Table 1. Potential resolutions for each type of asynchrony
Asynchrony Type Possible Resolutions
Ineffective Efforts([FOOTNOTE=de Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Critical care medicine. 2009;37(10):2740-2745.],[ANCHOR=View Abstract],[LINK=/content/covidien/websites/medtronic/com/en/covidien/support/clinical-evidence.html?id=720867]),([FOOTNOTE=Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive care medicine. 2006;32(10):1515-1522.],[ANCHOR=View Abstract],[LINK=/content/covidien/websites/medtronic/com/en/covidien/support/clinical-evidence.html?id=805246]),([FOOTNOTE=MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Critical care medicine. 1997;25(10):1671-1677.],[ANCHOR=View Abstract],[LINK=/content/covidien/websites/medtronic/com/en/covidien/support/clinical-evidence.html?id=1203231]),([FOOTNOTE=Tobin M. Principals of mechanical ventilation. 3rd ed. China: McGraw-Hill; 2013],[ANCHOR=],[LINK=]) More sensitive trigger setting
Decrease Pressure Support
Increase flow cycling criteria
Increase PEEP setting
Double Triggering1,3,4 Increase machine Ti
Increase inspiratory flow
Increase tidal volume
Decrease flow cycling criteria
Auto-Triggering1,3,4 Decrease trigger sensitivity
Fix or compensate for system leaks
Flow Asynchrony1,3,4 Adjust flow or flow pattern to match patient demand
Change to pressure-based mode
Assess excessive or depressed drive (if present)
Delayed/Prolonged Cycling1,3,4 Adjust cycling criteria
Decrease PS Support
Assess excessive or depressed drive (if present)

Asynchrony-related ventilator adjustments place a significant burden on clinicians. For example, Xirouchaki et al. demonstrated that asynchrony was responsible for 42% of all ventilator adjustments related to clinical deterioration in patients undergoing pressure support ventilation.([FOOTNOTE=Xirouchaki N, Kondili E, Klimathianaki M, Georgopoulos D. Is proportional-assist ventilation with load-adjustable gain factors a user-friendly mode? Intensive care medicine. 2009;35(9):1599-1603],[ANCHOR=View Abstract],[LINK=/content/mitg/websites/languagemasters/na/en-us/support/clinical-evidence.html?id=719463])

Furthermore, imprecise adjustments may place patients at increased risk for additional asynchrony and impaired breath delivery.

See Etiology

To lessen this burden, the Puritan Bennett™ 980 ventilator provides a comprehensive solution for the reduction of patient-ventilator asynchrony. Utilization of the PAV+™ software has been demonstrated to reduce asynchrony and improve patient outcome. 

See Outcomes

Table 2. Asynchrony Prevention Tool on the Puritan Bennett 980 ventilator
Asynchrony Type Synchrony Tool
Ineffective efforts PAV+™
Auto triggering Leak Sync
Double triggering PAV+™
Delayed cycling PAV+™
Table 1. Potential resolutions for each type of asynchrony
Asynchrony Type Possible Resolutions
Ineffective Efforts([FOOTNOTE=de Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Critical care medicine. 2009;37(10):2740-2745.],[ANCHOR=View Abstract],[LINK=/content/covidien/websites/medtronic/com/en/covidien/support/clinical-evidence.html?id=720867]),([FOOTNOTE=Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive care medicine. 2006;32(10):1515-1522.],[ANCHOR=View Abstract],[LINK=/content/covidien/websites/medtronic/com/en/covidien/support/clinical-evidence.html?id=805246]),([FOOTNOTE=MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Critical care medicine. 1997;25(10):1671-1677.],[ANCHOR=View Abstract],[LINK=/content/covidien/websites/medtronic/com/en/covidien/support/clinical-evidence.html?id=1203231]),([FOOTNOTE=Tobin M. Principals of mechanical ventilation. 3rd ed. China: McGraw-Hill; 2013],[ANCHOR=],[LINK=]) More sensitive trigger setting
Decrease Pressure Support
Increase flow cycling criteria
Increase PEEP setting
Double Triggering1,3,4 Increase machine Ti
Increase inspiratory flow
Increase tidal volume
Decrease flow cycling criteria
Auto-Triggering1,3,4 Decrease trigger sensitivity
Fix or compensate for system leaks
Flow Asynchrony1,3,4 Adjust flow or flow pattern to match patient demand
Change to pressure-based mode
Assess excessive or depressed drive (if present)
Delayed/Prolonged Cycling1,3,4 Adjust cycling criteria
Decrease PS Support
Assess excessive or depressed drive (if present)

Asynchrony-related ventilator adjustments place a significant burden on clinicians. For example, Xirouchaki et al. demonstrated that asynchrony was responsible for 42% of all ventilator adjustments related to clinical deterioration in patients undergoing pressure support ventilation.([FOOTNOTE=Xirouchaki N, Kondili E, Klimathianaki M, Georgopoulos D. Is proportional-assist ventilation with load-adjustable gain factors a user-friendly mode? Intensive care medicine. 2009;35(9):1599-1603],[ANCHOR=View Abstract],[LINK=/content/mitg/websites/languagemasters/na/en-us/support/clinical-evidence.html?id=719463])

Furthermore, imprecise adjustments may place patients at increased risk for additional asynchrony and impaired breath delivery.

See Etiology

To lessen this burden, the Puritan Bennett™ 980 ventilator provides a comprehensive solution for the reduction of patient-ventilator asynchrony. Utilization of the PAV+™ software has been demonstrated to reduce asynchrony and improve patient outcome. 

See Outcomes

Table 2. Asynchrony Prevention Tool on the Puritan Bennett 980 ventilator
Asynchrony Type Synchrony Tool
Ineffective efforts PAV+™
Auto triggering Leak Sync
Double triggering PAV+™
Delayed cycling PAV+™