Catheter-Based Renal Denervation Reduces Total Body and Renal Noradrenaline Spillover and Blood Pressure in Resistant Hypertension

Murray Esler, Markus Schlaich, Paul Sobotka, Rob Whitbourn, Jerzy Sadowski, Krzysztof Bartus, Boguslaw Kapelak, Horst Sievert, Anthony Walton, Suku Thambar, William Abraham, Henry Krum

Update from Lancet 11 April 2009
Renal Sympathetic Denervation First in Man Study

Study Sites

- Melbourne, AU (x2)
- Newcastle, AU
- Warsaw, Poland
- Frankfurt, Germany
Increased Noradrenaline Spillover into the Renal Vein in Essential Hypertension

Renal Denervation Delays or Prevents Development of Many Experimental Forms of Hypertension

- SHR (rat)
- Stroke Prone SHR (rat)
- New Zealand SHR (rat)
- BHR (rat)
- Goldblatt 1K, 1C (rat)
- Goldblatt 2K, 2C (rat)
- Aortic coarctation (dog)
- Aortic nerve transection (rat)
- DOCA-NaCl (rat, pig)
- Angiotensin II (rat, rabbit)
- Fat feeding - Obesity (dog)
- Renal wrap (rat)

G. DiBona Physiol Rev 77:75-197, 1997
The Sympathetic Nervous System

The dominant pathophysiology, but the “Forgotten Pathway” in hypertension control

A novel, targeted anti-adrenergic therapy - - -
RF Ablation Approach to Renal Sympathetic Denervation

Electrode

Insulated arch wire

Symplicity® Catheter System, Ardian, Inc., Palo Alto, CA, USA
“Neurogenic Essential Hypertension”

Historical origins of the concept

* anatomical description of sympathetic nerves and ganglia
* their identification as “pressor” nerves
* **surgical sympatheticectomy for hypertension**
* identification of noradrenaline as sympathetic transmitter
* development of anti-adrenergic antihypertensive drugs
* techniques developed for measuring human sympathetic activity and SNS activation demonstrated in hypertension
Anatomical Location of Renal Sympathetic Nerves

- Arise from T10-L1
- Follow the renal artery to the kidney
- Primarily lie within the adventitia

Vessel

Lumen

Media

Adventitia

Renal Nerves

1000 μm
Procedure Characteristics

- **Procedure time:** Median 38 minutes

- **Ablation accompanied by pain:**
 - Managed by intravenous narcotics and/or sedatives
 - Pain did not persist beyond the RF energy application
Study Aims

To perform a first-in-man evaluation of the safety and blood pressure lowering efficacy of endovascular renal sympathetic denervation in patients demonstrated to be resistant to intensive medical anti-hypertensive therapy:

– Vascular safety
– Renal safety
– Evidence of renal denervation
– Blood pressure reduction
Key Inclusion Criterion

- Office SBP ≥160 mmHg despite 3+ anti-hypertensive medications (including diuretic)

Key Exclusion Criteria

- Currently taking clonidine, moxonidinide, or rilmenidinide
- Renovascular abnormalities: significant renal artery stenosis, prior renal stenting or angioplasty, dual renal arteries
50 patients enrolled

Treatment eligibility determined by angiographic evaluation of renal artery anatomy

45 patients treated

5 patients not treated
Baseline Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Patients Undergoing Procedure (N=45)</th>
<th>Patients Anatomically Ineligible for Procedure (N=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>58 ± 9</td>
<td>51 ± 8</td>
</tr>
<tr>
<td>Number of anti-HTN meds (mean)</td>
<td>4.7 ± 1.5</td>
<td>4.6 ± 0.5</td>
</tr>
<tr>
<td>ACE/ARB (%)</td>
<td>96</td>
<td>80</td>
</tr>
<tr>
<td>Diuretic (%)</td>
<td>96</td>
<td>60</td>
</tr>
<tr>
<td>Race (% non-Caucasian)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes Mellitus II (%)</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>CAD (%)</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Heart Rate (bpm)</td>
<td>72 ± 11</td>
<td>79 ± 9</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m²)</td>
<td>81 ± 23</td>
<td>95 ± 15</td>
</tr>
<tr>
<td>BP (mmHg)</td>
<td>177/101 ± 20/15</td>
<td>173/98 ± 8/9</td>
</tr>
</tbody>
</table>
Was the Sympathetic Denervation Successful?

Renal Noradrenaline Spillover as an Index

Renal NA SO (ng/min) (Lander)

Baseline

Left: 75% reduction

Right: 85% reduction
Results

Office BP: All Treated Patients

Change in Blood Pressure (mmHg)

<table>
<thead>
<tr>
<th>Time</th>
<th>Systolic</th>
<th>Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month (n=41)</td>
<td>-14</td>
<td>-10</td>
</tr>
<tr>
<td>3 months (n=39)</td>
<td>-21</td>
<td>-10</td>
</tr>
<tr>
<td>6 months (n=26)</td>
<td>-22</td>
<td>-11</td>
</tr>
<tr>
<td>9 months (n=20)</td>
<td>-24</td>
<td>-11</td>
</tr>
<tr>
<td>12 months (n=9)</td>
<td>-27</td>
<td>-17</td>
</tr>
</tbody>
</table>

n=45
Current data as of May 13, 2009

All Treated

<table>
<thead>
<tr>
<th>Time</th>
<th>Systolic</th>
<th>Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 month</td>
<td>-16</td>
<td>-10</td>
</tr>
<tr>
<td>3 months</td>
<td>-23</td>
<td>-11</td>
</tr>
<tr>
<td>6 months</td>
<td>-23</td>
<td>-11</td>
</tr>
<tr>
<td>9 months</td>
<td>-23</td>
<td>-11</td>
</tr>
<tr>
<td>12 months</td>
<td>-32</td>
<td>-17</td>
</tr>
</tbody>
</table>

Legend:
- □ Systolic
- ■ Diastolic

Notes:
- Data is presented as the change in systolic and diastolic blood pressure (mmHg) from baseline.
- The number in parentheses (n) represents the sample size for each time point.
Central Sympathetic Nervous System Inhibition?

Fall in total body noradrenaline spillover of 28% (p = 0.043)

(- - - of this approx. one third is attributable to the renal sympathetic denervation)
Effects of renal denervation on muscle sympathetic nerve activity

Baseline	30 days FU	12 M FU
ECG | | |
BP | | |
MSNA | 56 bursts/min | 41 bursts/min | 19 bursts/min

10 sec
Procedure Safety

- Treatment delivered without complication in 43/45:
 - 1 renal artery dissection during catheter delivery (before RF energy application), stented without further sequelae
 - 1 femoral pseudoaneurysm, manually reduced without further sequelae

- No long-term vascular complications observed:
 - 18 patients with angiograms at 14-30 day post-procedure
 - 14 patients with MRA 6-months post-procedure

- Renal function is preserved
Summary & Conclusions

• Therapeutic renal sympathetic denervation involves a brief, simple percutaneous procedure

• Substantial, sustained reductions in blood pressure were achieved in patients with resistant hypertension

• Despite the non-randomized nature of this first in man study, the procedure is apparently beneficial in the management of hypertension in patients refractory to pharmacological therapy

• Prospective randomized controlled trials are required to definitively determine the role of this therapy in essential hypertension, and in allied disorders (renal hypertension, heart failure, resistant hepatic ascites)
A cure for hypertension?
Cold Fusion ???