dated October 15, 2007 and provides background information on our vigilance process.

Vigilance Process Overview
Medtronic’s vigilance process is multifaceted and comprehensive. All complaints with or without returned product and associated trends are analyzed, and qualifying events are reported to regulatory agencies. As part of Returned Product Analysis (RPA), Medtronic analyzes all explanted and returned leads to characterize the failure mode, if any. The Medtronic System Longevity Study (SLS) is leveraged to understand, monitor, and report lead survival. We developed a proprietary methodology to analyze data from the Medtronic CareLink Network database to estimate lead integrity and lead performance. Using RPA, SLS, and CareLink Network data, we are able to implement the most comprehensive vigilance process for assessing the performance of Fidelis leads.

Returned Product Analysis (RPA)
The Medtronic RPA Lab analyzes all leads or partial lead segments that are returned to us. The purpose of the analysis is to identify the failure mode, if any. If a failure mode is found, the data are categorized and stored in a database intended for trending and analysis. All the leading CRM device manufacturers use RPA as a tool to estimate device performance; however, the protocols for product analysis and reliability estimates differ among manufacturers.

RPA’s primary benefit is that it can help identify the nature of the failure in most cases and correlate the failure mode to the clinical presentation of the failure mode. In addition, it helps proportionally categorize all the failure modes associated with a given lead model. RPA’s primary limitation is under-reporting. Not all malfunctioning leads are explanted and returned to the manufacturer due to a number of factors including explant related clinical risks to the patient.

System Longevity Study (SLS)
For over 24 years, Medtronic has conducted a System Longevity Study (SLS) which is a prospective multicenter study designed to monitor the performance of market-released cardiac therapy products. SLS data is updated every six months and published in our Product Performance Report. This ongoing measurement of lead performance provides prospective information that is not available through RPA.

SLS enrollments for Fidelis Model 6949 represent more than 50 physicians from 17 centers, 14 located in the United States and Canada. As of July 31, 2007, for Model 6949, SLS has 654 leads with a mean follow-up time of 15.1 months, a median follow-up of 12.4 months, and a cumulative follow-up of 9,894 months. The effective sample size between 27 and 30 months of implant time is 84 patients. The limitations of SLS include a smaller sample size, particularly at the leading edge of implant time.

CareLink Network Analysis
Our CareLink data analysis was designed to overcome the limitations of RPA (under-reporting) and SLS (relatively small sample size). Using a proprietary algorithm, we analyzed data from over 25,000 devices enrolled on the CareLink Network remote monitoring system to determine lead integrity. The triggered files were reviewed by technical experts and compared with Medtronic Device Registration Services and RPA databases to confirm lead integrity. In the event we could not confirm the lead status, we contacted the physicians directly to verify the status of the lead. The addition of this data gives us increased confidence in our analysis of Fidelis’ performance (see Appendix B).

In addition to confirming lead fractures, our analysis of the CareLink Network also identified other causes for abnormal parameters, including findings related to the set screws in up to 20% of the confirmed lead integrity issues.

Medtronic is committed to ensuring the highest standards of product reliability. We will continue to provide performance updates every six months via our Product Performance Report.
APPENDIX B
Performance Update for Sprint Fidelis® Leads (Models 6930, 6931, 6948, 6949)
October 2007

This attachment accompanies Medtronic’s physician letter dated October 15, 2007 and provides performance information on Sprint Fidelis leads. Below are the current performance data for Sprint Fidelis Model 6949 using Returned Product Analysis (RPA), System Longevity Study (SLS), and data from the Medtronic CareLink® Network. Refer to Appendix A for descriptions of the datasets.

FIGURE 1
Survival probability of Fidelis Model 6949 at 30 months was estimated using the RPA, SLS, and CareLink Network datasets. Survival at 30 months per RPA, SLS, CareLink Network datasets is 99.2%, 97.7% and 97.7%, respectively. Ranges shown in the graph designate 95% confidence interval. CareLink Network data offers a relatively large sample size at the leading edge. 95% Confidence range for SLS data is relatively large due to limited sample size at the leading edge (see table). CareLink dataset analysis overcomes this limitation.

FIGURE 2
Performance of Sprint Fidelis Model 6949 lead compared to other Medtronic ICD leads (Sprint Quattro Model 6947, Sprint™ Model 6945, and Transvene™ Model 6936). Cumulative survival based on Medtronic’s SLS.

We continue to analyze data in various subsets in order to determine possible factors influencing performance. The Sprint Fidelis Model 6949 30-month survival rate is statistically better than in patients under 58 [98.4% versus 97.5%, respectively, with a 90% confidence interval], as determined by RPA and CareLink™ Network datasets. In patients under the age of 21, the Sprint Fidelis 30-month survival rate is statistically lower than Sprint Quattro® [96.2% versus 99.4%, respectively, with a 95% confidence interval] based on RPA; however, because of sample size limitations we cannot confirm this difference with the SLS or CareLink Network dataset.

If you have questions or concerns, please contact your Medtronic Representative or Medtronic Technical Services at 1-800-723-4636 (US).
This attachment accompanies Medtronic’s physician letter dated October 15, 2007 and provides greater detail on our recommendations for the ongoing management of patients with Sprint Fidelis leads.

Follow-Up of Chronically Implanted Leads

Based on our review of the available data, there does not appear to be a significant benefit to more frequent follow-up.

The effectiveness of routine monitoring or lead impedance alerts for identifying a lead integrity problem before an inappropriate shock occurs may be enhanced when VF initial Number of Intervals to Detect (NID) are set to nominal values of 18/24 or longer (since longer NIDs reduce the risk of inappropriate detection of short bursts of oversensing). Redetect NID should be set to 12/16. The use of Medtronic CareLink® to facilitate remote access to the device information is suggested.

In the event of a suspected lead fracture, a complete clinical evaluation should be performed. In addition, we recommend the following:

1. Review of device diagnostic data including VT/VF episode log and stored episodes to look for evidence of aborted, non-sustained events. Review the EGMs from treated events for evidence of lead noise oversensing.
2. When at least two (2) of the following three (3) criteria indicate abnormal values, the likelihood of a lead integrity issue is higher.¹
 - **Lead Status Report: Sensing Integrity Counter** (measure of general oversensing near ICD blanking)
 Abnormal values: > 300 counts (this will generate an observation on the Quick Look™ screen on GEM® III or later models) OR
 > 30 counts and average > 10 counts/day since first count
 - **Non-Sustained Episode Report**
 Abnormal values: ≥ 2 Non-Sustained Tachyarrhythmia (NST) with average RR interval < 200 ms
 - **Lead Impedance Report**
 - Inspect the lead impedance trend report to determine the patient’s typical chronic impedance value.
 - Compare average daily/weekly impedance to the patient’s typical chronic impedance value. If one or more impedance values are greater than 2x the baseline, then the lead impedance should be considered abnormal.

Viewing the Sensing Integrity Counter Data

On the Model 2090 Programmer:

1. Interrogate the device
2. Select Data -Device/Lead Diagnostics
3. Select Battery and Lead Measurements
4. Select [Open Data]
5. Select Print to print the screen information

Note: If the Sensing Integrity Counter > 300, the programmer displays a Quick Look observation.
APPENDIX C (continued)
Patient Management Recommendations for Sprint Fidelis® Leads
October 2007

Setup of Performance Parameters to Follow Chronically Implanted Leads
Properly setting the thresholds for Lead Impedance alerts is critical to triggering the Patient Alert™. If the Patient Alert feature is enabled and the impedance is out of range, a device tone alert will sound. For Concerto®/Virtuoso® patients enrolled on the Medtronic CareLink® Network, a Medtronic CareAlert® notification will also be transmitted if Medtronic CareAlert notification for lead impedance is programmed ON. During the early stages of a conductor fracture, the impedance may significantly increase (e.g., two-fold increase) compared to the typical chronic impedance for a patient.

Medtronic recommends enabling the following Lead Impedance Out of Range Patient Alerts and Medtronic CareAlert notifications and establishing the associated maximum impedance threshold value as shown in the following table:

<table>
<thead>
<tr>
<th>Lead Impedance Alert</th>
<th>Recommended Maximum Impedance Threshold Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV Pacing</td>
<td>1,000 ohms, if the typical chronic impedance for the patient is ≤ 700 ohms</td>
</tr>
<tr>
<td></td>
<td>1,500 ohms, if the typical chronic impedance for the patient is > 700 ohms</td>
</tr>
<tr>
<td>RV Defibrillation</td>
<td>100 ohms</td>
</tr>
<tr>
<td>SVC Defibrillation</td>
<td>100 ohms</td>
</tr>
</tbody>
</table>

Reducing the Risk of Inappropriate Shocks Due to Lead Noise Oversensing
To reduce the risk of inappropriate shocks due to lead noise oversensing, Medtronic recommends programming parameters for VF detection duration to the nominal values as follows:
- VF initial NID (number of intervals to detect) = 18/24 or longer
- Redetect NID = 12/16

Clinicians should consider programming VF initial NID to 24/32 in Marquis® and later devices (i.e., Marquis, Maximo®, Intrinsic®, InSync Marquis™ family, EnTrust®, Virtuoso®, Concerto®) to further reduce the risk of inappropriate shocks due to lead noise oversensing. Programming VF initial NID to 24/32 in Marquis and later devices is estimated to have minimal impact on the total time to VF shock (compared to GEM III and earlier devices with NID = 18/24), thus minimizing the risk of delayed therapy or syncope.

<table>
<thead>
<tr>
<th>Estimated Values</th>
<th>GEM III and Earlier Initial NID = 18/24</th>
<th>Marquis and Later Initial NID = 18/24</th>
<th>Marquis and Later Initial NID = 24/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Time</td>
<td>5.4 seconds</td>
<td>5.4 seconds</td>
<td>7.2 seconds</td>
</tr>
<tr>
<td>Charge Time</td>
<td>7-14 seconds</td>
<td>7-9 seconds</td>
<td>7-9 seconds</td>
</tr>
<tr>
<td>Total Time to VF shock</td>
<td>12.4-19.4 seconds</td>
<td>12.4-14.4 seconds</td>
<td>14.2-16.2 seconds</td>
</tr>
<tr>
<td>Lead Noise Shock Reduction</td>
<td>Estimate a 15-29% reduction in inappropriate shocks</td>
<td>Estimate a 15-29% reduction in inappropriate shocks</td>
<td>Estimate a 27-67% reduction in inappropriate shocks</td>
</tr>
</tbody>
</table>

A retrospective review of Fidelis lead fracture data indicated:
- That reducing the HV impedance alert from 200 ohms to 100 ohms would have provided an additional week’s notice for 26% of high voltage conductor fractures. There are no data to suggest that increasing the follow-up frequency for patients will provide additional benefit.
- With RV Pacing Impedance Alert set to 1,000 ohms, 47% of patients would have four or more days notice, an additional 2% would have two days notice, and an additional 2% would have one day notice.
- Manual review of other lead fracture prediction criteria (short interval counts, non-sustained VT, impedance trends, etc.), would identify an estimated 36% of patients if performed monthly, or 49% if performed weekly.

If you have questions or concerns, please contact your Medtronic Representative or Medtronic Technical Services at 1-800-723-4636 (US).
APPENDIX D

Lead Extraction Risks

October 2007

This attachment accompanies Medtronic’s physician letter dated October 15, 2007 and provides information concerning risks inherent in lead extractions.

Medtronic’s Independent Physician Quality Panel believes it is inappropriate to prophylactically remove Sprint Fidelis® leads except in unusual individual patient circumstances. We support this position.

Extraction of chronic leads entails substantial risks of patient morbidity and mortality. Reported complications\(^1\) include: lead breakage and migration; avulsion of veins, myocardium or the tricuspid valve; tears of the myocardium or veins; hemothorax, tamponade, perforation, emergency cardiothoracic surgery, pulmonary emboli, and death.

In evaluating whether to extract any cardiac lead, physicians must weigh the risks and benefits of leaving the lead in place in comparison to those of removal. Major complications from lead extraction, defined as death or the requirement of a significant surgical intervention, have been reported in multiple series to be in the range of 1.4-7.3% of patients.\(^2,3\) Factors reported to increase the risk of major complications include: duration of implant, female gender, and large removal sheaths.\(^4,5\)

Medtronic Sprint Fidelis performance data indicate all-cause lead survival of 97.7% at 30 months (SLS, Medtronic CareLink® Network analysis). High voltage conductor fractures could result in the inability to deliver defibrillation therapy. Anode or cathode conductor fractures at either of the primary fracture locations may present clinically as increased impedance, oversensing, increased interval counts, multiple inappropriate shocks, and/or loss of pacing output. Utilization of the patient management recommendations will increase the likelihood that a fracture will be detected by Patient Alert™ and/or Medtronic CareAlert® notifications (see Appendix C) and decrease the likelihood of inappropriate therapies. Based on current information, we have identified five patient deaths in which a Sprint Fidelis lead fracture may have been a possible or likely contributing factor. (0.0018% of approximately 268,000 implants worldwide). By comparison, the risk of major complications (cardiac surgery or death) with lead extraction is 1.4-7.3%.

It has been reported that limited physician experience (< 50 procedures) may significantly increase the risk of complications from extraction.\(^6\) For this reason, **Medtronic’s Independent Physician Quality Panel recommends that if a lead requires removal, the procedure be performed by a physician with extensive lead extraction experience.**

These recommendations are consistent with the HRS Policy Statement on recommendations for extraction of chronically implanted leads.\(^7\)

\(^4\) Byrd et al. PACE. 1999;22(9):1349-1357.

\(^6\) Byrd et al. PACE. 1999;22(9):1349-1357.