Blood is naturally compatible with vascular endothelium, not artificial surfaces

Blood is compatible with the healthy vascular endothelium, a single layer of cells that lines all blood vessels and the heart.

The endothelium plays an active biological role in maintaining homeostasis, or a balance, among the various body defense systems in a manner that simultaneously provides a state of readiness and avoids the trigger of adverse responses.1,2

The blood-contacting surfaces of endothelial cells are highly negatively charged, a characteristic that may repel the negatively charged platelets and be important in limiting the hemostatic reaction.3

Responses to Blood-Material Contact

Blood-Surface Contact

Protein adsorption onto surface

Protein alterations
- Coagulation
- Fibrinolysis
- Kallikrein/Kinin
- Complement
- Cytokines

Formed element alterations
- Platelets
- Red blood cells
- White blood cells

Systemic Inflammatory Response

Blood recognizes the extracorporeal circuit surfaces as “foreign,” triggering coagulation and inflammatory events that may lead to adverse patient outcomes

Within seconds of blood exposure to artificial, non-endothelial surfaces, there is a rapid adsorption of proteins from the blood onto the surface of the foreign material.4

Adsorption onto a surface may result in protein denaturation, such as the denaturation of adsorbed fibrinogen, and ultimately lead to activation of the plasma proteolytic systems.1 Subsequent events, including cell adhesion, are mediated by the adsorbed protein layer.1

The blood’s formed elements and other specific protein groups in the blood that are associated with the body’s defense systems may then interact with the material and its new protein layer.1,2

Ultimately, the biological reactions associated with the defense systems may affect the heart, lungs, brain and other organs, causing conditions that have been described as the “systemic inflammatory response syndrome.”5

Biocompatible surfaces for Medtronic extracorporeal circulation technologies mimic critical characteristics of the vascular endothelium to provide thromboresistance and enhanced blood compatibility

These biocompatible surfaces mitigate the foreign body response that occurs when blood comes in contact with non-endothelial surfaces.

Around the world, leading cardiovascular surgery teams adopt biocompatible surfaces offered by Medtronic as a critical component of comprehensive, multi-modal strategies to achieve the best possible outcomes for their patients undergoing extracorporeal circulation.
Cortiva™ BioActive Surface is a durable, non-leaching end point attached heparin biocompatible surface technology that enhances blood compatibility and provides thromboresistant blood-contacting surfaces for cardiopulmonary bypass circuit devices. It has the largest body of peer-reviewed clinical and scientific evidence of any biocompatible surface used for cardiopulmonary bypass devices today. For pediatric patients to adults, Cortiva™ BioActive Surface is an important component of routine as well as complex extracorporeal circulation procedures.

Warning: A strict anticoagulation protocol should be followed and anticoagulation should be routinely monitored during all procedures. The benefits of extracorporeal support must be weighed against the risk of systemic anticoagulation and must be assessed by the prescribing physician.

Caution: Federal law (USA) restricts devices coated with Cortiva™ BioActive Surface to sale by or on the order of a physician. For a listing of indications, contraindications, precautions and warnings, please refer to the Instructions for Use which accompanies each product.

1 Prime coat
Alternating layers of cationic and anionic polymers are deposited on the device surface via electrostatic adsorption to provide a consistent substrate that allows the Cortiva™ BioActive Surface to be applied to a variety of device materials, including plastics and metals.

2 Cortiva™ BioActive Surface

2a End Point Attachment Bonding Process
Heparin is bonded to the surface using end point attachment. End point attached heparin molecules are oriented to the blood in a manner similar to that of heparan sulfate naturally found on the vascular endothelium. The heparin molecules protrude into the blood, allowing their active sequences to interact with the blood.

End point attachment of heparin results in a strong, covalent bond so that heparin does not leach from the surface during extracorporeal circulation in the presence of blood or albumin.

2b Potent Surface Anticoagulant Activity
The end point attached heparin active sequence binds to antithrombin (AT) in the blood, resulting in a heparin-AT complex that has a much higher affinity for blood coagulation factors than AT alone.

Attachment of activated blood coagulation factors to AT forms harmless inactive complexes that are no longer available to participate in or trigger other events in the coagulation cascade. For example, the activated blood coagulation factor II (thrombin) binds to the heparin-AT complex and subsequently becomes inactivated.

2c Sustained Bioactivity
AT-coagulation factor complexes are then released from the immobilized heparin and are swept away from the surface by the flowing blood. These complexes are eventually metabolized by the body.

The end point attached heparin molecule is not consumed by this cycle and remains bonded, intact, to the material surface. Its anticoagulant active sequence is then free to attach to another AT molecule.
Extensive peer-reviewed clinical and scientific evidence

Carmeda® BioActive Surface, now being marketed under the brand name Cortiva™, is the most extensively researched biosurface for today's extracorporeal circulation technologies, with extensive publication of clinical and scientific evidence in peer-reviewed cardiovascular surgery, perfusion and scientific literature, including:

- Less blood product use\(^{6, 7, 8, 9, 10, 11, 12}\)
- Less perioperative blood loss\(^{10, 11, 12, 13, 14, 15, 16, 17}\)
- Shorter ventilator time\(^{8, 11, 14, 18, 19}\)
- Shorter hospital length of stay\(^{7, 8, 14}\)
- Less postoperative body temperature rise\(^{14, 20}\)
- Significantly greater urine output during CPB\(^{18}\)
- Lower costs, as related to improved clinical outcomes\(^{8}\)
- Less negative impact on the body’s defense systems, including:
 - **contact system**\(^{21, 22, 23, 24, 25, 26}\)
 - **coagulation system**\(^{16, 22, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}\)
 - **fibrinolytic system**\(^{11, 28, 37, 38}\)
 - **complement system**\(^{15, 17, 19, 27, 34, 38, 39, 40, 42, 43, 44, 45}\)
 - **cytokine proteins**\(^{19, 31, 38, 40, 44, 45}\)
- Reduced impact on the blood’s formed elements, including:
 - **platelets**\(^{18, 22, 31, 34, 35, 42, 44, 46}\)
 - **red blood cells**\(^{11, 16, 25, 30, 37, 40, 47}\)
 - **leukocytes**\(^{19, 25, 31, 34, 35, 38, 41, 42, 43}\)

Carmeda® used on Medtronic extracorporeal products is now being marketed under the brand name Cortiva™.

Note: Citations with bold font represent clinical studies. Citations with standard font represent experimental in vitro and in vivo studies.

Carmeda is a registered trademark of Carmeda AB (Sweden).

Research indicates mitigating effects by Carmeda® BioActive Surface, now being marketed under the brand name Cortiva™.
Thromboresistance and enhanced blood compatibility
Reduced platelet and cell adhesion and activation

Uncoated oxygenator fiber SEM (top) shows extensive platelet and cell deposition and activation on the fiber surface. In contrast, minimal deposition and activation is seen on the Cortiva BioActive Surface fiber SEM (bottom).

Generation of Beta-Thromboglobulin (β-TG), a marker of platelet activation, over time.

Cortiva™ BioActive Surface is associated with a significant reduction in platelet activation as marked by reduced β-TG generation (\(^{†}p < 0.001, ^{‡}p < 0.0001\)).

Cortiva™ BioActive Surface is associated with a greater percentage of functional platelets (\(^{‡}p < 0.02\) at 10 minutes, \(p < 0.01\) at 30, 60 and 120 minutes).

Cortiva™ is the same BioActive surface previously marketed by Medtronic under the CARMEDA® brand name. CARMEDA® is a registered trademark of Carmeda AB (Sweden).
Greater white blood cell retention

Cortiva™ BioActive Surface can benefit both adult and pediatric patients. Your patients.

Comparison between closed Cortiva BioActive Surface-coated and uncoated in vitro bench test circuits circulating heparinized human blood over time at device maximum rated flow rate.

A large body of published clinical and scientific evidence reports the beneficial impact of Cortiva™ BioActive Surface for both adult and pediatric patients. Ask your Medtronic representative how Cortiva™ BioActive Surface can benefit your patients.

References

continued

For more information on other Medtronic technologies for extracorporeal circulation, blood processing and diagnostics, visit: www.perfusion.medtronic.com