Catheter-Based Renal Sympathetic Denervation in the Management of Resistant Hypertension

Henry Krum, Markus Schlaich, Paul Sobotka, Rob Whitbourn, Jerzy Sadowski, Krzysztof Bartus, Boguslaw Kapelak, Horst Sievert, Anthony Walton, Suku Thambar, William T Abraham, Murray Esler

Centre of Cardiovascular Research & Education in Therapeutics, Monash University/Alfred Hospital, Melbourne, Australia
Presenter Disclosure Information

Henry Krum MBBS PhD FRACP

The following relationships exist related to this presentation:

< No relationships to disclose >
Background

- Hypertension is a global public health problem of major magnitude
- Despite the availability of safe and effective pharmacological therapies, only ~50% of patients achieve adequate blood pressure control to guideline targets
- The sympathetic nervous system, in particular renal sympathetic efferent and afferent nerves, is recognized as critical in the hypertension disease process
- Disruption of renal sympathetic nerves has long been considered an attractive therapeutic target for this condition
Anatomical Location of Renal Sympathetic Nerves

- Arise from T10-L1
- Follow the renal artery to the kidney
- Primarily lie within the adventitia
Anatomical Location of Renal Sympathetic Nerves

- Arise from T10-L1
- Follow the renal artery to the kidney
- Primarily lie within the adventitia
RF Ablation Approach to Renal Sympathetic Denervation

Syclicity® Catheter System, Ardian, Inc., Palo Alto, CA, USA
Placement of Renal RF Catheter
Treatment by Renal RF Catheter
Renal Sympathetic Denervation First in Man Study

Study Sites

- Melbourne, AU (x2)
- Newcastle, AU
- Krakow, Poland
- Frankfurt, Germany
Study Aims

• To perform a first-in-man 12-month evaluation of the safety and blood pressure-lowering efficacy of percutaneous renal sympathetic denervation in patients with refractory hypertension
Inclusion/Exclusion Criteria

Key Inclusion Criteria
- Office SBP ≥ 160 mmHg despite $3+$ anti-hypertensive medications (including diuretic), or confirmed intolerance to medications
- eGFR (MDRD formula) of ≥ 45 mL/min/1.73m2

Key Exclusion Criteria
- Known secondary cause of hypertension
- Type I diabetes mellitus
- Currently taking clonidine, moxonidine, or rilmenidine
- Renovascular abnormalities: significant renal artery stenosis, prior renal stenting or angioplasty, dual renal arteries
Study Endpoints

Primary Endpoints

- Peri-procedural and long-term safety
- Office blood pressure levels

Secondary Endpoints

- Ambulatory blood pressure monitoring
- Renal norepinephrine spillover rate
- Renal function (eGFR)
Patient Disposition

50 patients enrolled

Treatment eligibility determined by angiographic evaluation of renal artery anatomy

45 patients treated

41 with follow-up available at 1 month
39 with follow-up available at 3 months
26 with follow-up available at 6 months
20 with follow-up available at 9 months
9 with follow-up available at 12 months

5 patients not treated

5 with follow-up available at 1 month
5 with follow-up available at 3 months
5 with follow-up available at 6 months
2 with follow-up available at 9 months

2 lost to follow-up
Baseline Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Patients Undergoing Procedure (N=45)</th>
<th>Patients Anatomically Ineligible for Procedure (N=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>58 ± 9</td>
<td>51 ± 8</td>
</tr>
<tr>
<td>Gender (% female)</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>Race (% non-Caucasian)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes Mellitus II (%)</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>CAD (%)</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Heart Rate (bpm)</td>
<td>72 ± 11</td>
<td>79 ± 9</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m²)</td>
<td>81 ± 23</td>
<td>95 ± 15</td>
</tr>
<tr>
<td>BP (mmHg)</td>
<td>177/101 ± 20/15</td>
<td>173/98 ± 8/9</td>
</tr>
</tbody>
</table>
Baseline Patient Characteristics

<table>
<thead>
<tr>
<th>Medication Type</th>
<th>Patients Undergoing Procedure (N=45)</th>
<th>Patients Anatomically Ineligible for Procedure (N=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of anti-HTN meds (mean)</td>
<td>4.7 ± 1.5</td>
<td>4.6 ± 0.5</td>
</tr>
<tr>
<td>ACE/ARB (%)</td>
<td>96</td>
<td>80</td>
</tr>
<tr>
<td>Beta-blocker (%)</td>
<td>76</td>
<td>100</td>
</tr>
<tr>
<td>Calcium channel blocker (%)</td>
<td>69</td>
<td>100</td>
</tr>
<tr>
<td>Vasodilator (%)</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Diuretic (%)</td>
<td>96</td>
<td>60</td>
</tr>
</tbody>
</table>
Results

Procedure Characteristics & Safety

- Procedure time: median 38 (IQR 34-48) minutes
- Treatment delivered without complication in 43/45:
 - 1 renal artery dissection during catheter delivery (before RF energy application)
 - 1 femoral pseudoaneurysm, manually reduced without further sequelae
- No long-term vascular complications observed:
 - 18 patients had angiograms at 14-30 days post-
 - 6-months post-: 14 had MRA, 17 had CTA
Results

Office BP: All Treated Patients

Repeated measures ANOVA: P=0.026 for SBP, P=0.027 for DBP
*P<0.001 vs baseline BP

Change in Blood Pressure (mmHg)

1 month (n=41) 3 months (n=39) 6 months (n=26) 9 months (n=20) 12 months (n=9)

n=45
Results

Office BP: Untreated Patients

Change in Blood Pressure (mmHg)

<table>
<thead>
<tr>
<th>Time</th>
<th>Systolic</th>
<th>Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>3 months</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6 months</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>9 months</td>
<td>26</td>
<td>17</td>
</tr>
</tbody>
</table>

n=5
Results

Medication Changes

- 4.7 ± 1.5 anti-hypertensive drugs at baseline; unchanged at patients’ latest follow-up visit (p=NS)

- 3 patients required reduction of medications after normalization of BP

- 9 patients had their medications increased:
 - 5 were BP responders: >10mmHg BP reduction prior to medication increase
 - 4 were BP non responders
Results

Office BP: Censoring Medication Increases

Change in Blood Pressure (mmHg)

<table>
<thead>
<tr>
<th>Time</th>
<th>Systolic</th>
<th>Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month (n=41)</td>
<td>-14</td>
<td>-10</td>
</tr>
<tr>
<td>3 months (n=36)</td>
<td>-22</td>
<td>-11</td>
</tr>
<tr>
<td>6 months (n=21)</td>
<td>-22</td>
<td>-10</td>
</tr>
<tr>
<td>9 months (n=16)</td>
<td>-26</td>
<td>-11</td>
</tr>
<tr>
<td>12 months (n=4)</td>
<td>-28</td>
<td>-17</td>
</tr>
</tbody>
</table>

n=36
Results

24-Hr Ambulatory BP

\[\Delta \text{ABPM} \text{ vs } \Delta \text{Office BP} \]

\[r^2 = 0.6216 \]

\[P < 0.002 \]

Effect on Dipping

- **Dippers**
 - Pre-procedure: 33
 - Post-procedure: 67

- **Non- or reverse dippers**
 - Pre-procedure: 67
 - Post-procedure: 33
Results

Norepinephrine Data

% Δ Renal NE Spillover
(n=10)

-47%
Results

Renal Function

eGFR (ml/min/1.73m²)

<table>
<thead>
<tr>
<th>Pre-Procedure</th>
<th>6-Mths Post-Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>83</td>
</tr>
</tbody>
</table>

n=25
Summary

- Therapeutic renal sympathetic denervation involves a brief, simple percutaneous procedure

- No major complications were observed to either the renal artery or the kidney

- Significant and sustained reductions in blood pressure were achieved in patients with resistant hypertension

- Achievement of denervation supported by significant reduction in renal norepinephrine spillover
Conclusions

• Despite the non-randomized nature of this first in man study, percutaneous renal sympathetic denervation represents a novel, simple and effective approach to the management of hypertension in patients refractory to conventional pharmacological therapy.

• Prospective randomized controlled trials are required to definitively determine the role of this therapy in hypertension as well associated disorders.
For More Information

- www.thelancet.com