User Manual

Puritan Bennett™
520 Ventilator
Copyright information

COVIDIEN, COVIDIEN with logo, the Covidien logo and positive results for life are U.S. and internationally registered trademarks of Covidien AG. All other brands are trademarks of a Covidien company.

The information contained in this manual is the sole property of Covidien and may not be duplicated without permission. This manual may be revised or replaced by Covidien at any time and without notice. You should ensure that you have the most current applicable version of this manual; if in doubt, contact Covidien’s Technical Support department or visit the product manual web page at:

www.medtronic.com/covidien/support/product-manuals

While the information set forth herein is believed to be accurate, it is not a substitute for the exercise of professional judgment.

The ventilator should be operated and serviced only by trained professionals. Covidien’s sole responsibility with respect to the ventilator, and its use, is as stated in the limited warranty provided.

Nothing in this manual shall limit or restrict in any way Covidien’s right to revise or otherwise change or modify the equipment (including its software) described herein, without notice. In the absence of an express, written agreement to the contrary, Covidien has no obligation to furnish any such revisions, changes, or modifications (including software changes) to the owner or user of the equipment described herein.

This User’s Manual is for a non-clinician user, and does not contain all the information provided in the Clinician’s Manual. The Clinician’s Manual is on the CD delivered with the ventilator, and a printed copy is also available upon request from your equipment supplier or Covidien.
Table of Contents

Preface

- Purpose of this Manual .. ix
- Qualification of Personnel ... ix
- Warranty ... ix
- Extended Service .. ix
- Technical Support .. x

1 Safety Information

1.1 Definitions .. 1-1
1.2 Warnings ... 1-1
 - 1.2.1 Fire Hazard Warnings .. 1-1
 - 1.2.2 Warnings About Reducing Infection 1-2
 - 1.2.3 Warnings Before Using Equipment 1-3
 - 1.2.4 Warnings Regarding Environment of Use 1-4
 - 1.2.5 Warnings Regarding Electromagnetic Interference 1-6
 - 1.2.6 Warnings Regarding Settings/Additional Warnings for the Clinician ... 1-6
 - 1.2.7 Warnings Applicable During Use of Equipment 1-8
 - 1.2.8 Warnings Regarding Electrical Power 1-11
 - 1.2.9 Warnings Regarding Oxygen 1-13
 - 1.2.10 Warnings Regarding Hoses and Accessories 1-15
 - 1.2.11 Warnings Regarding Maintenance 1-18
 - 1.2.12 Warnings to Protect the Environment 1-21
 - 1.2.13 Warnings Regarding USB Memory Device 1-21
1.3 Symbols and Markings .. 1-22
1.4 Labels/Identification and Instruction Information 1-27

2 Ventilator Overview

2.1 Indications for Use ... 2-1
2.2 Contraindications ... 2-2
2.3 Operational Use ... 2-2
2.4 Device Classification .. 2-4
2.5 Front Panel ... 2-5
2.6 Back Panel .. 2-6
2.7 Control Panel .. 2-7
2.8 Ventilation Menu ... 2-8
2.9 Alarm Menu .. 2-9
2.10 USB Memory Device Menu .. 2-10
2.11 If Ventilator Failure Occurs 2-10
3 Alarms and Troubleshooting

3.1 Alarm Level of Priority .. 3-2
3.2 Alarm Display .. 3-3
3.3 Alarm Log Menu ... 3-4
3.4 Pausing the Audible Portion of Alarms 3-6
3.5 Pausing/Resetting Alarms .. 3-7
3.6 Reactivating Alarms .. 3-8
3.7 Overview of Alarms .. 3-9
3.8 Troubleshooting ... 3-14
 3.8.1 Alarms ... 3-15
 3.8.2 Additional Troubleshooting 3-24

4 Installation and Assembly

4.1 Installing the Ventilator ... 4-1
4.2 Connecting to External AC Power 4-3
4.3 Connecting to an External DC Power Source 4-6
4.4 Patient Circuit ... 4-8
 4.4.1 Choosing the Patient Circuit Type 4-10
 4.4.2 Installing the Patient Circuit 4-10
4.5 Filters ... 4-13
4.6 Humidifier ... 4-15
4.7 Oxygen ... 4-16
 4.7.1 Administering Oxygen ... 4-16
 4.7.2 Connecting the Oxygen Supply 4-17
4.8 Fitting the Ventilator into the Dual Bag 4-20
4.9 Mounting the Ventilator on a Wheelchair 4-20
4.10 Mounting the Ventilator on the Utility Cart 4-22
4.11 Connecting the Nurse Call Cable 4-23

5 Operating Procedures

5.1 Turning on the Ventilator ... 5-1
5.2 USB Menu Parameters .. 5-5
 5.2.1 USB Memory Device Specifications 5-5
 5.2.2 USB Menu .. 5-5
 5.2.3 Transfer Continuously ... 5-6
 5.2.4 Transfer Trends .. 5-8
5.3 Starting Ventilation .. 5-9
5.4 Stopping Ventilation ... 5-11
5.5 Turning Off the Ventilator ... 5-12
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Internal Battery</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Battery Capacity</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2</td>
<td>Battery Operation</td>
<td>6-2</td>
</tr>
<tr>
<td>6.3</td>
<td>Testing the Battery</td>
<td>6-4</td>
</tr>
<tr>
<td>6.4</td>
<td>Recharging the Battery</td>
<td>6-4</td>
</tr>
<tr>
<td>6.5</td>
<td>Storage</td>
<td>6-6</td>
</tr>
<tr>
<td>7</td>
<td>Cleaning</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Cleaning the Ventilator</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2</td>
<td>Cleaning the Accessories</td>
<td>7-2</td>
</tr>
<tr>
<td>7.3</td>
<td>Cleaning the Ventilator Between Patients</td>
<td>7-2</td>
</tr>
<tr>
<td>8</td>
<td>Routine Maintenance</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Replacing the Air Inlet Filter</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2</td>
<td>Recommended Schedule of Maintenance</td>
<td>8-2</td>
</tr>
<tr>
<td>8.3</td>
<td>Service Assistance</td>
<td>8-4</td>
</tr>
<tr>
<td>A</td>
<td>Specifications</td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>Physical</td>
<td>A-1</td>
</tr>
<tr>
<td>A.2</td>
<td>Electrical</td>
<td>A-1</td>
</tr>
<tr>
<td>A.3</td>
<td>Indicators and Alarms</td>
<td>A-3</td>
</tr>
<tr>
<td>A.4</td>
<td>Performance</td>
<td>A-4</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Specifications</td>
<td>A-4</td>
</tr>
<tr>
<td>A.5</td>
<td>Monitored Parameters</td>
<td>A-4</td>
</tr>
<tr>
<td>A.6</td>
<td>Range, Resolution, and Accuracy</td>
<td>A-5</td>
</tr>
<tr>
<td>A.7</td>
<td>Environmental</td>
<td>A-8</td>
</tr>
<tr>
<td>A.8</td>
<td>USB</td>
<td>A-8</td>
</tr>
<tr>
<td>A.9</td>
<td>Pneumatic</td>
<td>A-9</td>
</tr>
<tr>
<td>A.10</td>
<td>Manufacturer’s Declaration</td>
<td>A-10</td>
</tr>
<tr>
<td>A.11</td>
<td>Standards Compliance and IEC Classification</td>
<td>A-15</td>
</tr>
<tr>
<td>B</td>
<td>Operational Verification Checklist</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Alarms Tests</td>
<td></td>
</tr>
<tr>
<td>C.1</td>
<td>Low Pressure Test</td>
<td>C-1</td>
</tr>
<tr>
<td>C.2</td>
<td>Circuit Check Test</td>
<td>C-2</td>
</tr>
<tr>
<td>C.2.1</td>
<td>Performing a Circuit Check</td>
<td>C-2</td>
</tr>
<tr>
<td>C.2.2</td>
<td>Troubleshooting a Failed Check</td>
<td>C-4</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>C.3</td>
<td>Power Failure Test</td>
<td>C-5</td>
</tr>
<tr>
<td>C.4</td>
<td>Occlusion Test</td>
<td>C-5</td>
</tr>
<tr>
<td>C.5</td>
<td>Battery Test</td>
<td>C-6</td>
</tr>
<tr>
<td>C.6</td>
<td>Involuntary Stop Test</td>
<td>C-7</td>
</tr>
</tbody>
</table>

D Unpacking and Preparation
E Parts and Accessories
F Glossary
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Locations of Labels—Top-Front View</td>
<td>1-28</td>
</tr>
<tr>
<td>1-2</td>
<td>Locations of Labels and Markings—Rear View</td>
<td>1-28</td>
</tr>
<tr>
<td>1-3</td>
<td>Locations of Labels—Bottom View</td>
<td>1-29</td>
</tr>
<tr>
<td>2-1</td>
<td>Front Panel</td>
<td>2-5</td>
</tr>
<tr>
<td>2-2</td>
<td>Back Panel</td>
<td>2-6</td>
</tr>
<tr>
<td>2-3</td>
<td>Control Panel</td>
<td>2-7</td>
</tr>
<tr>
<td>2-4</td>
<td>Ventilation Menu Display</td>
<td>2-8</td>
</tr>
<tr>
<td>2-5</td>
<td>Alarm Menu</td>
<td>2-9</td>
</tr>
<tr>
<td>2-6</td>
<td>USB Memory Device Menu</td>
<td>2-10</td>
</tr>
<tr>
<td>3-1</td>
<td>Alarm Displays</td>
<td>3-3</td>
</tr>
<tr>
<td>3-2</td>
<td>Accessing Alarm Log Menu</td>
<td>3-4</td>
</tr>
<tr>
<td>3-3</td>
<td>Alarm Log Screen</td>
<td>3-5</td>
</tr>
<tr>
<td>3-4</td>
<td>Alarm Log Screen when No Alarm Activated</td>
<td>3-5</td>
</tr>
<tr>
<td>3-5</td>
<td>Pausing the Audible Portion of Alarms</td>
<td>3-6</td>
</tr>
<tr>
<td>3-6</td>
<td>Manually Pausing Alarms</td>
<td>3-7</td>
</tr>
<tr>
<td>3-7</td>
<td>Reactivating Alarms</td>
<td>3-8</td>
</tr>
<tr>
<td>3-8</td>
<td>Alarm Log</td>
<td>3-9</td>
</tr>
<tr>
<td>4-1</td>
<td>The Power Cable Holder</td>
<td>4-4</td>
</tr>
<tr>
<td>4-2</td>
<td>Inserting the Power Cable Holder Into the Notch</td>
<td>4-4</td>
</tr>
<tr>
<td>4-3</td>
<td>Power Cable Connected to the Ventilator</td>
<td>4-5</td>
</tr>
<tr>
<td>4-4</td>
<td>Power Indicators</td>
<td>4-6</td>
</tr>
<tr>
<td>4-5</td>
<td>Connecting the Ventilator to an External DC Power Source</td>
<td>4-7</td>
</tr>
<tr>
<td>4-6</td>
<td>Connecting the DC Power Cable to the Ventilator</td>
<td>4-8</td>
</tr>
<tr>
<td>4-7</td>
<td>Single-Limb Patient Circuit With Exhalation Valve</td>
<td>4-11</td>
</tr>
<tr>
<td>4-8</td>
<td>Closeup of Exhalation Valve Tube and Proximal Pressure Tube</td>
<td>4-11</td>
</tr>
<tr>
<td>4-9</td>
<td>Single-Limb Patient Circuit Without Exhalation Valve</td>
<td>4-12</td>
</tr>
<tr>
<td>4-10</td>
<td>Air Inlet Filter</td>
<td>4-14</td>
</tr>
<tr>
<td>4-11</td>
<td>Bacteria Filter</td>
<td>4-15</td>
</tr>
<tr>
<td>4-12</td>
<td>Humidifier</td>
<td>4-16</td>
</tr>
<tr>
<td>4-13</td>
<td>Rear Panel Oxygen Connector</td>
<td>4-18</td>
</tr>
<tr>
<td>4-14</td>
<td>Connecting the Oxygen Supply System</td>
<td>4-19</td>
</tr>
<tr>
<td>4-15</td>
<td>Disconnecting the Oxygen Supply System</td>
<td>4-19</td>
</tr>
<tr>
<td>4-16</td>
<td>Using the Dual Bag</td>
<td>4-22</td>
</tr>
<tr>
<td>4-17</td>
<td>Mounting the Ventilator on the Utility Cart</td>
<td>4-22</td>
</tr>
<tr>
<td>4-18</td>
<td>Using the Utility Cart</td>
<td>4-23</td>
</tr>
<tr>
<td>4-19</td>
<td>Connecting the Nurse Call Cable</td>
<td>4-23</td>
</tr>
<tr>
<td>5-1</td>
<td>Turning on the Ventilator</td>
<td>5-3</td>
</tr>
<tr>
<td>5-2</td>
<td>Welcome Menu Screen</td>
<td>5-4</td>
</tr>
<tr>
<td>5-3</td>
<td>Ventilation Menu Parameters</td>
<td>5-4</td>
</tr>
<tr>
<td>5-4</td>
<td>Selecting the USB Menu</td>
<td>5-6</td>
</tr>
<tr>
<td>5-5</td>
<td>Selecting Transfer Continuously</td>
<td>5-7</td>
</tr>
<tr>
<td>5-6</td>
<td>Selecting Transfer Trends</td>
<td>5-8</td>
</tr>
<tr>
<td>5-7</td>
<td>Prompt to Start Ventilation</td>
<td>5-10</td>
</tr>
</tbody>
</table>
Figure 5-8. Starting Ventilation ... 5-10
Figure 5-9. Stopping Ventilation (1) ... 5-11
Figure 5-10. Stopping Ventilation (2) ... 5-12
Figure 6-1. Internal Battery Indicator .. 6-3
Figure 6-2. Battery Reserve Capacity as a Percentage 6-3
Figure 6-3. Battery Reserve Capacity in Hours and Minutes 6-4
Figure 6-4. Power Indicators When Charging the Battery 6-5
Figure 8-1. Replacing the Air Inlet Filter .. 8-2
Figure C-1. Circuit Check Screen (Before Starting) C-2
Figure C-2. Blocking the Patient End of a Single Limb Circuit C-3
Figure C-3. Circuit Check (Running) ... C-3
Figure C-4. Circuit Check (Complete, Passed) ... C-4
Figure C-5. Circuit Check (Complete, Failed) .. C-4
Figure C-6. Blocking the Patient End of a Single Limb Circuit C-5
Figure D-1. Puritan Bennett 520 Ventilator ... D-2
Figure D-2. Dual Bag .. D-2
List of Tables

Table 1-1. Ventilator Symbols ... 1-22
Table 1-2. Ventilator Labels and Markings ... 1-27
Table 3-1. Overview of Alarms ... 3-10
Table 3-2. Alarms and Corrective Actions .. 3-15
Table 3-3. Additional Troubleshooting and Corrective Actions 3-25
Table 5-1. USB Memory Device Specifications 5-5
Table 6-1. Internal Battery Reserve Capacity ... 6-2
Table 7-1. Approved Cleaning Solutions for Exterior Ventilator Surfaces ... 7-2
Table 8-1. Consumables and Replacement Intervals 8-2
Table A-1. Physical Description (Excluding Accessories) A-1
Table A-2. AC Electrical Supply .. A-1
Table A-3. Internal Lithium Ion Battery .. A-2
Table A-4. Remote Alarm ... A-2
Table A-5. Power Indicators ... A-3
Table A-6. Alarm Indicators .. A-3
Table A-7. Audio Alarms ... A-3
Table A-8. Performance Parameter Specifications and Tolerances A-4
Table A-9. Monitored Parameter Tolerances .. A-4
Table A-10. Ventilator Range, Resolution, and Accuracy A-5
Table A-11. Environmental Conditions for Operation A-8
Table A-12. Environmental Conditions for Transport A-8
Table A-13. USB Memory Device Specifications A-8
Table A-14. Data Transfer Characteristics ... A-9
Table A-15. Airway Resistances .. A-9
Table A-16. Air Inlet Resistance (Filter) ... A-9
Table A-17. Oxygen Inlet Specifications ... A-9
Table A-18. Performance Specifications ... A-9
Table A-19. Electromagnetic Emissions .. A-10
Table A-20. Electromagnetic Immunity .. A-11
Table A-21. Electromagnetic Immunity—Conducted and Radiated RF A-12
Table A-22. Recommended Separation Distances A-14
Table A-23. Compliant Cables and Accessories A-15
Table B-1. Operational Verification Checklist B-1
Table E-1. List of Consumables and Accessories E-1
Table E-2. List of Circuits ... E-2
Preface

Purpose of this Manual

This manual contains important information regarding the safe operation of your Puritan Bennett™ 520 Ventilator. Your ventilator is an electrical device that can provide years of useful service with the proper care, as described in this manual.

Ensure that you read and understand the instructions contained in this manual before operating the ventilator.

⚠️ **WARNING:**

Before operating the ventilator, read, understand, and strictly follow the information contained in Chapter 1, “Safety Information.”

Qualification of Personnel

Installation and maintenance of the device must be made by authorized and trained personnel. In particular, training for the handling of products sensitive to electrostatic discharges must include the use of electrostatic discharge (ESD) protection devices and knowledge of the following symbol's meaning: 🚨.

Warranty

Information regarding your product warranty is available from your sales representative or Covidien.

Extended Service

The Puritan Bennett 520 Ventilator offers extended service contracts/warranties for purchase when the ventilator is purchased. Please contact your local Covidien sales or service representative for additional information.
For online technical support, visit the SolvIT™ Center Knowledge Base by clicking the link at www.medtronic.com/covidien/support/solvit-center-knowledge-base/ Here, you will find answers to frequently asked questions about the product and other Covidien products 24 hours a day, 7 days a week. If you require further assistance, contact your local Covidien representative.

Technical Support

<table>
<thead>
<tr>
<th>Technical service contacts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covidien Argentina</td>
</tr>
<tr>
<td>Vedia 3616</td>
</tr>
<tr>
<td>Buenos Aires</td>
</tr>
<tr>
<td>Argentina</td>
</tr>
<tr>
<td>Tel: 5411 4863 5300</td>
</tr>
<tr>
<td>Fax: 5411 4863 4142</td>
</tr>
<tr>
<td>Covidien Australia</td>
</tr>
<tr>
<td>52A Huntingwood Drive</td>
</tr>
<tr>
<td>Huntingwood, NSW 2148</td>
</tr>
<tr>
<td>Australia</td>
</tr>
<tr>
<td>Tel: +61 1800 350702</td>
</tr>
<tr>
<td>Fax: +612 9671 8118</td>
</tr>
<tr>
<td>Covidien Austria GmbH</td>
</tr>
<tr>
<td>Campus21</td>
</tr>
<tr>
<td>Europaring F09402</td>
</tr>
<tr>
<td>Brunn am Gebirge</td>
</tr>
<tr>
<td>A-2345 Österreich</td>
</tr>
<tr>
<td>Tel: +43 1 20609 1143</td>
</tr>
<tr>
<td>Fax: +43 1 20609 2457</td>
</tr>
<tr>
<td>Covidien Belgie S.A.-N.V.</td>
</tr>
<tr>
<td>Generaal De Wittelaan 9/5</td>
</tr>
<tr>
<td>Mechelen</td>
</tr>
<tr>
<td>2800</td>
</tr>
<tr>
<td>België</td>
</tr>
<tr>
<td>Tel: +32 220 08260</td>
</tr>
<tr>
<td>Fax: +32 270 06690</td>
</tr>
<tr>
<td>Covidien Brazil</td>
</tr>
<tr>
<td>Praça Agrícola La Paz Tristante, 121</td>
</tr>
<tr>
<td>Osasco – São Paulo / CEP 06276-035</td>
</tr>
<tr>
<td>São Paulo, SP</td>
</tr>
<tr>
<td>Brasil 04795-100</td>
</tr>
<tr>
<td>Tel: 5511 5683 8300</td>
</tr>
<tr>
<td>Fax: 5511 5683 8349</td>
</tr>
<tr>
<td>Covidien Canada</td>
</tr>
<tr>
<td>19600 Clark Graham</td>
</tr>
<tr>
<td>Baie d’Urfe, QC, H9X 3R8</td>
</tr>
<tr>
<td>Canada</td>
</tr>
<tr>
<td>Tel: 1 877 664 8926 (option 2)</td>
</tr>
<tr>
<td>Fax: 1 514 695 7534</td>
</tr>
<tr>
<td>Covidien Chile</td>
</tr>
<tr>
<td>Lo Boza 107</td>
</tr>
<tr>
<td>Pudahuel</td>
</tr>
<tr>
<td>Santiago de Chile, Chile</td>
</tr>
<tr>
<td>Tel: 562 231 3411</td>
</tr>
<tr>
<td>Fax: 562 231 3527</td>
</tr>
<tr>
<td>Covidien Colombia</td>
</tr>
<tr>
<td>Edificio Prados de la Morea</td>
</tr>
<tr>
<td>Carretera Central Del Norte</td>
</tr>
<tr>
<td>(Cra 7a) Kilometro 18,</td>
</tr>
<tr>
<td>Chia-Cundinamarca</td>
</tr>
<tr>
<td>Bogota, Colombia</td>
</tr>
<tr>
<td>Tel: 571 619 5469</td>
</tr>
<tr>
<td>Fax: 571 619 5425</td>
</tr>
<tr>
<td>Covidien Costa Rica</td>
</tr>
<tr>
<td>Global Park, Parkway 50</td>
</tr>
<tr>
<td>La Aurora, Heredia, 40104</td>
</tr>
<tr>
<td>Costa Rica</td>
</tr>
<tr>
<td>Tel: 506 256 1170</td>
</tr>
<tr>
<td>Fax: 506 256 1185</td>
</tr>
<tr>
<td>Fax: 506 290 8173</td>
</tr>
<tr>
<td>Covidien Danmark A/S</td>
</tr>
<tr>
<td>Langebrogade 6E, 4. sal</td>
</tr>
<tr>
<td>1411 København K</td>
</tr>
<tr>
<td>Danmark</td>
</tr>
<tr>
<td>Tel: +45 43 68 21 71</td>
</tr>
<tr>
<td>Fax: +45 43 31 48 99</td>
</tr>
<tr>
<td>Covidien Deutschland GmbH</td>
</tr>
<tr>
<td>Technisches Service Center</td>
</tr>
<tr>
<td>Raffineriestr. 18</td>
</tr>
<tr>
<td>93333 Neustadt / Donau</td>
</tr>
<tr>
<td>Germany</td>
</tr>
<tr>
<td>Tel: + 49 69 51 709670</td>
</tr>
<tr>
<td>Fax: + 49 69 29 9571608</td>
</tr>
<tr>
<td>Technical service contacts:</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Covidien ECE</td>
</tr>
<tr>
<td>Galvaního 7/a</td>
</tr>
<tr>
<td>821 04 Bratislava</td>
</tr>
<tr>
<td>Slovenska Republika</td>
</tr>
<tr>
<td>Tel: +42 124 821 45 73</td>
</tr>
<tr>
<td>Fax: +42 124 821 45 01</td>
</tr>
<tr>
<td>Covidien Finland Oy</td>
</tr>
<tr>
<td>Rahtitie 3</td>
</tr>
<tr>
<td>FI-01530 Vantaa</td>
</tr>
<tr>
<td>Finland</td>
</tr>
<tr>
<td>Tel: +358 9 725 192 88</td>
</tr>
<tr>
<td>Fax: +358 9 725 192 89</td>
</tr>
<tr>
<td>Covidien France SA</td>
</tr>
<tr>
<td>Parc d'affaires Technopolis</td>
</tr>
<tr>
<td>Bat. Sigma, 3 Avenue du Canada</td>
</tr>
<tr>
<td>LP 851 Les Ulis</td>
</tr>
<tr>
<td>91975 Courtaboeuf Cedex France</td>
</tr>
<tr>
<td>Tel: +33 1 57 32 35 10</td>
</tr>
<tr>
<td>Fax: +33 1 57 32 70 10</td>
</tr>
<tr>
<td>Covidien Italia S.p.A.</td>
</tr>
<tr>
<td>Via S.Bovio 3</td>
</tr>
<tr>
<td>San Felice, 20090 Segrate (MI) Italy</td>
</tr>
<tr>
<td>Italy</td>
</tr>
<tr>
<td>Tel: +39 02 91483320 (option 3)</td>
</tr>
<tr>
<td>Fax: +39 02 91294863</td>
</tr>
<tr>
<td>Covidien Japan Inc.</td>
</tr>
<tr>
<td>Technical Support Center</td>
</tr>
<tr>
<td>83-1, Takashimadaira 1-Chome</td>
</tr>
<tr>
<td>Itabashi-ku, Tokyo 175-0082 Japan</td>
</tr>
<tr>
<td>Tel: +81 0 3 6859 0120</td>
</tr>
<tr>
<td>Fax: +81 0 3 6859 0142</td>
</tr>
<tr>
<td>Covidien Nederland BV</td>
</tr>
<tr>
<td>Hogeweg 105</td>
</tr>
<tr>
<td>5301 LL Zaltbommel</td>
</tr>
<tr>
<td>Nederland</td>
</tr>
<tr>
<td>Tel: +31 202061470</td>
</tr>
<tr>
<td>Fax: +31 707 709229</td>
</tr>
<tr>
<td>Covidien Norge AS</td>
</tr>
<tr>
<td>Postboks 343</td>
</tr>
<tr>
<td>1372 Asker.</td>
</tr>
<tr>
<td>Norway</td>
</tr>
<tr>
<td>Tel: +47 2415 9887</td>
</tr>
<tr>
<td>Fax: +47 2302 4955</td>
</tr>
<tr>
<td>Covidien Panama</td>
</tr>
<tr>
<td>Parque Industrial Costa del Esta</td>
</tr>
<tr>
<td>Calle Primera, Edificio # 109</td>
</tr>
<tr>
<td>Panama City, Panama</td>
</tr>
<tr>
<td>Tel: 507 264 7337</td>
</tr>
<tr>
<td>Fax: 507 236 7408</td>
</tr>
<tr>
<td>Covidien Polska</td>
</tr>
<tr>
<td>Al. Jerozolimskie 182</td>
</tr>
<tr>
<td>Warszawa, 02-222</td>
</tr>
<tr>
<td>Polska</td>
</tr>
<tr>
<td>Tel: +48 22 279 04 05</td>
</tr>
<tr>
<td>Fax: +48 22 279 04 03</td>
</tr>
<tr>
<td>Covidien Portugal Lda.</td>
</tr>
<tr>
<td>Estrada do Outeiro de Polima, Lote 10-1º Abóboda</td>
</tr>
<tr>
<td>2785-521 S. Domingos de Rana</td>
</tr>
<tr>
<td>Portugal</td>
</tr>
<tr>
<td>Tel: +351 21 761 62 44</td>
</tr>
<tr>
<td>Fax: +351 800 781 385</td>
</tr>
<tr>
<td>Covidien Puerto Rico</td>
</tr>
<tr>
<td>Palmas Industrial Park</td>
</tr>
<tr>
<td>Road 869 Km 2.0 Bdlg. #1</td>
</tr>
<tr>
<td>Cateño, PR 00962</td>
</tr>
<tr>
<td>Tel: 787 993 7250</td>
</tr>
<tr>
<td>Ext. 7222 or 7221</td>
</tr>
<tr>
<td>Fax 787 993 7234</td>
</tr>
<tr>
<td>Covidien Russia</td>
</tr>
<tr>
<td>53 bld. 5 Dubininskaya Street</td>
</tr>
<tr>
<td>Moscow</td>
</tr>
<tr>
<td>Russia 119054 Россия</td>
</tr>
<tr>
<td>Tel: +70 495 933 64 69</td>
</tr>
<tr>
<td>Fax: +70 495 933 64 68</td>
</tr>
<tr>
<td>Covidien Saglik A.S.</td>
</tr>
<tr>
<td>Maslak Mahallesi Bilim Sokak No: 5, Sun Plaza Kat; 2-3</td>
</tr>
<tr>
<td>Sisli, Istanbul 34398</td>
</tr>
<tr>
<td>Turkey</td>
</tr>
<tr>
<td>Tel: +90 212 266 00 00</td>
</tr>
<tr>
<td>Fax: +90 212 276 35 25</td>
</tr>
<tr>
<td>Covidien South Africa</td>
</tr>
<tr>
<td>Corporate Park North</td>
</tr>
<tr>
<td>379 Roan Crescent</td>
</tr>
<tr>
<td>Randjespark</td>
</tr>
<tr>
<td>Midrand, South Africa</td>
</tr>
<tr>
<td>Tel: +27 115 429 500</td>
</tr>
<tr>
<td>Fax: +27 115 429 547</td>
</tr>
</tbody>
</table>
Technical service contacts:

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Phone Number</th>
<th>Fax Number</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covidien Spain S.L.</td>
<td>Servicio Técnico</td>
<td>+34 91 275 48 54 (option 3)</td>
<td>+34 91 276 89 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WTC Almeda Park, Plaça de la Pau, S/N - Edif. 7, 3ª Planta, 08940 Cornellá de Llobregat, Barcelona, Spain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Sverige AB</td>
<td>Box 54, 171 74 Solna, Sweden</td>
<td>+46 851 76 15 73</td>
<td>+46 850 25 21 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Switzerland</td>
<td>Roosstr. 53, Wollerau, 8832, Schweiz</td>
<td>+41 44 511 82 71</td>
<td>+41 44 511 16 34</td>
<td></td>
</tr>
<tr>
<td>Covidien UK and Ireland</td>
<td>Unit 2, Talisman Business Park, London Road, Bicester, OX26 6HR, United Kingdom</td>
<td>+44 20 3027 1757</td>
<td>+44 20 3684 8869</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia: Tyco Healthcare Pte Ltd</td>
<td>Singapore Regional Service Centre, 15 Pioneer Hub, #06-04, Singapore 627753</td>
<td>+65 6578 5187 / 8 / 9</td>
<td>+65 6515 5260</td>
<td>Tech_support@covidien.com</td>
</tr>
</tbody>
</table>
1 Safety Information

1.1 Definitions

This manual uses three indicators to highlight critical information: warning, caution, and note. They are defined as follows:

<table>
<thead>
<tr>
<th>Warning</th>
<th>Indicates a condition that can endanger the patient or the ventilator operator.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution</td>
<td>Indicates a condition that can damage the equipment.</td>
</tr>
<tr>
<td>Note</td>
<td>Indicates points of particular emphasis, that make operation of the ventilator more efficient or convenient.</td>
</tr>
</tbody>
</table>

It is essential to read, understand and follow these instructions before using the Puritan Bennett™ 520 Ventilator. In order to use the ventilator correctly and efficiently and to help prevent incidents, please pay particular attention to section 1.2, “Warnings,” as well as all warnings and cautions contained throughout this manual.

Note:

Many of the functions of the ventilator are not accessible when the Locking key is enabled. For additional assistance contact your clinician or equipment representative.

1.2 Warnings

1.2.1 Fire Hazard Warnings

WARNING:
The ventilator must not be used with flammable anesthetic substances.
1.2.2 Warnings About Reducing Infection

WARNING:
To reduce the risk of infection, wash your hands thoroughly before and after handling the ventilator or its accessories.

WARNING:
A patient treated by mechanical ventilation is highly vulnerable to the risks of infection. Dirty or contaminated equipment is a potential source of infection. Clean the ventilator and its accessories regularly and systematically before and after each use and following any maintenance procedure to reduce the risks of infection.

WARNING:
Single Use accessories should not be reused.

WARNING:
The air inlet filter is for use on a single patient and is not reusable; do not attempt to wash, clean, or reuse it.
1.2.3 Warnings Before Using Equipment

WARNING:
The ventilator must be used only under the responsibility and on the prescription of a doctor.

WARNING:
The ventilator is not intended to be used for patients without breathing autonomy or who are ventilator dependent.

WARNING:
The ventilator must be used according to its intended use. Refer to 2.1, “Indications for Use.”

WARNING:
Do not start ventilation until you ensure that the device is suitably assembled, that the air inlet filter is properly installed and is not obstructed, and that the cooling vents, and alarm sound diffusion holes are not obstructed, and that there is proper clearance all around the unit. Also ensure that the patient circuit is of the proper configuration, and is suitably connected to both the ventilator and the patient and that the patient circuit, including all hoses, is not damaged, compressed or obstructed.

WARNING:
Before dispensing the ventilator to caregivers or the patient for home use, ensure the Locking Key is activated so that critical ventilator settings are not modified.

WARNING:
Do not perform ventilator alarm tests while the patient is connected to the ventilator. Provide the patient with an alternate means of ventilation before conducting these tests.

WARNING:
Verify the functionality of the alarm conditions before connecting the patient to the ventilator. Refer to Appendix C, “Alarms Tests.”

WARNING:
If the ventilator fails the alarm tests or if you cannot complete the tests, refer to section 3, “Alarms and Troubleshooting,” or call your equipment supplier or Covidien.

WARNING:
The default setting for altitude compensation is YES. Altitude compensation should always be set to YES for accurate volume delivery calculations at all elevations.
WARNING:
Patients on home care ventilation equipment should be appropriately monitored by clinicians, caregivers and suitable monitoring equipment, as advised by the patient’s clinician. The Puritan Bennett™ 520 Ventilator is not intended to be a comprehensive monitoring device and does not activate alarms for all types of dangerous conditions for patients.

1.2.4 Warnings Regarding Environment of Use

WARNING:
Alarm volume should be adjusted with respect to the ventilator’s operating environment and so that the patient’s caretakers can hear the alarms. The audible alarm vents located at the front of the device should never be obstructed.

WARNING:
Do not operate the ventilator in direct sunlight, near heat sources, outdoors, or near installations where liquid may pose a risk without first providing adequate protection for the device.

WARNING:
Avoid using the ventilator, if possible, in dusty environments. Dusty environments may require more vigilant monitoring, cleaning, and/or replacement of air intake and other filters.

WARNING:
Before starting ventilation, ensure that the device is properly assembled and that the air inlet, cooling vents, and alarm sound diffusion holes are not obstructed. Ensure also that the patient circuit is of the proper configuration, properly connected to the ventilator, and that the circuit hoses are neither damaged nor compressed and contain no obstructions or foreign bodies.

WARNING:
Ensure that the ventilator’s immediate surroundings allow for the proper operational connection of the device without folding, pinching, or damaging any of the required cables or tubes, and that the connection of the patient circuit to the patient provides for a secure, comfortable fit.

WARNING:
Place the ventilator in a safe place when ventilating and according to the recommendations in this manual.

WARNING:
Do not place the ventilator in a position where a child can reach it or in any position that might cause it to fall on the patient or someone else.
WARNING:
To ensure correct and lasting operation of the ventilator, ensure that its air circulation holes (main inlet or cooling) are never obstructed. Place the device in an area where air can freely circulate around the ventilator and avoid installing it near floating fabrics, such as curtains.

WARNING:
If the ventilator has been transported or stored at a temperature that differs more than ±20°C (±68°F) from the temperature in which it will be operating, the ventilator should be allowed to stabilize in its operating environment for at least two (2) hours prior to use.

WARNING:
If the ambient temperature where the device is operated is greater than 35°C (95°F), the flow supplied at the device outlet may exceed 41°C (106°F). This may lead to undesirable side effects for the patient. To avoid injury to the patient move the patient and the ventilator to a cooler location.

WARNING:
The default setting for altitude compensation is YES. Altitude compensation should always be set to YES for accurate volume delivery calculations at all elevations.

WARNING:
To reduce the risk of a fire hazard, keep matches, lighted cigarettes, and all other sources of ignition (such as flammable anesthetics and/or heaters) away from the ventilator and oxygen hoses.

WARNING:
Regularly check the cleanliness of the air inlet filter located on the rear of the ventilator. If necessary, replace the filter before the recommended replacement period is over (see Chapter 8, “Routine Maintenance”). This is particularly important when the ventilator is installed on a wheelchair, because environmental conditions may cause the filter to become dirty more rapidly.

WARNING:
Due to typical voltage fluctuations that occur during normal power wheelchair use, the wheelchair mains battery should never be used to power the Puritan Bennett™ 520 Ventilator. The ventilator should always be connected to an independent power source (e.g. AC power, extra batteries, or DC power source).

WARNING:
Handle the ventilator with care during and after use, particularly when ambient temperatures are high. Some ventilator surfaces may become hot, even if safety specifications are not exceeded.
1.2.5 **Warnings Regarding Electromagnetic Interference**

WARNING:
The Puritan Bennett™ 520 Ventilator requires special precautions for electromagnetic compatibility and should be installed and started according to the recommendations found in Appendix A, “Specifications.” In particular, the use of nearby mobile and portable communications equipment using radio frequencies, such as mobile telephones or other systems exceeding the levels set in the IEC 60601-1-2 standard, may affect its operation. Refer to section A.10, “Manufacturer’s Declaration.”

WARNING:
The use of any accessory other than those specified, with the exception of the power supplies or cables sold by Covidien, may lead to an increase in electromagnetic emissions or a decrease in the equipment protection against electromagnetic emissions. If the ventilator is used adjacent to such accessories or stacked with such devices, the ventilator’s performance should be monitored to verify normal operation.

1.2.6 **Warnings Regarding Settings/Additional Warnings for the Clinician**

WARNING:
Before starting ventilation, always verify that all settings are properly set in accordance with the required prescription.

WARNING:
The Puritan Bennett™ 520 Ventilator offers a variety of breath delivery modes. Throughout the patient’s treatment, the clinician should carefully select the ventilation mode or modes to use for that patient. This selection should be based on the clinician’s clinical judgment, considering the condition and needs of the individual patient, as such condition and needs change from time to time, and considering the benefits, limitations and operating characteristics of each mode.

WARNING:
When changing the mode during ventilation, significant transitions of pressure, flow or cycling rate might occur, depending on the difference between the modes. Before setting the new mode, first ensure that the settings between the different modes are compatible. This reduces the risk of discomfort and harm to the patient.

WARNING:
The CPAP mode does not provide a set respiratory rate. Do not use this mode if it is not appropriate for the patient’s condition.
WARNING:
Monitor the patient’s state of health in order to ensure that the ventilator’s settings are always suited to the patient’s current physiological requirements.

WARNING:
Alarm volume should be adjusted with respect to the ventilator’s operating environment and so that the patient’s caretakers can hear the alarms.

WARNING:
Setting Alarm limits to extreme values can cause the ventilator alarms to malfunction.

WARNING:
Adjustable alarms should not be systematically canceled; instead, they should be adjusted according to the needs and condition of the patient.

WARNING:
Ensure that the I Sens setting is not set to OFF when ventilating patients capable of triggering spontaneous breaths.

WARNING:
In adult or pediatric use ensure that the adjusted tidal volume is compatible with the needs of the patient.

WARNING:
If the ventilator repeatedly triggers the same type of alarm, you should inform your clinician of the repeat alarms, as the clinician may consider whether an adjustment in the alarm setting is appropriate.

WARNING:
If APNEA TIME is set to a value higher than 60/Control R then the APNEA alarm will not activate.

WARNING:
The Apnea Alarm should be set to YES if an audible alarm sound is desired when apnea events occur.

WARNING:
The inspiration trigger threshold should be carefully modified in order to avoid the risk of false triggering or “autotriggering” of the ventilator. For example, Level 0P, the most sensitive mode, is recommended for pediatric use. However, for an adult, this setting may result in autotriggering.
1.2.7 Warnings Applicable During Use of Equipment

WARNING: The ventilator must be used only under the responsibility and on the prescription of a doctor.

WARNING: The ventilator must be used according to its intended use. Refer to section 2.1, “Indications for Use.”

WARNING: The ventilator is not intended to be used for patients without breathing autonomy or who are ventilator dependent.

WARNING: Be aware this manual describes how to respond to the ventilator, but it does NOT tell you how to respond to the patient.

WARNING: While the ventilator is in use, an alternative means of ventilation should always be available in the event of a ventilator problem. Supplementary observation, appropriate for the patient’s condition, is also recommended.

WARNING: Patients should always be monitored by trained and competent medical personnel. Also, the caregiver should be able and prepared to take suitable action in the event the ventilator identifies an alarm condition or experiences. If you are the caregiver, then consult with the patient’s physician to be sure you are prepared with the information and equipment you need to take suitable action in the case of an alarm or problem.

WARNING: Monitor the patient’s state of health and promptly inform the patient’s clinician if there are changes so that the clinician can take appropriate action, which may include changes to the ventilation settings.

WARNING: Alarm volume should be adjusted with respect to the ventilator’s operating environment and so that the patient’s caretakers can hear the alarms.

WARNING: Alarm volume is set by the clinician as part of the ventilator settings. If the alarm volume is insufficient for your environment, contact the clinician to increase the alarm volume setting.
WARNING:
When an alarm condition is triggered, or there is evidence of a patient-ventilator fault or problem, examine the patient first before examining the ventilator.

WARNING:
Adjustable alarms should not be systematically canceled; instead, they should be adjusted according to the needs and condition of the patient.

WARNING:
If the ventilator repeatedly triggers the same type of alarm, you should inform your clinician of the repeat alarms, as the clinician may consider whether an adjustment in the alarm setting is appropriate.

WARNING:
Handle the ventilator with care during and after use, particularly when ambient temperatures are high. Some ventilator surfaces may become hot, even if safety specifications are not exceeded.

WARNING:
A continuous alarm condition will be activated if the ventilator power switch is turned off while ventilation is in progress. When the power switch is turned back on again, ventilation will resume without having to press the VENTILATION ON/OFF button.

WARNING:
If the device is damaged, its external housing is not correctly closed, or it behaves in a way that is not described in this manual (excessive noise, heat emission, unusual odor, alarms not triggered during the start-up procedure), the oxygen and power supplies should be disconnected and use of the device stopped immediately.

WARNING:
Even though the Puritan Bennett™ 520 Ventilator meets current safety standards, and although the internal Lithium-ion battery of the device is considered to be Dangerous Goods for transport in commerce, this devices lithium battery is below the 100Wh threshold and is therefore excepted from being a Class 9 – Miscellaneous - Dangerous Goods (DG). As such, the Puritan Bennett™ 520 Ventilator and/or the associated Lithium-ion battery are subject to some transport conditions under the Dangerous Goods Regulation for air transport (IATA: International Air Transport Association), International Maritime Dangerous Goods code for sea and the European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR) for Europe. Private individuals who transport the device are excluded from these regulations although for air transport some requirements apply. For air transport; the Puritan Bennett™ 520 Ventilator is permitted as checked-in or carry-on baggage. Spare batteries may be taken on board as carry-on luggage only. This classification and regulatory requirements may vary depending upon the country and mode of transport. Therefore it is recommended that users verify with the carrier / airline as to which measures to take before the voyage.
WARNING: To minimize the risk of damage, you must use the ventilator’s Dual Bag to transport the ventilator. See Table E-1. List of Consumables and Accessories.

WARNING: To ensure that ventilation continues uninterrupted, ensure alternative power sources are available (AC power source, extra batteries, or an auxiliary DC car adapter). Be prepared for the possibility of power failure by having an alternative means of ventilation ready for use.

WARNING: The ventilator must not be used with flammable anesthetic substances.

WARNING: The ventilator should never be immersed in any liquid, and any liquid on the surface of the device should be wiped away immediately.

WARNING: To avoid damage to the ventilator, in particular the batteries or electrical components, fluids must not be allowed to enter the device, particularly through the air inlet filter or the cooling apertures located in the side, rear, and bottom panels of the ventilator.

WARNING: To ensure correct and lasting operation of the device, ensure that the ventilator is installed and operated in the environmental conditions recommended in Appendix A, “Safety Information.”

WARNING: Do not leave power cables lying on the ground where they may pose a hazard.

WARNING: Do not allow a patient to remain connected to the ventilator when ventilation is stopped, because a substantial quantity of exhalation gas, primarily carbon dioxide, may be inhaled by the patient. In some circumstances, inhaling carbon dioxide may lead to under ventilation, suffocation, and serious injury or death.

WARNING: Do not conduct the ventilator alarm test while the patient is connected to the ventilator. Switch the patient to an alternate means of ventilation before testing.
1.2.8 Warnings Regarding Electrical Power

WARNING:
To ensure that ventilation continues uninterrupted, ensure alternative power sources are available (AC power source, extra batteries, or an auxiliary DC car adapter). Be prepared for the possibility of power failure by having an alternative means of ventilation ready for use.

WARNING:
Never connect your ventilator to an electrical outlet controlled by a wall switch because the power may be inadvertently turned off.

WARNING:
To avoid damage to the ventilator, in particular the batteries or electrical components, fluids must not be allowed to enter the device, particularly through the air inlet filter or the cooling apertures located in the side, rear, and bottom panels of the ventilator.

WARNING:
Do not leave power cables lying on the ground where they may pose a hazard.

WARNING:
Due to typical voltage fluctuations that occur during normal power wheelchair use, the wheelchair mains battery should never be used to power the Puritan Bennett™ 520 Ventilator. The ventilator should always be connected to an independent power source (e.g., AC power, extra batteries, or DC power source).

WARNING:
The operator should connect the ventilator to an AC power source whenever available, for safer operation.

WARNING:
The maximum recommended shelf life of the internal battery is two (2) years. Do not use a battery that has been stored for two years, or more, prior to its first use.

WARNING:
Periodic recharging is important to help maximize useful life of the battery. Do not store the internal battery for extended periods, without recharging, as this may reduce the maximum life.

WARNING:
For the AC ("mains") power cable to be properly secured, the attachment located on the power cable must be fitted into the power cable holder incorporated in the battery access cover and located under the AC (mains) power socket. Refer to section 4.2, “Connecting to External AC Power.”
WARNING: The power supply to which the ventilator is connected (both AC and DC) must comply with all applicable standards and provide electrical power corresponding to the voltage characteristics inscribed on the rear of the ventilator to ensure correct operation. Refer also to the electrical specifications found in Appendix A, “Specifications.”

WARNING: Ensure that the ventilator’s internal battery is fully charged before using the ventilator with an external DC power source. Powering the ventilator using an external 12–30 VDC power source (via the DC power cable) does not enable its internal battery to recharge.

WARNING: Due to its limited internal battery’s reserve capacity, the ventilator should only be operated on the internal battery when no other power source is available. Ensure that the internal battery never becomes fully discharged. Alarms will sound when the charge on the internal battery is low. See Table 3-1. Overview of Alarms.

WARNING: When using a car auxiliary adapter (cigarette lighter) ensure the car has been started prior to plugging in the ventilator’s DC adapter, and keep the car running while you continue to power the ventilator from the DC adapter. Refer to section 4.3, “Connecting to an External DC Power Source.”

WARNING: In ambient temperatures above 40°C (104°F) the battery may not be fully charged even if the “INTERNAL BATTERY” charging indicator is not lit. This is due to the battery’s internal heat safety device. In this case, a HIGH LOW BATTERY alarm will be triggered. See Table 3-2. Alarms and Corrective Actions.

WARNING: When the “LOW BATTERY” alarm is triggered, immediately connect the ventilator to an AC power supply to maintain ventilation and recharge the internal battery.

WARNING: Batteries should be disposed of according to environmental legislation in your country and locality.

WARNING: Ensure that the AC power cable is in perfect condition and not compressed. The device should not be turned on if the AC power cable is damaged.
WARNING: A continuous alarm condition will be activated if the ventilator power switch is turned off while ventilation is in progress. When the power switch is turned back on again, the ventilation will resume without having to press the VENTILATION ON/OFF button.

WARNING: Before using the ventilator’s internal battery, ensure that the battery is fully charged and that the charge holds.

WARNING: Back up ventilators or those in storage should be connected to an AC power source to protect the integrity of the battery.

WARNING: To connect the ventilator to an external power source, first connect the desired power cable to the ventilator. Then connect the power cable to the external power source.

WARNING: To disconnect the ventilator from an external power source, first disconnect the power cable from the external power source and then, the ventilator.

WARNING: Connect the external DC power source by first connecting the power cable to the ventilator and then to the external DC source. Follow the reverse procedure to disconnect the device from the external DC power source.

1.2.9 Warnings Regarding Oxygen

WARNING: Oxygen therapy for patients with respiratory failure is a common and effective medical prescription. However, be aware that inappropriate oxygen use may potentially lead to serious complications, including, but not limited to, patient injury. Therefore, you should carefully follow the instructions of the patient's clinician regarding the use of oxygen in ventilating the patient.

WARNING: Strictly follow the instructions provided in section 4.7.2, “Connecting the Oxygen Supply,” which include the use of a special oxygen connector.
WARNING:
To avoid injury to the patient and/or possible damage to the ventilator: before connecting the ventilator to the oxygen supply, ensure a flow meter (flow regulator) is connected to the ventilator to regulate the oxygen supply to the required specification.

WARNING:
If using oxygen with the Puritan Bennett™ 520 Ventilator, Covidien recommends using an oxygen analyzer with minimum and maximum concentration alarms. Always measure the delivered oxygen with a calibrated oxygen analyzer that features a minimum and maximum concentration alarm in order to ensure that the prescribed oxygen concentration is delivered to the patient.

WARNING:
The Puritan Bennett™ 520 Ventilator is designed to deliver a percentage of oxygen equal to or lower than 50%. Do not exceed this value as this may cause the ventilator to malfunction and put the patient at risk.

WARNING:
Ensure that the oxygen supply pressure to the machine never exceeds 7 psi (50 kPa) or a flow of 15 lpm. Refer to Table A-8. Performance Parameter Specifications and Tolerances on page A-4 for sensitivity tolerances.

WARNING:
In the event of an oxygen leak, shut down the supply of oxygen at its source. In addition, remove and/or keep any incandescent source away from the device, which may be enriched with oxygen. Circulate fresh air into the room to bring the oxygen level down to normal.

WARNING:
The hose connecting the ventilator to the oxygen source must be designed exclusively for use with medical-grade oxygen. Under no circumstances should the oxygen hose be modified by the user. In addition, the hose must be installed without the use of lubricants.

WARNING:
Ensure that the only gas supplied to the ventilator through the dedicated oxygen supply connector is medical-grade oxygen.

WARNING:
The coupler must not remain connected to the oxygen connector unless it also connected to a leak-proof, external oxygen gas source. When an oxygen supply is not being used with the ventilator, disconnect the oxygen source completely from the ventilator.

WARNING:
To ensure stability, when the Puritan Bennett™ 520 Ventilator is mounted on a cart, the weight of the oxygen bottle should not exceed 14 kg (30 lbs).
WARNING:
The oxygen supply hose ages even when it is not in use and should be replaced periodically. Follow the expiration date, if any.

WARNING:
The oxygen supply must be regulated using a flow meter connected to the source gas outlet.

WARNING:
The oxygen supply must be shut off when ventilation is interrupted. Before disconnecting the oxygen hose, allow the ventilator to continue for a few cycles without oxygen to flush the patient circuit of excess oxygen.

WARNING:
Before connecting the oxygen supply, ensure that the stud on the oxygen connector is protruding outwards.

WARNING:
Inspect the oxygen coupler before use to ensure it has its black o-ring attached and in good condition. Do not use an oxygen coupler with a missing, damaged, or worn o-ring.

1.2.10 Warnings Regarding Hoses and Accessories

WARNING:
The ventilator must not use, nor be connected to, any anti-static or electrically conductive hoses, tubing, or conduits.

WARNING:
Before opening the packaging for the Patient Circuit, ensure that no damage is evident to the packaging or its contents. Do not use if evidence of damage exists.

WARNING:
The patient circuit should not be changed during ventilation.

WARNING:
On a DAILY basis, inspect the patient circuit to ensure that it shows no signs of damage, is properly connected, and is operating correctly without leakage.

WARNING:
Single Use accessories should not be reused.
WARNING: During invasive ventilation (when an artificial airway bypasses the patient’s upper respiratory system), the patient’s upper respiratory system cannot humidify the incoming gas. For this reason, the use of a humidifier, to minimize drying of the patient’s airway and subsequent irritation and discomfort, is required.

WARNING: The air inlet filter is for use on a single patient. It is not reusable; do not attempt to wash, clean, or reuse it.

WARNING: Failing to replace a dirty air inlet filter, or operating the ventilator without a filter, may cause serious damage to the ventilator.

WARNING: The patient circuit should always be positioned to avoid hindering the patient's movements, to prevent accidental disconnection or leakage, and to minimize the risk of patient strangulation.

WARNING: For pediatric use, ensure that the patient circuit type fits, and, in all respects, is suitable for use with a child. Use a pediatric circuit for patients that weigh under 53 lb. (23 kg). To ensure proper performance of the ventilator, see Table E-2. List of Circuits, on page E-2, for a list of recommended patient circuits.

WARNING: The exhalation valve must allow rapid discharge of the circuit pressure. Ensure that the exhalation valve is always clean and its evacuation aperture (exhaust port) is never obstructed.

WARNING: Users must always possess an additional breathing circuit and exhalation valve while using the ventilator.

WARNING: Always ensure that the humidification device is positioned lower than both the ventilator and the patient. Use water traps, if necessary, to limit water in the patient circuit and periodically empty these water traps.

WARNING: If a heated humidifier is used, you should always monitor the temperature of the gas delivered to the patient. Gas delivered from the ventilator that becomes too hot may burn the patient's airway.
WARNING:
Adding accessories to the ventilator breathing circuit, such as a humidifier and water trap(s), may result in a decrease in tidal volume delivered to the patient due to the added compressible volume of the accessory. Always assure that the patient is receiving the appropriate inspired volume when altering the breathing circuit configuration.

WARNING:
The level of inspiratory resistance of the circuit and accessories (bacteria filter, humidifier, HMEs, etc.) must be as low as possible. Settings—particularly the PATIENT DISCONNECTION alarm, maximum inspired volume (Max VTI), and minimum inspired volume (Min VTI) settings—must be periodically adjusted according to changes in the patient circuit resistance—especially when filters are replaced. Adding attachments to the ventilator breathing system can cause the pressure during exhalation at the patient connection port to increase.

WARNING:
To ensure proper performance of the ventilator, use a patient circuit recommended by Covidien in this manual; refer to Chapter 4, “Installation and Assembly” and Appendix E, “Parts and Accessories.” The total specified length of the patient circuit tubing as measured from the ventilator outlet to the ventilator inlet is 1.1 meters (3.6 feet) to 2.0 meters (6.6 feet). The tubing must conform to all applicable standards and must be fitted with Ø 22 mm terminals that also conform to all applicable standards. Ensure that both the length and the internal volume of the patient circuit are appropriate for the tidal volume: a corrugated tube of Ø 22 mm for adult patients, and a corrugated tube of Ø 15 mm for pediatric patients with a tidal volume lower than 200 ml.

WARNING:
To ensure proper performance of the ventilator, use only accessories (including oxygen accessories) approved and recommended by Covidien. See Appendix E, “Parts and Accessories” or contact your local Covidien Sales or Service Representative.

WARNING:
The oxygen supply hose ages even when it is not in use and should be replaced periodically. The expiration date may be located on the back of the hose end-piece.

WARNING:
When using non-invasive ventilation (NIV) without an exhalation valve, use a vented nose or face mask or a non-vented mask combined with a leak accessory. When using non-invasive ventilation (NIV) with an exhalation valve, use a non-vented mask.

WARNING:
Before using the Nurse Call system, ensure that its connections are secure and it operates properly.
WARNING: To connect the ventilator to a Nurse Call device, check the ventilator's compatibility with the Nurse Call device and order a suitable connection cable.

WARNING: Do not use Nurse Call devices that operate based on the closure of an electrical circuit, because the devices often do not take into account possible cable disconnection or a total loss of power. Ensure that the Nurse Call device is always connected to the ventilator.

WARNING: To prevent any interference with the internal sensors of the ventilator, do not install a humidifier upstream of the ventilator.

WARNING: The use of any accessory other than those specified, with the exception of the power supplies or cables sold by Covidien, may lead to an increase in electromagnetic emissions or a decrease in the equipment protection against electromagnetic emissions. If the ventilator is used adjacent to such accessories or stacked with such devices, the ventilator’s performance should be monitored to verify normal operation.

1.2.11 Warnings Regarding Maintenance

WARNING: If a problem with the ventilator is suspected, FIRST CHECK THAT THE PATIENT IS NOT IN DANGER. If necessary, remove the patient from the ventilator and provide an alternative means of ventilation.

WARNING: Never use a ventilator or any components or accessories that appear to be damaged. If any signs of damage are evident, contact your equipment supplier or Covidien.

WARNING: If the ventilator is damaged or its external housing is not correctly closed or it behaves in a way that is not described in this manual (excessive noise, heat emission, unusual odor, alarms not triggered during the start-up procedure), the oxygen and power supplies should be disconnected and use of the device stopped immediately.

WARNING: If the ventilator fails the alarm tests or if you cannot complete the tests, refer to Section 3.8, “Troubleshooting” or call your equipment supplier or Covidien.
WARNING:
Do not attempt to open, repair or otherwise service the ventilator yourself. Doing so might endanger the patient, damage the ventilator, and/or void your warranty. Only personnel authorized and qualified by Covidien should repair, open or service the ventilator.

WARNING:
Regularly clean the ventilator’s Dual Bag according to manufacturer’s recommendations.

WARNING:
Before cleaning the ventilator, first disconnect the ventilator and the patient circuit.

WARNING:
The ventilator should never be immersed in any liquid, and any liquid on the surface of the device should be wiped away immediately.

WARNING:
To avoid damage to the ventilator, in particular the batteries or electrical components, fluids must not be allowed to enter the device, particularly through the air inlet filter or the cooling apertures located in the side, rear, and bottom panels of the ventilator.

WARNING:
The air inlet filter is for use on a single patient and is not reusable; do not attempt to wash, clean, or reuse it.

WARNING:
Regularly check the cleanliness of the air inlet filter located on the rear of the ventilator. If necessary, replace the filter before the recommended replacement period is over; see Chapter 8, “Routine Maintenance.” This is particularly important when the ventilator is installed on a wheelchair, because environmental conditions may cause the filter to become dirty more rapidly.

WARNING:
Before cleaning the ventilator, first disconnect the ventilator and the patient circuit. If the ventilator is used indoors, the condition of the air inlet filter should be checked monthly. If the ventilator is used outdoors or in a dusty environment, the filter should be checked weekly and replaced as necessary.

WARNING:
To ensure proper servicing and avoid the possibility of physical injury to personnel or damage to the ventilator, only personnel authorized and qualified by Covidien should attempt to service or make authorized modifications to the Puritan Bennett™ 520 Ventilator.
WARNING:
If you cannot determine the cause of a problem with your ventilator, contact your equipment supplier. Do not use the ventilator until the problem has been corrected.

WARNING:
To ensure proper performance of the ventilator, the preventative maintenance schedule should be followed. For further information contact your equipment supplier or Covidien.

WARNING:
On a daily basis, ensure the proper connection and operation of the patient circuit.

WARNING:
After assembling, cleaning, or reassembling the patient circuit, and on a daily basis, inspect the hoses and other components to ensure that there are no cracks or leaks and that all connections are secure.

WARNING:
Use all cleaning solutions and products with caution. Read and follow the instructions associated with the cleaning solutions you use to clean your ventilator. Use only those solutions listed in Table 7-1. on page 7-2.

WARNING:
Never use a liquid cleaner inside the patient circuit, or on any component of a gas pathway. Clean the patient circuit only as specified by the manufacturer's instructions.

WARNING:
The patient circuit is intended for single use by a single patient and should be changed according to the manufacturer’s recommendations and according to the patient circuit lifetime. Refer to the instructions for use supplied by the manufacturer of the patient circuit (included with the ventilator) and to Chapter 4, “Installation and Assembly.”

WARNING:
A patient treated by mechanical ventilation is highly vulnerable to the risks of infection. Dirty or contaminated equipment is a potential source of infection. Clean the ventilator and its accessories regularly and systematically before and after each use and following any maintenance procedure to reduce the risks of infection.

WARNING:
Regularly check the cleanliness of the air inlet filter located on the rear of the ventilator. If necessary, replace the filter before the recommended replacement period is over (see Chapter 8, “Routine Maintenance”). This is particularly important when the ventilator is installed on a wheelchair, because environmental conditions may cause the filter to become dirty more rapidly.
1.2.12 **Warnings to Protect the Environment**

WARNING:
Batteries should be disposed of according to environmental legislation in your country and locality.

WARNING:
For environmental protection, the ventilator and its components, whatever their respective conditions of operation, cannot be disposed of with household waste and must be submitted for suitable selective collection and possible recycling of the materials. Observe all applicable regulations when disposing of the ventilator and any of its components.

1.2.13 **Warnings Regarding USB Memory Device**

WARNING:
Always verify the file ID before using a USB memory device to transfer data between the ventilator and a PC.
1.3 Symbols and Markings

Table 1-1. Ventilator Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>It is essential to read, understand, and follow these instructions before using the Puritan Bennett 520 Ventilator (ISO 7000-0434A). This symbol appears on the ventilator’s back panel, see Table 1-1, item 2.</td>
</tr>
<tr>
<td></td>
<td>Type BF applied part (IEC 60417-5333). A regulatory standard classification for protection against electrical shock for the part of the device that contacts the patient. This symbol appears on the ventilator’s back panel; see Table 1-1, item 4.</td>
</tr>
<tr>
<td></td>
<td>Direct current, DC (IEC 60417-5031). This symbol appears on the ventilator’s back panel and keyboard; see Figure 1-2 and Figure 2-3, on page 2-7, item 10.</td>
</tr>
<tr>
<td></td>
<td>Alternating current, AC (IEC 60417-5032). This symbol appears on the ventilator’s back panel and keyboard; see Figure 1-2, item 6, and Figure 2-3, on page 2-7, item 10.</td>
</tr>
<tr>
<td></td>
<td>Internal battery. This symbol appears on the ventilator’s keyboard; see Figure 2-3, on page 2-7, item 10.</td>
</tr>
<tr>
<td></td>
<td>Insulation class II equipment (IEC 60417-5172). A regulatory standard classification for protection against electric shock. Class II equipment relies on double insulation rather than protective earthing. This symbol appears on the ventilator’s back panel; see Table 1-1, item 4.</td>
</tr>
<tr>
<td></td>
<td>Index of Protection rating for the ventilator’s enclosure, defined in IEC 60529 (BSEN60529:1991). The first digit, 3, indicates protection against the intrusion of small foreign bodies (including fingers, tools, wires, etc. with a diameter greater than 2.5 mm) into the ventilator. The second digit, 1, indicates protection against water dripping or falling vertically, as well as an environment featuring water vapor condensation and/or light rain. This rating appears on the ventilator’s back panel; see Table 1-1, item 4.</td>
</tr>
<tr>
<td>![质量标志]</td>
<td>CSA—Canadian Standards Association. This symbol appears on the ventilator’s back panel; see Table 1-1, item 4.</td>
</tr>
<tr>
<td>![CE标志]</td>
<td>CE—Conformity European. Signifies compliance with the medical device directive 2007/47/EC. This symbol appears on the ventilator’s back panel; see Table 1-1, item 4.</td>
</tr>
</tbody>
</table>
Table 1-1. Ventilator Symbols (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This symbol appears on the ventilator’s front panel UP key; see Figure 2-3. on page 2-7, item 4. This key is used to: move the LCD display’s cursor upwards, line-by-line; increase the value of displayed and selected parameter setting.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the ventilator’s front panel DOWN key; see Figure 2-3. on page 2-7, item 6. This key is used to: move the LCD display’s cursor downwards, line-by-line; decrease the value of displayed and selected parameter settings.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the ventilator’s front panel ENTER key; see Figure 2-3. on page 2-7, item 5. This key is used to confirm command actions.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the ventilator’s front panel ALARM CONTROL key; see Figure 2-3. on page 2-7, item 2. (See my notes, to the left and below, in red). This key is used to: cancel the audible portion of alarms for 60 seconds at a time; cancel an alarm. For more information, see Appendix C, "Alarms Tests."</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the ventilator’s front panel MENU key; see Figure 2-3. on page 2-7, item 7. This key is used to access the ventilator’s menus via the ventilator’s front panel LCD display.</td>
</tr>
<tr>
<td></td>
<td>This symbol (IEC 60417– 5009) appears on the ventilator’s front panel VENTILATION ON/OFF button; see Figure 2-3. on page 2-7, item 8. This key is used to start and stop ventilation.</td>
</tr>
<tr>
<td></td>
<td>To patient port. This symbol appears on the front right of the ventilator, adjacent to the To patient port; see Figure 1-1. on page 1-28, item 1.</td>
</tr>
<tr>
<td></td>
<td>Patient proximal pressure port. This symbol appears on the front right of the ventilator, adjacent to the To patient port; see Figure 1-1. on page 1-28, item 3 and Figure 1-3. on page 1-29.</td>
</tr>
<tr>
<td></td>
<td>Exhalation valve pilot port. This symbol appears on the front right of the ventilator, adjacent to the To patient port indicating the connection of the tubing between the patient circuit exhalation valve; see Figure 1-1. on page 1-28 and Figure 1-3. on page 1-29, item 3.</td>
</tr>
<tr>
<td></td>
<td>Oxygen inlet. This marking appears on the back panel of the ventilator, adjacent to the oxygen inlet port; see Figure 1-2. on page 1-28, item 2.</td>
</tr>
</tbody>
</table>
Table 1-1. Ventilator Symbols (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
</table>
| ![Nurse call connector](Image) | Nurse call connector.
This symbol appears on the back panel of the ventilator, adjacent to the nurse call connector; see Figure 1-2 on page 1-28, item 10. |
| ![Switch in “Off” position](Image) | Switch in “Off” position (IEC 60417-5008).
This symbol appears on the I/O (power on/off) switch on the back panel of the ventilator to indicate the switch’s “Off” position. See Figure 2-2 on page 2-6, item 2. |
| ![Switch in “On” position](Image) | Switch in “On” position (IEC 60417-5007).
This symbol appears on the I/O (power on/off) switch on the back panel of the ventilator to indicate the switch’s “On” position. See Figure 2-2 on page 2-6, item 2. |
| ![Software lock enabled](Image) | Software lock enabled.
This symbol appears on the upper-left of the ventilator’s LCD display when the keyboard Locking key is enabled. See Chapter 5.3, “Starting Ventilation.” |
| ![Internal battery](Image) | Internal battery.
This symbol appears on the top-center of ventilator’s LCD display to indicate that the ventilator is being powered by its internal battery. See Figure 2-4 on page 2-4, item 1 and Chapter 6, “Internal Battery,” for more information. |
| ![Pressure rise times (inspiratory phase) parameter](Image) | Pressure rise times (inspiratory phase) parameter.
These symbols appear on the ventilation mode menu screens. In pressure ventilation modes, you can select one of four rise times with setting 1 representing the fastest rise time and setting 4 representing the slowest. |
| ![Selected line (filled square)](Image) | Selected line (filled square).
When making menu choices, this graphic indicates the line on which the cursor is currently positioned. |
| ![Non-selected line (empty square)](Image) | Non-selected line (empty square).
When making menu choices, this graphic indicates a line on which the cursor is currently not positioned. |
| ![Locked parameter line](Image) | Locked parameter line.
When making menu choices, this graphic indicates a line that cannot be selected (the Locking key is enabled). |
| ![Active parameter line](Image) | Active parameter line.
When making menu choices, this graphic indicates that the current parameter is selected and can be changed. See Chapter 5, “Operating Procedures.” |
| ![Inspiratory effort detected](Image) | Inspiratory effort detected.
This symbol appears in the front panel display’s Status window when the patient triggers a breath. |
Table 1-1. Ventilator Symbols (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parameter adjustment bar. This graphic shows the current setting for parameters such as display contrast and alarm volume in the Preferences menu.</td>
</tr>
<tr>
<td></td>
<td>WEEE (Waste Electrical and Electronic Equipment). This symbol means that this product must not be disposed of with household waste. Observe local ordinances for proper disposal. See Table 1-1, item 4.</td>
</tr>
<tr>
<td></td>
<td>Year of manufacture.</td>
</tr>
<tr>
<td></td>
<td>Manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Audio Paused (alarm key once). This symbol means the sounding of audible alarms is currently disabled. This period lasts for 60 seconds. For more information, see section 3.4, “Pausing the Audible Portion of Alarms.”</td>
</tr>
<tr>
<td></td>
<td>Alarm Paused (alarm key twice). This symbol means one or more alarms have been paused, or reset/canceled. The alarm is paused until the alarm condition is corrected and the condition reoccurs. For more information, see section 3.5, “Pausing/Resetting Alarms.”</td>
</tr>
<tr>
<td></td>
<td>Alarm off (Apnea off). This symbol means that the Apnea alarm has been set to OFF in the Preferences menu.</td>
</tr>
<tr>
<td></td>
<td>Exhalation valve detected. This symbol means that an exhalation valve has been detected during ventilation.</td>
</tr>
<tr>
<td></td>
<td>No exhalation valve detected. This symbol means that no exhalation valve has been detected during ventilation.</td>
</tr>
<tr>
<td></td>
<td>Follow instructions for use (ISO 7000-1641). This symbol directs the user to observe and adhere to the instructions contained in the product’s user manuals.</td>
</tr>
<tr>
<td></td>
<td>USB port. This symbol indicates a communications port for interfacing with a USB connector. See Figure 1-2, item 9.</td>
</tr>
</tbody>
</table>
Table 1-1. Ventilator Symbols (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC connector. This symbol indicates a port that can be used by authorized Puritan Bennett product service personnel or Covidien service personnel for software maintenance. See Figure 1-2, item 8.</td>
</tr>
<tr>
<td></td>
<td>Atmospheric pressure limitation.</td>
</tr>
<tr>
<td></td>
<td>Humidity limitations.</td>
</tr>
<tr>
<td></td>
<td>Temperature limitations.</td>
</tr>
<tr>
<td></td>
<td>Fragile.</td>
</tr>
<tr>
<td></td>
<td>Keep dry.</td>
</tr>
<tr>
<td></td>
<td>Keep away from direct sunlight.</td>
</tr>
<tr>
<td></td>
<td>This side up.</td>
</tr>
</tbody>
</table>
1.4 Labels/Identification and Instruction Information

Various labels or specific markings are affixed to the ventilator that describe precautions to be taken for the correct use of the ventilator and contribute to the traceability of the product. See Table 1-2. and the figures on the following pages for illustrations of these labels and markings and their locations on the ventilator. Use the item numbers in Table 1-2. to locate the labels in Figure 1-1. to Figure 1-3.

<table>
<thead>
<tr>
<th>Table 1-2. Ventilator Labels and Markings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Patient gas inlet label (Figure 1-1., Figure 1-3.)</td>
</tr>
<tr>
<td>2. Oxygen inlet marking and label (Figure 1-2.)</td>
</tr>
<tr>
<td>3. Exhalation valve and patient pressure connection label (Figure 1-1., Figure 1-3.)</td>
</tr>
<tr>
<td>4. Air inlet label (Figure 1-2.)</td>
</tr>
<tr>
<td>5. Identification label (Figure 1-3.)</td>
</tr>
<tr>
<td>6. AC power (mains) cable connector marking (Figure 1-2.)</td>
</tr>
<tr>
<td>7. External cable connector marking (Figure 1-2.)</td>
</tr>
<tr>
<td>8. PC connection marking (Figure 1-2.)</td>
</tr>
<tr>
<td>9. USB port marking (Figure 1-2.)</td>
</tr>
<tr>
<td>10. Nurse call cable connector marking (Figure 1-2.)</td>
</tr>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

1 Location of AC power cable connector
2. 12-30 V
3. 8.3 - 3.3A
4. 100 - 240 V
5. 50 / 60 Hz
6. 180 VA
7. SN
8. COVIDEN Puritan Bennett 520 Ventilator
9. 1 Location of DC power cable connector
10. External cable connector marking (Figure 1-2.)
Note:
The item number callouts in the following figures refer to those listed in Table 1-2.

Figure 1-1. Locations of Labels—Top-Front View

Figure 1-2. Locations of Labels and Markings—Rear View
Figure 1-3. Locations of Labels—Bottom View
2 Ventilator Overview

2.1 Indications for Use

The Puritan Bennett™ 520 Ventilator is indicated for the continuous or intermittent mechanical ventilatory support of patients weighing at least 11 lb (5 kg) who require mechanical ventilation. The ventilator is a restricted medical device intended for use by qualified, trained personnel under the direction of a doctor. It is essential to read, understand, and follow these instructions before using the Puritan Bennett™ 520 Ventilator.

Target Patients

Specifically, the ventilator is applicable for adult and pediatric patients who require the following general types of invasive or non-invasive ventilatory support, as prescribed by an attending doctor:

- Positive Pressure ventilation
- Assist/Control, PSV, or CPAP modes of ventilation
- Breath types, including Pressure Control and Pressure Support

Target Environments

The ventilator is suitable for use in institutional, home, and portable settings. It is not intended for use as an emergency transport ventilator.

The Puritan Bennett 520 Ventilator is suitable for use on commercial aircraft, per FAA requirements. See section A.11, "Standards Compliance and IEC Classification." Patients traveling with the Puritan Bennett 520 Ventilator may be required by their airline to demonstrate evidence of compliance with the RTCA/DO-160F standard, as well as other requirements. Contact your airline prior to travel to determine airline specific requirements and documentation.

WARNING:
Even though the Puritan Bennett™ 520 Ventilator meets current safety standards, and although the internal Lithium-ion battery of the device is considered to be Dangerous Goods for transport in commerce, this device’s lithium battery is below the 100Wh threshold and is therefore excepted from being a Class 9 – Miscellaneous - Dangerous Goods (DG). As such, the Puritan Bennett™ 520 Ventilator and/or the associated Lithium-ion battery are subject to some transport conditions under the Dangerous Goods Regulation for air transport (IATA: International Air Transport Association), International Maritime Dangerous Goods code for sea and the European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR) for
Europe. Private individuals who transport the device are excluded from these regulations although for air transport some requirements apply. For air transport, the Puritan Bennett™ 520 Ventilator is permitted as checked-in or carry-on baggage. Spare batteries may be taken on board as carry-on luggage only. This classification and regulatory requirements may vary depending upon the country and mode of transport. Therefore it is recommended that users verify with the carrier / airline as to which measures to take before the voyage.

Target Operators

The ventilator may be operated by the following caregivers:

- Respiratory therapists
- Doctors
- Nurses
- Homecare providers
- Patient and patient’s families

⚠️ **WARNING:**
This ventilator must be used only under the responsibility and on the prescription of a doctor.

⚠️ **WARNING:**
The ventilator is not intended to be used for patients without breathing autonomy or who are ventilator dependent.

2.2 Contraindications

This ventilator is not for use with anesthetic gases, and is not intended for use as an emergency transport ventilator. It is not intended to be used for patients without breathing autonomy or who are ventilator dependent.

2.3 Operational Use

The Puritan Bennett 520 Ventilator uses a micro-turbine to provide ventilatory support to patients. Clinicians may use a variety of interfaces to connect patients to the ventilator for continuous or intermittent ventilatory support. Some examples include mouthpieces; nasal masks or full face masks; endotracheal tubes or tracheotomy tubes. User-selectable ventilation modes include the following types:

- Assisted Controlled Pressure (P A/C)
- Continuous Positive Airway Pressure (CPAP)
- Pressure Support Ventilation with apnea ventilation (PSV/ST)
Safety Net

Incorporated in the ventilator design is an alarm system that continuously monitors both patient and machine for signs of specific errors or faults that could lead to an unsafe condition. Should any of these errors or faults be detected, the alarm system announces the specific alarm condition both audibly and visually. The machine-related alarm conditions are factory set, whereas the patient-related alarm conditions are defined by alarm-threshold values selected by an operator (a clinician or a caregiver). For more information, see Chapter 3, “Alarms and Troubleshooting.”

WARNING:
Patients on home care ventilation equipment should be appropriately monitored by clinicians, caregivers and suitable monitoring equipment, as advised by the patient’s clinician. The Puritan Bennett™ 520 Ventilator is not intended to be a comprehensive monitoring device and does not activate alarms for all types of dangerous conditions for patients.

Settings

A software key, known as the Locking key, restricts access to ventilation parameter settings and ventilation mode changes in order to distinguish between clinician usage and patient usage.

Oxygen Enrichment

Oxygen may be supplied from an external, low pressure source, but the oxygen flow must be limited to 15 lpm (50 kPa, 7 PSI). The ventilator automatically compensates for the extra flow created by the external oxygen supply (see Chapter 4, “Installation and Assembly”).

WARNING:
To reduce the risk of a fire hazard, keep matches, lighted cigarettes, and all other sources of ignition (such as flammable anesthetics and/or heaters) away from the ventilator and oxygen hoses.

WARNING:
Oxygen therapy for patients with respiratory failure is a common and effective medical prescription. However, be aware that inappropriate oxygen use may potentially lead to serious complications, including, but not limited to, patient injury.

WARNING:
Users must always possess an additional breathing circuit and exhalation valve while using the Puritan Bennett™ 520 Ventilator.

Breathing Circuit

The ventilator is used with a single-limb patient circuit. For more information, see section 4.4, “Patient Circuit” on page 4-8.
2.4 Device Classification

The ventilator’s IEC/EN 60601-1 classification is as follows:

- Protection/insulation class (electric shock): class II
- Protection index of enclosure: IP31
- Medical device directive classification: II B
- Degree of protection against risk of electric shock: BF
- Power: external (AC–mains, or DC–cigarette lighter) or internal (DC–battery)
- Operation mode: continuous operation

For additional information, see Appendix A, “Specifications.”
2.5 Front Panel

1 LCD display	Shows information about the ventilator, including patient hours and software version, ventilation modes and settings, and monitored and calculated patient data. The display also allows the user to view and, using the control panel, adjust the ventilator’s operating and alarm configuration settings.
2 Control panel	Features the controls for setting up and operating the ventilator, and LEDs to indicate the ventilator’s power source, ventilation on/off status, and alarm priority level. Control functions include turning on and off the ventilation, configuring ventilation modes, pausing audible alarms, canceling alarms, and setting device and alarm parameters.
3 Patient connection port	Provides an outlet for the gas to be delivered to the patient via the patient circuit.
4 Patient pressure monitoring port	Nipple for monitoring proximal patient pressure.
5 Exhalation valve port	Nipple for providing piloting pressure to the exhalation valve. Controls the open-closed position of the exhalation valve.
6 Lateral and front openings	Vents that allow for air circulation to cool the ventilator’s internal components. In addition, these openings function as sound ports for audible alarms.

WARNING:
Do not cover or obstruct these openings.
2.6 Back Panel

Figure 2-2. Back Panel

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ergonomic carrying handle.</td>
</tr>
<tr>
<td>2</td>
<td>On/off (I/O) switch with protective cover: Device powered on in position I; device switched off in position 0.</td>
</tr>
<tr>
<td>3</td>
<td>AC power ("mains") cable connector.</td>
</tr>
<tr>
<td>4</td>
<td>AC power ("mains") cable holding system: Secures AC power cable to avoid accidental disconnection.</td>
</tr>
<tr>
<td>5</td>
<td>Access cover for the internal battery.</td>
</tr>
<tr>
<td>6</td>
<td>DC power cable connector with key.</td>
</tr>
<tr>
<td>7</td>
<td>PC cable connector: USB mini-B connector used for Puritan Bennett Ventilator test software.</td>
</tr>
<tr>
<td>8</td>
<td>O₂ inlet port: Connects the ventilator to a low pressure oxygen source via an adapter connected to the O₂ Inlet (see section 4.7.1, "Administering Oxygen.").</td>
</tr>
<tr>
<td>9</td>
<td>Nurse call output connector: Used to connect the ventilator to the nurse call system.</td>
</tr>
<tr>
<td>10</td>
<td>USB memory device connection: USB connection to be used with Puritan Bennett Respiratory Insight Software. There are two USB type A ports.</td>
</tr>
<tr>
<td>11</td>
<td>Air inlet filter: Filters air as it enters the ventilator.</td>
</tr>
</tbody>
</table>

WARNING:

Do not cover or obstruct these openings.
2.7 Control Panel

Figure 2-3. Control Panel

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Alarm indicators (two LEDs):
Red indicator:
• Continuous: very high priority (VHP) alarm activated
• High priority (HP) alarm activated
Yellow indicator:
• Medium priority (MP) alarm activated. |
| 2 | ALARM CONTROL key:
• Press once to pause an audible alarm for 60 seconds.
• Press twice to halt visual and audible alarms. If alarm is remedied, the alarm is canceled (other than the high pressure alarm). |
| 3 | Display screen:
Shows modes, ventilation settings, patient data, configuration of the ventilator, and alarm management. |
| 4 | UP key:
Moves the cursor up and increases parameter values. |
| 5 | ENTER key:
• Access to a setting value and validation of the modification of this setting.
• Access to a sub-menu. |
| 6 | DOWN key:
Moves the cursor down and decreases parameter values. |
| 7 | MENU key:
Changes the menu shown. From the Ventilation menu screen, press this key to show the Alarm menu screen.
When a USB memory device is inserted into the ventilator, press this key to show the USB memory device screen. |
| 8 | VENTILATION ON/OFF button:
• ON: Press briefly and release to start ventilation.
• OFF: Press and hold for 3 seconds, then press again to stop ventilation |
| 9 | Ventilation status indicator:
• Blue indicator illuminated: Device is turned on and ventilation is off (on standby).
• Blue indicator off: Ventilation is on. |
| 10 | Electrical power source indicators:
• AC POWER indicator lit: AC power source connected.
• DC POWER indicator lit: DC power source connected.
• INTERNAL BATTERY indicator lit continuously: internal battery in use (no external power source connected.)
• INTERNAL BATTERY indicator flashing: battery charging. |
2.8 Ventilation Menu

Figure 2-4. Ventilation Menu Display

<table>
<thead>
<tr>
<th>1</th>
<th>General information line: Shows the current ventilation mode, along with the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Battery symbol if the device is powered by the internal battery.</td>
</tr>
<tr>
<td></td>
<td>• Audio paused symbol if an alarm is currently inhibited.</td>
</tr>
<tr>
<td></td>
<td>• Alarm paused symbol if an alarm has been canceled manually and the cause of the alarm remains.</td>
</tr>
<tr>
<td></td>
<td>• Apnea alarm deactivation symbol.</td>
</tr>
<tr>
<td></td>
<td>• Exhalation valve symbol.</td>
</tr>
<tr>
<td></td>
<td>• No exhalation valve symbol.</td>
</tr>
<tr>
<td></td>
<td>• Absolute ABS symbol.</td>
</tr>
<tr>
<td></td>
<td>• Relative REL symbol.</td>
</tr>
<tr>
<td>2</td>
<td>Ventilation settings: Shows the specific ventilation parameter values for the currently selected ventilation mode.</td>
</tr>
<tr>
<td>3</td>
<td>Preferences menu access line: Highlight this line and press the ENTER key to show the Preferences menu.</td>
</tr>
<tr>
<td>4</td>
<td>Bargraph: Shows pressure generation during ventilation.</td>
</tr>
<tr>
<td>5</td>
<td>Status/monitored data window:</td>
</tr>
<tr>
<td></td>
<td>• Ventilation stopped (standby): shows the message, “PRESS TO START VENTILATION.”</td>
</tr>
<tr>
<td></td>
<td>• Ventilation on: parameters are monitored and shown</td>
</tr>
<tr>
<td></td>
<td>• The Inspiratory effort detected symbol appears adjacent to the monitored I:E ratio when the patient actively triggers a breath.</td>
</tr>
<tr>
<td>6</td>
<td>Alarm conditions window: For active alarms, scrolls through active alarm messages in flashing reverse video. See Chapter 3, “Alarms and Troubleshooting” for details.</td>
</tr>
</tbody>
</table>
2.9 Alarm Menu

![Figure 2-5. Alarm Menu](image)

Alarm menu with ventilation on standby.

Alarm menu when not in standby.

<table>
<thead>
<tr>
<th>Title line:</th>
<th>Alarm settings:</th>
<th>Access line to Alarm Logs menu.</th>
</tr>
</thead>
</table>
| • Battery [] if the ventilator is powered by the internal battery.
• Audio paused [] if an alarm is currently inhibited.
• Alarm paused [] if an alarm has been canceled manually and the cause of the alarm remains.
• Apnea Alarm deactivation [].
• Exhalation valve [] symbol.
• No exhalation valve [] symbol. | Shows the specific alarm parameter values for the currently selected ventilation mode, which are:
• Min and max alarm threshold settings, and
• Current monitored patient readings, or hyphen (-) when ventilation is in standby | Highlight this line and press the ENTER key to show the Alarm Logs menu.
See section 3.3, "Alarm Log Menu." |

<table>
<thead>
<tr>
<th>Status/monitored data window:</th>
<th>Alarm message window:</th>
<th></th>
</tr>
</thead>
</table>
| • Ventilation stopped (standby): shows the message, “PRESS [] TO START VENTILATION.”
• Ventilation on: parameters are monitored and shown.
• The Inspiratory effort detected symbol [] appears adjacent to the monitored I:E ratio when the patient actively triggers a breath. | • For active alarms, scrolls through active alarm messages in flashing reverse video.
• For inactive alarms, shows the last alarm along with its trigger date and end-of-event time.
See Chapter 3, "Alarms and Troubleshooting" for more information. | |
2.10 USB Memory Device Menu

![USB Memory Device Menu](image)

1. Title line
2. Ventilator serial number
3. USB Memory Device menu
4. Dialog box

2.11 If Ventilator Failure Occurs

If a problem with the ventilator is suspected, FIRST CHECK THAT THE PATIENT IS NOT IN DANGER. If necessary, remove the patient from the ventilator and provide an alternate means of ventilation.

Keep in mind that troubleshooting information is available in this manual to assist you in the event of a problem. See Chapter 3, "Alarms and Troubleshooting."

If you cannot determine the cause of a problem, contact your equipment supplier or Covidien. See Chapter 8.3, "Service Assistance."
3 Alarms and Troubleshooting

WARNING:
When an alarm condition is triggered, or there is evidence of a patient-ventilator fault or problem, examine the patient first before examining the ventilator.

WARNING:
Alarm volume should be adjusted with respect to the ventilator’s operating environment and so that the patient’s caretakers can hear the alarms. The audible alarm vents located at the front of the device should never be obstructed.

WARNING:
If the ventilator repeatedly triggers the same type of alarm, you should inform your clinician of the repeat alarms, as the clinician may consider whether an adjustment in the alarm setting is appropriate.

WARNING:
Setting Alarm limits to extreme values can cause the ventilator alarms to malfunction.

WARNING:
Adjustable alarms should not be systematically canceled; instead, they should be adjusted according to the needs and condition of the patient.

Note:
Many of the functions of the ventilator are not accessible when the Locking key is enabled. For additional assistance, contact your clinician or equipment representative.

The alarms or faults generated by your Puritan Bennett™ 520 Ventilator are classified into two categories:
- Ventilation (or utilization) alarms
- Technical faults

Alarms indicate events likely to affect the ventilation in the short term and necessitate rapid intervention (see section 3.8, “Troubleshooting,” on page 3-14).
Some of the ventilator alarms are adjustable, depending on ventilation modes. Automatic, non-adjustable alarms also exist to create a safety net for safer patient ventilation.

Note:
Default alarm setting preferences should be entered prior to using the ventilator.

Note:
Setting any alarm limits to OFF or to extreme high or low values can cause the associated alarm not to activate during ventilation, which reduces its efficacy for monitoring the patient and alerting the caregiver to situations that may require intervention.

Note:
All configurable alarm settings are recorded in the ventilator’s nonvolatile internal memory, and are retained when powering down or in the event of a total loss of power.

Technical faults do not directly affect machine operation. Therefore, the user is not alerted to technical faults. Only authorized and trained technicians may consult the maintenance menu (see the Puritan Bennett 520 Ventilator service manual).

3.1 Alarm Level of Priority

The alarm hierarchy for signaling the level of alarm criticality is listed as follows:

- **Very high priority (VHP): Immediate critical situation; ventilation is impossible:** Continuous sound signaling / with or without continuous red LED illumination / with or without message / with or without display lighting (it is possible for an alarm condition to occur that may not have both a message and lighting)

- **High priority (HP): Critical situation in the short term; ventilation is potentially compromised:** High speed intermittent sound signaling / flashing red LED illumination / with message / with display lighting

- **Medium Priority (MP): Critical situation in the long term; ventilation is not affected in the short term:** Medium speed intermittent sound signaling / flashing yellow LED illumination / with message / with display lighting

Note:
There are currently no low priority (LP) alarms.

Note:
If there is no corrective action and if the audible alarm is not inhibited (Audio Paused) or reset (Alarm Reset) within 60 seconds, high priority alarms will sound at the maximum level.
3.2 Alarm Display

During operation, when an alarm is activated, the following events occur:

- One of the red or yellow alarm indicators to the left of the ALARM CONTROL key illuminates and flashes.
- An alarm tone sounds.
- A message is shown and flashes in reverse video at the bottom of the Ventilation menu or Alarm menu.

Figure 3-1. Alarm Displays

![Alarm Displays](image)

1 Alarm Control key

Ventilation Menu

Alarm Menu

![Ventilation Menu](image)

1 Alarm messages
Note:
There are currently no low priority (LP) alarms.

Note:
When an alarm is triggered, if the current menu shown is not the Ventilation parameters or Alarm menu, the display automatically switches to one of these menus to show the alarm message.

Note:
In the event several alarms are activated at the same time, the highest priority audible and visual alarm is highlighted; however, all active messages are shown, in the sequence in which they occurred.

3.3 Alarm Log Menu

All alarms are recorded in the ventilator’s non-volatile internal memory at the time of activation, and are retained when powering down or in the event of a total loss of power.

The Alarm Log menu is used to show the last eight alarms activated, along with their date and time of activation.

To access the Alarm Log menu, do the following:

1. Press the MENU key to access the Alarm setting menu (if this is not the menu currently shown).

2. Press the DOWN key until the cursor is on the Alarm Logs line at the bottom of the page. The display appears as shown in Figure 3-2.

Figure 3-2. Accessing Alarm Log Menu
3. Press the **ENTER** key. The Alarm Log screen is shown.

![Alarm Log Screen](image)

Figure 3-3. Alarm Log Screen

Note:
When no alarm has been activated, NO DATA is shown on the screen (see *Figure 3-4.*)
For more information on the User’s clear alerts line, see section 3.6, "Reactivating Alarms," on page 3-8.

![Alarm Log Screen when No Alarm Activated](image)

Figure 3-4. Alarm Log Screen when No Alarm Activated

To dismiss the Alarm Log screen manually:
Press the **ENTER** key when the cursor is on the Back line.

The Alarm Log screen is dismissed automatically:
- After 15 seconds if no keyboard action is detected
- When a high priority alarm is triggered
Note:
Only qualified service personnel may access all alarms and events recorded by the ventilator. Qualified personnel should refer to the Puritan Bennett 520 Ventilator service manual for further information.

3.4 Pausing the Audible Portion of Alarms

You may pause the audible portion of alarms for 60 seconds at a time.

To pause the audible portion of activated alarms:
Press the ALARM CONTROL key.

• The audible portion of all activated alarms is paused.
• The visual portions (light indicator and message) of activated alarms remain visible.
• The Audio Paused symbol is shown at the top right of the screen while the audio pause function is active.

Figure 3-5. Pausing the Audible Portion of Alarms

If several alarms are activated at the same time, pressing the ALARM CONTROL key affects all current alarms.

The audible portion of activated alarms is automatically reactivated if the following occurs:
• After 60 seconds, if the cause or causes of the alarm or alarms persist
• Whenever a new alarm is activated

Note:
If a key is stuck or held down for 45 seconds, a keypad alarm will occur.
3.5 Pausing/Resetting Alarms

WARNING:
When an alarm condition is triggered, or there is evidence of a patient-ventilator fault or problem, examine the patient first before examining the ventilator.

WARNING:
Alarm volume should be adjusted with respect to the ventilator's operating environment and so that the patient's caretakers can hear the alarms. The audible alarm vents located at the front of the device should never be obstructed.

Some alarms are not automatically canceled when the condition causing the alarm clears (for example, HIGH PRESSURE). For those alarms, the alarm sound will stop when the alarm condition clears, but the alarm message will continue to blink until the alarm is canceled manually by pressing the ALARM CONTROL key twice.

Some of the other alarms can be paused manually even if the cause or causes of their activation remain.

To manually pause an alarm that has been triggered, proceed as follows:
Press the ALARM CONTROL key twice.

- The alarm is paused until the alarm condition is corrected and the condition reoccurs; the audible portion, light indicator, and message are all halted (for the alarms that can be paused manually).

- The alarm is recorded in the Alarm Log and can still be accessed there. See section 3.3, "Alarm Log Menu," on page 3-4.

- The canceled alarm will continue to show in the alarm message window in the Alarms menu until another alarm (of any type) is activated.

- The Alarm Paused symbol is shown at the top right of the Ventilation and Alarms screens. See Figure 3-6.

Figure 3-6. Manually Pausing Alarms
When no other alarms are currently activated, the last alarm canceled is shown continuously in the alarm message window in the Alarms menu, along with the date and time of its activation. The High Pressure alarm must be manually reset. See section 3.7, “Overview of Alarms,” on page 3-9.

To manually reset the High Pressure alarm, proceed as follows:
Press the ALARM CONTROL key twice. The visual alarms will be reset.

3.6 Reactivating Alarms

Alarms that have been paused and whose activation conditions continue to exist can be reactivated.

To reactivate alarms, proceed as follows:
1. Press the MENU key to access the Alarm setting menu, if this is not the menu currently shown.
2. Press the DOWN key to position the cursor on the Alarm Logs line, if this is not already the case. See Figure 3-7.
3. Press the ENTER key to confirm access to the Alarm Log menu.
4. Press the UP key to position the cursor on the User’s clear alerts line. See Figure 3-8.
5. Press the **ENTER** key for at least 3 seconds. The following events occur:

 - A “beep” sounds.
 - An audible alarm sounds.
 - An alarm indicator illuminates.
 - The messages of all active alarms are shown in a loop in the Ventilation and Alarm menus.
 - The Audio Paused symbol disappears (if it was shown).
 - The Alarm Paused symbol disappears.

3.7 Overview of Alarms

Note:

The message: “*IF PERSISTS RESTART/SRVC*” will occur for certain alarms only if the alarm condition continues for longer than 30 seconds. These alarms are listed in *Table 3-1. Overview of Alarms* and *Table 3-2. Alarms and Corrective Actions*.

Note:

If the message “*IF PERSISTS RESTART/SRVC*” occurs, restart the ventilator. If the alarm condition is not cleared, call a service representative.

For corrective actions and troubleshooting of the following alarms, see *Table 3-2. Alarms and Corrective Actions*.

Figure 3-8. Alarm Log
Table 3-1. Overview of Alarms

<table>
<thead>
<tr>
<th>Alarm Message</th>
<th>Cause/ventilator response</th>
<th>Priority</th>
<th>Audio Paused available</th>
<th>Alarm Paused available</th>
</tr>
</thead>
</table>
| **AC POWER DISCONNECTION** | Cut-off of the AC (mains) power supply. Alarm activation occurs:
 • After 5 seconds if ventilation is stopped
 • At the start of a ventilation cycle when ventilation is in progress
 Consequence: the ventilator will automatically switch to external DC power supply if present; if not, to the internal battery. | HP | Yes | Yes |
| **APNEA** | No inspiratory trigger detected by the ventilator after the apnea time set in PSV and CPAP modes. Automatically clears itself after two successive patient breaths. | MP | Yes | Yes |
| **BATTERY FAULT1 RESTART/SRVC** | Ventilator has detected an internal battery fault. Consequence: the internal battery is disabled from use. | MP | Yes | Yes |
| **BATTERY FAULT2 RESTART/SRVC** | No internal battery detected. | MP | Yes | No |
| **BUZZER FAULT1 RESTART/SRVC** | Defective operation of the buzzers. | MP | Yes | No |
| **BUZZER FAULT2 RESTART/SRVC** | Failure detected in the very high priority buzzer. Consequence: no audible alarm in case of POWER SUPPLY LOSS alarm. | MP | Yes | Yes |
| **BUZZER FAULT3 RESTART/SRVC** | Battery charge failure due to incorrect voltage. Contact your service representative for assistance. | HP | Yes | No |
| **BUZZER LOW BATTERY** | Buzzer battery failure. The battery buzzer voltage is too low. Internal technical problem that prevents the battery sounding the POWER SUPPLY LOSS alarm. | MP | Yes | Yes |
| **CHECK BATTERY CHARGE IF PERSISTS RESTART/SRVC** | Internal battery charging failure. Consequence: charging of the internal battery impossible. | MP | Yes | No |
| **CHECK EXH VALVE* IF PERSISTS RESTART/SRVC** | Inspired tidal volume during exhalation <20% of inspired tidal volume and inspired tidal volume >20 mL. Exhalation valve obstructed. | HP | Yes | No |
| **CHECK EXH VALVE PRESSURE** | Internal ventilation fault related to exhalation valve detection sensor (pressure sensor). | HP | Yes | Yes |
Table 3-1. Overview of Alarms (Continued)

<table>
<thead>
<tr>
<th>Alarm Message</th>
<th>Cause/ventilator response</th>
<th>Priority</th>
<th>Audio Paused available</th>
<th>Alarm Paused available</th>
</tr>
</thead>
</table>
| CHECK PROXIMAL LINE1* | Loss of signal from the proximal pressure sensor. Consequence: switch to internal pressure sensor for the pressure measurement. Alarm activation occurs:
In the event of signal loss (1): After one ventilation cycle
or
In the event of signal loss (2) and after the 17th breath cycle: After 17 seconds for P A/C mode, or after the maximum time between 17 seconds and Apnea time + 4 seconds for CPAP and PSV mode. | MP | Yes | No |
| CHECK REMOTE ALARM | No activation of nurse call or remote alarm system when an alarm is in progress. | MP | Yes | Yes |
| CHECK SETTINGS | Alarm activation occurs:
• Systematically after software versions have changed
• Loss of memorized parameters
Consequence:
• Locking key disabled
• Out-of-range settings are replaced by their default values | MP | Yes | Yes |
| CONNECT VALVE OR CHANGE PRESS | No exhalation valve connected with PEEP set to less than 4 mbar or Pi set to more than 30 mbar when relative pressure is set to OFF. | HP | Yes | No |
| CONTROLLED CYCLES | The ventilator is delivering apnea ventilation at set back-up rate. | NA | NA | NA |
| COOLING FAN RESTART/ SRVC | Ventilator cooling fan operating speed not suited to the internal ambient temperature of the device. | MP | Yes | Yes |
| DC POWER DISCONNECTION | Cut off of the external DC power supply. Consequence: switch-over to the internal battery. | MP | Yes | Yes |
| DEVICE FAULT 3 RESTART/ SRVC | Failure in the 24 V power supply. | HP | Yes | No |
| DEVICE FAULT 5 RESTART/ SRVC | Detection of a fault in the electrical power supply system. Alarm activation occurs:
Once the ventilator is on for at least 3 seconds, and a power supply fault is detected for at least 5 seconds thereafter. Consequence: the internal battery capacity is not shown beside the battery symbol. | MP | Yes | Yes |
| DEVICE FAULT 7 RESTART/ SRVC | Detection of a fault in internal voltage measurement. | HP | Yes | No |
| DEVICE FAULT 9 RESTART/ SRVC | POST RAM Error. RAM read/write does not match memory setting. | VHP | No | No |
Table 3-1. Overview of Alarms (Continued)

<table>
<thead>
<tr>
<th>Alarm Message</th>
<th>Cause/ventilator response</th>
<th>Priority</th>
<th>Audio Paused available</th>
<th>Alarm Paused available</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE FAULT10 RESTART/SRVC</td>
<td>POST FLASH checksum error. Startup FLASH computed checksum does not match memory setting.</td>
<td>VHP</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DEVICE FAULT11 RESTART/SRVC</td>
<td>POST EEPROM error. Startup EEPROM does not match memory setting.</td>
<td>VHP</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DEVICE FAULT12 RESTART/SRVC</td>
<td>POST reference voltage error. 5V or 10V reference voltage error.</td>
<td>VHP</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DEVICE FAULT13 RESTART/SRVC</td>
<td>Software version error.</td>
<td>VHP</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>EMPTY BATTERY</td>
<td>Internal battery capacity <10 minutes or 3%. (battery voltage <22.5V) Consequence: Ventilation comes to a halt.</td>
<td>HP</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HIGH / LOW BATTERY TEMP*</td>
<td>Battery temperature out of tolerance. Consequence: battery charging stops.</td>
<td>MP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>*IF PERSISTS RESTART/SRVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH INT TEMP COOL VENT*</td>
<td>Device internal ambient temperature out of tolerance range.</td>
<td>MP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>*IF PERSISTS RESTART/SRVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH LEAKAGE</td>
<td>The leak estimated by the ventilator exceeds the Max leak alarm threshold.</td>
<td>MP</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
| HIGH PRESSURE | • In PSV, CPAP, or P A/C modes, if inspiratory pressure is higher than (P Support or Pi + PEEP) + 5 mbar up to 29 mbar or + 10 mbar over 30 mbar during three consecutive cycles. or
 • In PSV or CPAP mode and P Support is set to off, if inspiratory pressure is higher than PEEP + 10 mbar during three consecutive cycles.
 Alarm activation occurs: After three consecutive breaths.
 Consequence: Switch to exhalation phase. |
| Note: | When alarm condition clears, alarm priority indicator must be manually reset by pressing the key. | HP | Yes | No |
| | (The visual portion of the alarm may be paused) | | | |
| HIGH RATE | Rate measured greater than Max Rtot set during three consecutive breaths. | MP | Yes | No |
| | Alarm activation occurs: After three consecutive breaths. | | | |
Table 3-1. Overview of Alarms (Continued)

<table>
<thead>
<tr>
<th>Alarm Message</th>
<th>Cause/ventilator response</th>
<th>Priority</th>
<th>Audio Paused available</th>
<th>Alarm Paused available</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH VTI</td>
<td>Inspired tidal volume greater than Max VTI set during three consecutive breaths in PSV, CPAP, and P A/C modes. Alarm activation occurs: After three consecutive breaths.</td>
<td>HP</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>INTENTIONAL VENT STOP</td>
<td>Ventilation has been stopped voluntarily by the caregiver or patient.</td>
<td>HP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KEYPAD FAULT RESTART/SRVC*</td>
<td>Keyboard key held down for more than 45 seconds.</td>
<td>HP</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>LOW BATTERY</td>
<td>Internal battery capacity <30 minutes or 8%.</td>
<td>HP</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>LOW VTI</td>
<td>Inspired tidal volume less than Min VTI set during three consecutive breaths in PSV, CPAP, and P A/C modes. Alarm activation occurs: After three consecutive breaths.</td>
<td>MP</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>NO PROXIMAL LINE2*</td>
<td>Proximal pressure <0.6 mbar for 100 ms during inspiration phase of third breath cycle. Ventilator response: Switch to internal pressure sensor for pressure measurement.</td>
<td>MP</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>OCCLUSION CHECK CIRCUIT*</td>
<td>Occurs in VALVE configuration when the tidal volume is measured below 20 mL during three consecutive breaths for PSV, CPAP, and P A/C modes. Alarm activation occurs after three consecutive breaths, if tidal volume is less than 20 mL.</td>
<td>HP</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PATIENT DISCONNECTION*</td>
<td>Occurs in leak configuration when the leak level is not sufficient to flush the CO2 from patient exhalation. The built-in leak in the mask may be obstructed. The built-in leak for the mask is not sufficient for the settings.</td>
<td>HP</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
3.8 Troubleshooting

⚠️ **WARNING:**
This manual tells you how to respond to ventilator alarms, but it does NOT tell you how to respond to the patient.
3.8.1 Alarms

Table 3-2 offers a guide to the most likely ventilator alarms, possible reasons for the alarms, and corrective actions.

WARNING:
To ensure proper servicing and avoid the possibility of physical injury to personnel or damage to the ventilator, only personnel authorized and qualified by Covidien should attempt to service or make authorized modifications to the Puritan Bennett™ 520 Ventilator.

WARNING:
Do not attempt to open, repair or otherwise service the ventilator yourself. Doing so might endanger the patient, damage the ventilator, and/or void your warranty. Only personnel authorized and qualified by Covidien should repair, open or service the ventilator.

WARNING:
When an alarm condition is triggered, or there is evidence of a patient-ventilator fault or problem, examine the patient first before examining the ventilator.

Note:
The ventilator screen must be unlocked before setting and parameters can be changed.

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC POWER DISCONNECTION</td>
<td>AC ("mains") power source cut off.</td>
<td>Cancel the alarm, and then check the supply cable and the effective availability of a voltage on the AC power ("mains") port.</td>
</tr>
<tr>
<td></td>
<td>Starting with 12–30 VDC external power supply.</td>
<td>Cancel the alarm.</td>
</tr>
<tr>
<td></td>
<td>Current-limiting fuse of the device blown.</td>
<td>Replace the ventilator and call for the maintenance technician.</td>
</tr>
<tr>
<td>APNEA</td>
<td>Patient’s breathing effort less than the sensitivity control setting.</td>
<td>Ensure the patient is breathing and adjust the inspiratory setting appropriately based on patient’s respiratory needs.</td>
</tr>
<tr>
<td></td>
<td>Patient apnea.</td>
<td>Examine the patient for breathing effort and stimulate if necessary. If patient status has changed, adjust the ventilator settings based on patient’s respiratory needs.</td>
</tr>
<tr>
<td></td>
<td>Defective sensors.</td>
<td>Have a qualified technician replace the defective component or components and call your customer service representative.</td>
</tr>
<tr>
<td>BATTERY FAULT RESTART/SRVC</td>
<td>Battery problem that prevents it from operating.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
</tbody>
</table>
Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATTERY FAULT2 RESTART/SRVC</td>
<td>Internal battery missing or not detected.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>BUZZER FAULT1 RESTART/SRVC</td>
<td>Defective operation of the buzzers. Consequence: no audible tone when an alarm is activated.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>BUZZER FAULT2 RESTART/SRVC</td>
<td>Internal technical problem that prevents the very high priority POWER SUPPLY LOSS alarm from triggering.</td>
<td>Ensure that the protective cover over the I/O switch located on the rear of the device is intact and functioning properly. This cover helps prevent accidental pressing of the I/O switch and stoppage of the ventilation. Ensure that the device is stabilized. Call your customer service representative.</td>
</tr>
<tr>
<td>BUZZER FAULT3 RESTART/SRVC</td>
<td>Internal technical problem that prevents the battery from correctly charging.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>BUZZER LOW BATTERY</td>
<td>Internal technical problem that prevents the battery warning buzzer from sounding POWER SUPPLY LOSS alarm.</td>
<td>Connect the ventilator to an AC power source and power on using the I/O switch located on the rear of the ventilator. Allow the ventilator to charge for a minimum of 15 minutes and up to 2 hours. If alarm persists, restart ventilator to see if alarm clears. If not, contact Covidien or a local Covidien representative.</td>
</tr>
<tr>
<td>CHECK BATTERY CHARGE</td>
<td>Battery charging impossible.</td>
<td>Do not disconnect the ventilator from the AC power supply. Ensure that the power cable is installed according to the instructions in Chapter 4, "Installation and Assembly," so that the power cable cannot be involuntarily disconnected. In the event the internal battery capacity is low, use an alternate device to ventilate the patient. Call your customer service representative.</td>
</tr>
<tr>
<td>CHECK EXH VALVE*</td>
<td>Obstruction or abnormal damage of the exhalation valve.</td>
<td>Clean or replace the exhalation valve, its control tube, or both.</td>
</tr>
<tr>
<td>CHECK EXH VALVE*</td>
<td>Excessive moisture in the exhalation valve.</td>
<td>Remove moisture from exhalation valve. Verify exhalation valve is seated properly. Reduce temperature of the humidifier.</td>
</tr>
<tr>
<td>CHECK EXH VALVE*</td>
<td>Defective connection or defective exhalation valve tubing.</td>
<td>Reconnect the valve or replace the exhalation valve, the exhalation valve pilot pressure tube, or both.</td>
</tr>
<tr>
<td>CHECK EXH VALVE*</td>
<td>Defective inspiratory flow sensor.</td>
<td>Have a qualified technician replace the defective component or components and call your customer service representative.</td>
</tr>
</tbody>
</table>
Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK EXH VALVE PRESSURE</td>
<td>The exhalation valve may not be detected by the ventilator when ventilation is started. The exhalation valve may be falsely detected when ventilation is started.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>CHECK PROXIMAL LINE1*</td>
<td>No connection of the proximal pressure tube when ventilation starts.</td>
<td>Reconnect the proximal pressure line.</td>
</tr>
<tr>
<td>*IF PERSISTS RESTART/ SRVC</td>
<td>Proximal pressure line disconnected or obstructed.</td>
<td>Reconnect the connection line or replace it if obstructed. Check for moisture or occlusion of the proximal line. Reduce humidifier temperature. Switch to a heated wire circuit.</td>
</tr>
<tr>
<td></td>
<td>Defective proximal pressure sensor or internal leak of the machine.</td>
<td>Restart ventilator to see if alarm clears. If not, have a qualified technician replace the defective component or components and call your customer service representative.</td>
</tr>
<tr>
<td>CHECK REMOTE ALARM</td>
<td>Nurse call or remote alarm system is disconnected.</td>
<td>Connect the nurse call or remote alarm cable to the ventilator.</td>
</tr>
<tr>
<td></td>
<td>Relay control voltage problem.</td>
<td>Carefully monitor the patient to detect possible alarm triggering and call for the maintenance technician.</td>
</tr>
<tr>
<td>CHECK SETTINGS</td>
<td>Loss of memorized parameters.</td>
<td>Check and adjust the prescribed parameters, if necessary.</td>
</tr>
<tr>
<td></td>
<td>Software versions have changed.</td>
<td>Check and adjust the prescribed parameters, if necessary.</td>
</tr>
<tr>
<td>CONNECT VALVE OR CHANGE PRESS</td>
<td>The ventilation settings are not compatible with the type of patient circuit used. No exhalation valve connected with PEEP set to less than 4 mbar, or Pi set to more than 30 mbar when relative pressure is set to OFF.</td>
<td>Connect exhalation valve. Decrease Pi to less than 30 mbar in absolute pressure. Increase PEEP to more than 3 mbar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Always consult the clinician before changing PEEP, pressure, or Rate settings.</td>
</tr>
<tr>
<td>CONTROLLED CYCLES</td>
<td>The ventilator is delivering apnea ventilation at set back up rate.</td>
<td>Check that the patient circuit is correctly attached and the patient is correctly ventilated.</td>
</tr>
<tr>
<td>COOLING FAN RESTART/ SRVC</td>
<td>Operating speed of the cooling fan not properly adjusted for the internal ambient temperature of the device.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
</tbody>
</table>

Note:
Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC POWER DISCONNECTION</td>
<td>12–30 VDC power supply cut off when there is no AC (“mains”) power supply.</td>
<td>Cancel the alarm, and then check the supply wiring and the effective availability of voltage on the external source.</td>
</tr>
<tr>
<td></td>
<td>Ventilator’s current-limiting fuse blown.</td>
<td>Replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>DEVICE FAULT3 RESTART/SRVC</td>
<td>24 V supply failure.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>DEVICE FAULT5 RESTART/SRVC</td>
<td>Internal problem in the electrical power supply.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>DEVICE FAULT7 RESTART/SRVC</td>
<td>Internal technical problem.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>DEVICE FAULT9 RESTART/SRVC</td>
<td>POST RAM error. RAM read/write does not match memory setting.</td>
<td>If patient has been disconnected, reconnect patient to reset the fault. If persists, restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>DEVICE FAULT10 RESTART/SRVC</td>
<td>POST FLASH checksum error. Startup FLASH computed checksum does not match memory setting.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>DEVICE FAULT11 RESTART/SRVC</td>
<td>POST EEPROM error. Startup EEPROM does not match memory setting.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>DEVICE FAULT12 RESTART/SRVC</td>
<td>POST reference voltage error. 5V or 10V reference voltage error.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>DEVICE FAULT13 RESTART/SRVC</td>
<td>Incorrect software version detected.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>EMPTY BATTERY</td>
<td>Internal battery capacity is less than 10 minutes (or 3%)—battery operation overextended.</td>
<td>Reconnect the device to an AC power outlet, connect it to an external DC power source, or replace the battery. Reminder: the internal battery can be charged only when the ventilator connected to an AC power supply.</td>
</tr>
</tbody>
</table>
Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH INT TEMP COOL VENT</td>
<td>Internal ambient temperature of the device out of the tolerance ranges.</td>
<td>Put the device in a warmer environment (if the ambient temperature is too low) or in a cooler environment (if the ambient temperature is too high). For example, ensure the ventilator is not in direct sunlight or next to an air conditioning vent. Note: Ensure that you are operating the ventilator within the proper temperature range (see Appendix, A, “Specifications”). WARNING: In case of operation in a high ambient temperature, handle the ventilator with care; some portions of the device may have high surface temperatures.</td>
</tr>
<tr>
<td>HIGH INT TEMP COOL VENT</td>
<td>Defective internal temperature probe or any other technical anomaly.</td>
<td>WARNING: In the case of high ambient temperatures, it may take a significant period of time to cool the internal temperature of the ventilator to the proper operating range. To avoid injury to the patient, ensure that the air inspired by the patient does not exceed 41°C (106°F). If in doubt, replace the ventilator. Replace the ventilator and call your customer service representative.</td>
</tr>
</tbody>
</table>
Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH/LOW BATTERY TEMP*</td>
<td>Battery temperature out of the tolerance ranges. Defective internal temperature probe or any other technical anomaly inside the battery.</td>
<td>Caution: Ensure that ventilator is being used according to the operating instructions found in Appendix A, “Specifications.” If the ambient temperature is too low, place the device in a warmer environment. If the ambient temperature is too high, place the ventilator in a cooler environment. For example, ensure the ventilator is not in direct sunlight or next to an air conditioning vent. The temperature fault alarm does not interfere with the operation of the ventilator.</td>
</tr>
<tr>
<td>HIGH/LOW BATTERY TEMP*</td>
<td></td>
<td>WARNING: In case of operation in a high ambient temperature, handle the ventilator with care; some portions of the device may have high surface temperatures. Restart ventilator to see if alarm clears. If the alarm message persists, please contact technical services.</td>
</tr>
<tr>
<td>HIGH LEAKAGE</td>
<td>The leak estimated by the ventilator exceeds the Max leak alarm threshold.</td>
<td>Caution: Do not attempt to charge a defective battery; such a battery cannot be charged. Readjust mask to reduce leakage or increase the alarm settings.</td>
</tr>
</tbody>
</table>
Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH VTI</td>
<td>Adjustment of the Max VTI level too low (for PSV, CPAP, and P A/C modes).</td>
<td>Modify the Max VTI level. Note: Always consult the clinician before changing PEEP, pressure, or Rate settings.</td>
</tr>
<tr>
<td></td>
<td>A leak in the patient circuit causing increased bias flow.</td>
<td>Check and properly connect the patient circuit.</td>
</tr>
<tr>
<td></td>
<td>Inappropriate patient circuit.</td>
<td>Replace the patient circuit.</td>
</tr>
<tr>
<td></td>
<td>Defective flow sensor or internal leak in the machine.</td>
<td>Have a qualified technician replace the defective component or components and call your customer service representative.</td>
</tr>
<tr>
<td>HIGH PRESSURE</td>
<td>Airway obstruction.</td>
<td>Check patient’s trachea and clear the obstruction. If the filter is obstructed, replace the filter.</td>
</tr>
<tr>
<td></td>
<td>Proximal pressure tube or patient circuit obstructed.</td>
<td>Clean the proximal pressure tube or the patient circuit or replace them.</td>
</tr>
<tr>
<td></td>
<td>Coughing or other high-flow exhalation efforts.</td>
<td>Treat patient’s cough. Pause the audible alarm, if necessary.</td>
</tr>
<tr>
<td></td>
<td>Patient inspiratory resistance or compliance changes.</td>
<td>Have physician determine if ventilator settings are appropriate for the patient.</td>
</tr>
<tr>
<td></td>
<td>Defective internal circuits of the machine or pressure sensor.</td>
<td>Replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>HIGH RATE</td>
<td>Adjustment of the Max Rtot level too low.</td>
<td>Readjust Max Rtot.</td>
</tr>
<tr>
<td></td>
<td>Adjustment of the I Sens level too low.</td>
<td>Adjust I Sens according to the patient.</td>
</tr>
<tr>
<td></td>
<td>Patient hyperventilating.</td>
<td>Pause the audible alarm, and call for a medical team if the symptoms persist. Check for auto-cycling and adjust inspiratory sensitivity, manage leaks, or drain condensation from patient circuit.</td>
</tr>
<tr>
<td></td>
<td>Defective inspiratory flow sensor.</td>
<td>Have a qualified technician replace the defective component(s) and call your customer service representative.</td>
</tr>
</tbody>
</table>
Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTENTIONAL VENT STOP</td>
<td>The user/caregiver has stopped ventilation using the VENTILATION ON/OFF key. Ventilation is in standby.</td>
<td>Check that the ventilation was switched off on purpose.</td>
</tr>
<tr>
<td>KEYPAD FAULT RESTART/SRVC</td>
<td>Pressing a key for more than 45 seconds.</td>
<td>Press and release keys in the normal, prescribed manner. Do not press keys for 45 seconds or more.</td>
</tr>
<tr>
<td></td>
<td>A key on the keyboard is stuck.</td>
<td>If unsuccessful in releasing the stuck key or keys, restart ventilator to see if alarm clears. If not, replace the device and call your customer service representative if the situation persists.</td>
</tr>
<tr>
<td>LOW BATTERY</td>
<td>Internal battery capacity is less than 30 min. (or 8%)—battery operation overextended.</td>
<td>Immediately connect the ventilator to an AC power outlet or an external DC power source. Reminder: the internal battery can be charged only when the ventilator is connected to an AC power supply.</td>
</tr>
<tr>
<td>Low VTl</td>
<td>Adjustment of the Min VTl level too high (for PSV, CPAP, and P A/C modes).</td>
<td>Modify the Min VTl level.</td>
</tr>
<tr>
<td></td>
<td>Adjustment of the pressure level not enough to reach the volume required (for PSV, CPAP, and P A/C modes).</td>
<td>Modify the pressure level according to the physician’s prescription.</td>
</tr>
<tr>
<td></td>
<td>Patient circuit obstructed or disconnected.</td>
<td>Clean, unblock, or reconnect the patient circuit.</td>
</tr>
<tr>
<td></td>
<td>Inappropriate patient circuit.</td>
<td>Replace the patient circuit.</td>
</tr>
<tr>
<td></td>
<td>Defective flow sensor or internal leak in the machine.</td>
<td>Check patient, replace the device, and call your technician or customer service representative.</td>
</tr>
<tr>
<td>NO PROXIMAL LINE2</td>
<td>The proximal pressure line is disconnected.</td>
<td>Connect proximal pressure line.</td>
</tr>
<tr>
<td>OCCLUSION CHECK CIRCUIT</td>
<td>Patient circuit obstructed.</td>
<td>Clean, unblock, and properly connect the patient circuit.</td>
</tr>
<tr>
<td>*IF PERSISTS RESTART/ SRVC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OCCLUSION CHECK CIRCUIT

- A nonvented configuration is being used or the built-in leak in the mask or in the circuit may be obstructed or insufficient for the settings.

Note:

- A high respiratory rate or backup rate may not sufficiently flush out CO₂ in some vented pediatric masks.

- Replace the nonvented circuit with a vented one. Clean, unblock the mask or the circuit of the nonvented system, or switch to a vented system with a larger leak configuration. Try to reduce patient’s backup rate if possible.
Troubleshooting

Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATIENT DISCONNECTION</td>
<td>Leak or loose connection in the patient circuit. Circuit disconnection from patient or ventilator.</td>
<td>Check the patient circuit connections to the ventilator; examine all connections for leakage and tightness. Replace the patient circuit if necessary.</td>
</tr>
<tr>
<td>*IF PERSISTS RESTART/SRVC</td>
<td>Inspiratory flow exceeds 130 LPM. Inappropriate patient circuit.</td>
<td>Adjust Apnea alarm setting. Replace the patient circuit.</td>
</tr>
<tr>
<td></td>
<td>Defective internal circuits of the machine or pressure sensor.</td>
<td>Restart ventilator to see if alarm clears. If not, have a qualified technician replace the defective component or components or call your customer service representative.</td>
</tr>
<tr>
<td>POWER FAULT RESTART/SRVC</td>
<td>Internal problem in the electrical power supply.</td>
<td>Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td></td>
<td>Electrical power supply cut off by the main switch when ventilation is in progress.</td>
<td>Press the I/O switch to restore electrical power to the ventilator and allow ventilation to continue. To stop ventilation, press the VENTILATION ON/OFF key for three seconds. Press the VENTILATION ON/OFF key again to confirm stop. (see Chapter 5, “Operating Procedures”).</td>
</tr>
<tr>
<td>POWER SUPPLY LOSS</td>
<td>The internal battery that supplies the ventilator is entirely discharged.</td>
<td>Immediately connect the ventilator to an AC power outlet or an external DC power source; otherwise, use an alternate device to ventilate the patient.</td>
</tr>
<tr>
<td>(without message)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRES SENS FLT1 RESTART/SRVC</td>
<td>Defective internal pressure sensor.</td>
<td>Restart ventilator to see if alarm clears. If not, have a qualified technician replace the defective component or components and call your customer service representative.</td>
</tr>
<tr>
<td>PROX SENS FLT2 RESTART/SRVC</td>
<td>Defective proximal pressure sensor or internal leak of the machine.</td>
<td>Restart ventilator to see if alarm clears. If not, have a qualified technician replace the defective component or components and call your customer service representative.</td>
</tr>
<tr>
<td>REMOVE VALVE OR CHANGE PRES</td>
<td>The ventilation settings are not compatible with the type of patient circuit used.</td>
<td>Remove exhalation valve to start ventilation with less than 5 mbar of difference between PEEP and Pi or increase the difference between PEEP and Pi to a minimum of 5 mbar.</td>
</tr>
<tr>
<td>REMOVE VALVE CPAP MODE</td>
<td>The ventilation settings are not compatible with the type of patient circuit used.</td>
<td>Remove exhalation valve to start CPAP ventilation.</td>
</tr>
<tr>
<td>SOFTWARE VERSION ERROR</td>
<td>Incorrect software version detected.</td>
<td>Call your customer service representative.</td>
</tr>
</tbody>
</table>
3.8.2 Additional Troubleshooting

Table 3-2. Alarms and Corrective Actions (Continued)

<table>
<thead>
<tr>
<th>Alarm message or symptom</th>
<th>Possible reason for the alarm event</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURB OVERHEAT RESTART/SRVC</td>
<td>Turbine overheated because of blockage during operation.</td>
<td>Ensure side and front openings are not obstructed. Check air inlet filter. Restart ventilator to see if alarm clears. If not, replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>UNKNOWN BATTERY</td>
<td>Internal battery not recognized as a Puritan Bennett product battery or the battery is not intended for the Puritan Bennett 520 Ventilator.</td>
<td>Switch to a 2400 MAh battery intended for the Puritan Bennett 520 Ventilator or call your customer service representative.</td>
</tr>
</tbody>
</table>

3.8.2 Additional Troubleshooting

Table 3-3. provides other possible ventilator problems, causes, and corrective actions.

WARNING:
If the device is damaged, its external housing is not correctly closed, or it behaves in a way that is not described in this manual (excessive noise, heat emission, unusual odor, alarms not triggered during the start-up procedure), the oxygen and power supplies should be disconnected and use of the device stopped immediately.

WARNING:
If you cannot determine the cause of a problem with your ventilator, contact your equipment supplier. Do not use the ventilator until the problem has been corrected.

Note:
Buzzer and battery alarms may occur when the unit is first powered on after the internal battery has been completely drained. Connect to an AC power source and switch on ventilator.

Note:
Many of the functions of the ventilator are not accessible when the Locking key is enabled. For additional assistance, contact your clinician or equipment representative.
Table 3-3. Additional Troubleshooting and Corrective Actions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Possible Causes</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The screen backlight never switches off during ventilation</td>
<td>Backlight set to YES in Preferences menu.</td>
<td>Set Backlight to OFF in Preferences menu</td>
</tr>
<tr>
<td>Alarm sound level too low or too high</td>
<td>Adjustment of the alarm sound level is incompatible with the patient’s environment.</td>
<td>Readjust sound level.</td>
</tr>
<tr>
<td>Poor visibility of the displays</td>
<td>Contrast adjustment is incompatible with the luminosity of the environment.</td>
<td>Readjust contrast.</td>
</tr>
<tr>
<td>Unusual display on the screen</td>
<td>Problem with the display unit.</td>
<td>Adjust contrast or call your customer service representative if the problem persists. Ensure that the ventilator is not exposed to direct radiation from the sun.</td>
</tr>
<tr>
<td>The ventilator does not operate after pressing I/O switch</td>
<td>No external power source and the internal battery is completely discharged.</td>
<td>Connect the ventilator to the AC power source.</td>
</tr>
<tr>
<td>Light noise</td>
<td>Turbine noise.</td>
<td>Replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>Whistling noise or vibrations</td>
<td>Filter, the turbine silencer, or both have deteriorated.</td>
<td>Replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td></td>
<td>Valve membranes damaged.</td>
<td>Replace the ventilator and call your customer service representative.</td>
</tr>
<tr>
<td>Excessive heat emitted</td>
<td>Obstruction of main or secondary air inlets of the casings.</td>
<td>Remove obstructions from all blocked ventilator air inlets and outlets.</td>
</tr>
<tr>
<td>Condensation inside the device</td>
<td>Liquid entered the device.</td>
<td>Replace the ventilator and call your customer service representative.</td>
</tr>
</tbody>
</table>
4 Installation and Assembly

4.1 Installing the Ventilator

To install your Puritan Bennett™ 520 Ventilator:

1. Choose an area where air can circulate freely. Avoid proximity to loose fabrics, such as curtains, and direct exposure to sunlight.

2. Set the ventilator on a flat and stable surface so that its feet are all in contact with the surface. The ventilator may operate in any position, provided that the air inlets are not obstructed and the device cannot fall and possibly cause damage, personal injury, or both.

WARNING: The operator should connect the ventilator to an AC power source whenever available, for safer operation.

WARNING: To ensure correct and lasting operation of the ventilator, ensure that its air circulation holes (main inlet or cooling) are never obstructed. Place the device in an area where air can freely circulate around the ventilator and avoid installing it near floating fabrics, such as curtains.
WARNING:
Do not place the ventilator in a position where a child can reach it or in any position that might cause it to fall on the patient or someone else.

WARNING:
Ensure that the ventilator’s immediate surroundings allow for the proper operational connection of the device without folding, pinching, or damaging any of the required cables or tubes, and that the connection of the patient circuit to the patient provides for a secure, comfortable fit.

WARNING:
Do not operate the ventilator in direct sunlight, near heat sources, outdoors, or near installations where liquid may pose a risk without first providing adequate protection for the device.

WARNING:
If the ambient temperature where the device is operated is greater than 35°C (95°F), the flow supplied at the device outlet may exceed 41°C (106°F). This may lead to undesirable side effects for the patient. To avoid injury to the patient move the patient and the ventilator to a cooler location.

WARNING:
To reduce the risk of a fire hazard, keep matches, lighted cigarettes, and all other sources of ignition (such as flammable anesthetics and/or heaters) away from the ventilator and oxygen hoses.

WARNING:
Never connect your ventilator to an electrical outlet controlled by a wall switch because the power may be inadvertently turned off.

WARNING:
In ambient temperatures above 40°C (104°F) the battery may not be fully charged even if the “INTERNAL BATTERY” charging indicator is not lit. This is due to the battery’s internal heat safety device.

WARNING:
The use of any accessory other than those specified, with the exception of the power supplies or cables sold by Covidien, may lead to an increase in electromagnetic emissions or a decrease in the equipment protection against electromagnetic emissions. If the ventilator is used adjacent to such accessories or stacked with such devices, the ventilator’s performance should be monitored to verify normal operation.

WARNING:
The Puritan Bennett™ 520 Ventilator requires special precautions for electromagnetic compatibility and should be installed and started according to the recommendations found in Appendix A, “Specifications.” In particular, the use of nearby mobile and portable communications
equipment using radio frequencies, such as mobile telephones or other systems exceeding the levels set in the IEC / EN 60601-1-2 standard, may affect its operation. Refer to section A.10, “Manufacturer's Declaration.”

⚠️ **WARNING:**
The ventilator must not use, nor be connected to, any anti-static or electrically conductive hoses, tubing, or conduits.

4.2 Connecting to External AC Power

Any of four power sources—AC power, 12–30 VDC power, internal battery power, or auxiliary DC car adapter (cigarette lighter)—can be used to power the ventilator. However, when AC power is available, the ventilator will automatically select AC power as its operating power source.

⚠️ **WARNING:**
The power supply to which the ventilator is connected (both AC and DC) must comply with all current and applicable standards and provide electrical power corresponding to the voltage characteristics inscribed on the rear of the ventilator to ensure correct operation.

⚠️ **WARNING:**
Ensure that the AC power cable is in perfect condition and not compressed. The device should not be turned on if the AC power cable is damaged.

⚠️ **WARNING:**
Connect the external electrical power source by first connecting the power cable to the ventilator and then to the external power source. Follow the reverse procedure to disconnect the device from electrical power sources.

⚠️ **WARNING:**
Never connect your ventilator to an electrical outlet controlled by a wall switch because the power may be inadvertently turned off.

⚠️ **WARNING:**
Do not leave power cables lying on the ground where they may pose a hazard.
To prevent accidental disconnection of the AC power cable, use the power cable holder (*Figure 4-1.*, item 1) that is inserted into the notch (*Figure 4-1.*, item 2) of the battery cover.

Figure 4-1. The Power Cable Holder

To secure the AC power cable:

1. Insert the power cable holder (*Figure 4-2.*, item 1) into the notch of the battery cover.

Figure 4-2. Inserting the Power Cable Holder Into the Notch

2. Connect the female end of the ventilator’s AC power cable (*Figure 4-3.*, item 1) to the AC connector on the back of the ventilator.
3. Connect the male end of the AC power cable to the AC power outlet.

- The AC POWER indicator on the top left corner of the ventilator illuminates.
- The indicator flashes while the battery charges and then turns off when the battery is fully charged (see Figure 4-4. on page 4-6).

If the AC power cable becomes disconnected or the AC power source fails, an AC POWER DISCONNECTION alarm signals an automatic switch to the external DC power source (if the DC power cable is connected) or to the ventilator’s internal battery.

One of three power indicators, located on the upper-left of the ventilator’s front panel, illuminates to signal, which of the three possible power sources are currently in use by the device (see Figure 4-4.).

Note:
The only time the AC POWER and indicators are illuminated at the same time is when the ventilator is connected to an AC supply and the battery is charging (indicator is flashing).
To disconnect the AC power cable:
1. Disconnect the AC power cable from the AC power outlet.
2. Disconnect the AC power cable from the ventilator’s AC connector at the rear of the device.
3. Grasp the AC power cable at the level of the power cable holder and turn the cable clockwise while lifting it upwards and out of the holder.

4.3 Connecting to an External DC Power Source

WARNING:
Ensure that the ventilator’s internal battery is fully charged before using the ventilator with an external DC power source. Powering the ventilator using an external 12–30 VDC power source (via the DC power cable) does not enable charging of its internal battery.

WARNING:
When using a car auxiliary adapter (cigarette lighter) ensure the car has been started prior to plugging in the ventilator’s DC adapter and keep the car running while you continue to power the ventilator from the DC adapter.

Note:
An alternative means of ventilation should always be available, particularly when the patient is in transit or away from wall power.

Note:
While using the ventilator on external battery power it is vital that a qualified caregiver (capable of providing necessary corrective actions in the event of alarm conditions) is present.
Note:
When AC power is not available, use an external DC power source prior to using internal battery power.

To connect the ventilator to an external power source, do the following:
1. Ensure the car’s engine is started prior to connecting the ventilator.
2. Connect the DC power cable into the ventilator.
3. Connect the DC power cable into the car auxiliary adapter.

Note:
Whenever AC power is unavailable, the ventilator can operate from a continuously powered external 12–30 VDC power source via a DC power cable (Figure 4-5, item 1) that connects to the ventilator’s rear panel DC power input connector (Figure 4-5, item 2). The DC power cable is optional; see Appendix E, “Parts and Accessories” for more information. It is possible to use the DC auxiliary port (cigarette lighter) in a car as a power source.

Figure 4-5. Connecting the Ventilator to an External DC Power Source

WARNING:
Connect the external DC power source by first connecting the power cable to the ventilator and then to the external DC source. Follow the reverse procedure to disconnect the device from the external DC power source.

To connect the DC power cable to the ventilator:
1. Line up the red marker dot on the ventilator’s DC power connector with the marker on the DC power cable (Figure 4-6, item 1).
2. Push the DC power cable onto the ventilator’s DC power connector (Figure 4-6, item 2).

 • You will hear a locking “click.”

 • The **DC POWER** indicator on the top left corner of the ventilator illuminates (see 1).

To disconnect the DC power cable from the ventilator, slide the locking ring (Figure 4-6, item 3) back and pull the plug away from the ventilator’s rear panel to disengage it.

A DC POWER DISCONNECTION alarm signals an automatic switch to the internal battery in case the external DC power source fails or becomes disconnected.

4.4 Patient Circuit

WARNING:
Before opening the packaging for the Patient Circuit, ensure that no damage is evident to the packaging or its contents. Do not use if evidence of damage exists.

WARNING:
For pediatric use, ensure that the patient circuit type fits, and, in all respects, is suitable for use with a child. Use a pediatric circuit for patients that weigh under 53 lb. (23 kg). See Table E-2. List of Circuits, page E-2, for a list of recommended patient circuits.
WARNING:
The patient circuit should always be positioned to avoid hindering the patient's movements, to prevent accidental disconnection or leakage, and to minimize the risk of patient strangulation.

WARNING:
Ensure that the ventilator’s immediate surroundings allow for the proper operational connection of the device without folding, pinching, or damaging any of the required cables or tubes, and that the connection of the patient circuit to the patient provides for a secure, comfortable fit.

WARNING:
The patient circuit is intended for single use by a single patient and should be changed according to the manufacturer’s recommendations and according to the patient circuit lifetime. Refer to the instructions for use supplied by the manufacturer of the patient circuit (included with the ventilator) and Chapter 4, “Installation and Assembly.”

WARNING:
After assembling, cleaning, or reassembling the patient circuit, and on a daily basis, inspect the hoses and other components to ensure that there are no cracks or leaks and that all connections are secure.

WARNING:
To ensure proper performance of the ventilator, use a patient circuit recommended by Covidien in this manual; refer to Chapter 4, “Installation and Assembly” and Appendix E, “Parts and Accessories.” The total specified length of the patient circuit tubing as measured from the ventilator outlet to the ventilator inlet is 1.1 meters (3.6 feet) to 2.0 meters (6.6 feet). The tubing must conform to all applicable standards and must be fitted with Ø 22 mm terminals that also conform to all applicable standards. Ensure that both the length and the internal volume of the patient circuit are appropriate for the tidal volume: a corrugated tube of Ø 22 mm for adult patients, and a corrugated tube of Ø 15 mm for pediatric patients with a tidal volume lower than 200 ml.

WARNING:
Adding accessories to the ventilator breathing circuit, such as a humidifier and water trap(s), may result in a decrease in tidal volume delivered to the patient due to the added compressible volume of the accessory. Always assure that the patient is receiving the appropriate inspired volume when altering the breathing circuit configuration.

WARNING:
Users must always possess an additional breathing circuit and exhalation valve while using the Puritan Bennett™ 520 Ventilator.
4.4.1 Choosing the Patient Circuit Type

Be sure to choose the appropriate circuit in the menu preferences; in particular, ensure that Pediatric Circuit Yes/No is set to YES when using a pediatric circuit (see Appendix E, “Parts and Accessories”).

For information regarding validated circuits, visit the SolvITSM Center Knowledge Base by clicking the link at www.medtronic.com/covidien/support/solvit-center-knowledge-base/ or contact your Puritan Bennett product representative.

4.4.2 Installing the Patient Circuit

The patient circuit is mounted depending on the setup of the circuit used and the accessories used.

The following procedures describe the installation of the patient circuit with a humidifier. To add other accessories, see the installation instructions for the specific accessories used.

To connect a single-limb circuit with an exhalation valve:

See Figure 4-7.

1. Inspect the components of the patient circuit for any signs of damage, such as cracks (which might cause leakage). Do not use damaged components to assemble the patient circuit.

2. Install the bacteria filter (item 3) on the TO PATIENT outlet port, as shown.

3. Attach one end of the short circuit tubing (item 4) to the bacteria filter (item 3).

4. Attach the other end of the circuit tubing (item 4) to the inlet port of the humidifier (item 10).

5. Place a water trap (item 5) between the outlet port of the humidifier and the inlet of the exhalation valve (item 7).

6. Ensure the exhalation valve (item 7) is placed as close as possible to the patient.

7. Connect one end of the proximal pressure tubing (item 11) to the proximal pressure port on the exhalation valve (item 8) and the other end onto the ventilator patient pressure port (item 2).

8. Connect one end of the exhalation valve tubing (item 9) to the exhalation valve port on the exhalation valve (item 7) and the other end onto the ventilator exhalation valve port (item 1).

9. Place a patient interface to the end of the patient circuit (item 6).
Figure 4-7. Single-Limb Patient Circuit With Exhalation Valve

![Diagram of single-limb patient circuit with exhalation valve](image)

Note: Although shown here, the humidifier (item 10), water trap (item 5), and tubes upstream of the single-limb patient circuit are not included with the ventilator. Contact your supplier for more information.

Figure 4-8. Closeup of Exhalation Valve Tube and Proximal Pressure Tube

![Closeup of exhalation valve tube and proximal pressure tube](image)

Figure 4-8. shows details of the connections of the proximal pressure tube (item 1) and the exhalation valve tube (item 2).
To connect a single-limb circuit without an exhalation valve (NIV only):

See Figure 4-9.

1. Inspect the components of the patient circuit for any signs of damage, such as cracks (which might cause leakage). Do not use damaged components to assemble the patient circuit.

2. Install the bacteria filter (item 1) on the TO PATIENT outlet port, as shown.

3. Attach one end of the short circuit tubing (item 2) to the filter (item 1).

4. Attach the other end of the circuit tubing (item 2) to the inlet port of the humidifier (item 6).

5. Place a water trap (item 3) between the outlet port of the humidifier and the patient end of the patient circuit.

6. Connect one end of the proximal pressure tubing (item 7) as close as possible to the patient at the mask or cannula entry (item 5) and the other end onto the ventilator patient pressure port (item 8).

7. Place a mouthpiece or vented (NIV) interface to the end of the patient circuit (item 4).

Figure 4-9. Single-Limb Patient Circuit Without Exhalation Valve

The end of the proximal pressure tube should be connected as close as possible to the patient (at the mouthpiece, mask, or cannula entry, if possible) so that the ventilator can account for all load losses due to the circuit and its potential accessories. If this is not possible, it is best to modify the PATIENT DISCONNECTION triggering threshold by setting a Max VTI alarm limit for pressure modes. As a reminder: Ensure that the length and the internal volume of the patient circuit are compatible with the tidal volume: ringed tube Ø 22 mm for adults and ringed tube Ø 15 mm for pediatric patients with tidal volumes lower than 200 ml. Use, if necessary, a 22F-15M link on the outlet.
WARNING:
When using non-invasive ventilation (NIV), without an exhalation valve, use a vented nose or face mask or a non vented mask combined with a leak accessory. When using non-invasive ventilation (NIV), with an exhalation valve, use a non vented mask.

WARNING:
The level of inspiratory resistance of the circuit and accessories (bacteria filter, humidifier, HMEs, etc.) must be as low as possible. Settings—particularly the PATIENT DISCONNECTION alarm, maximum inspired volume (Max VTI), and minimum inspired volume (Min VTI) settings—must be periodically adjusted according to changes in the patient circuit resistance—especially when filters are replaced. Adding attachments to the ventilator breathing system can cause the pressure during exhalation at the patient connection port to increase.

WARNING:
The exhalation valve must allow rapid discharge of the circuit pressure. Ensure that the exhalation valve is always clean and its evacuation aperture (exhaust port) is never obstructed.

WARNING:
Do not start ventilation until you ensure that the device is suitably assembled, that the air inlet filter is properly installed and is not obstructed, and that there is proper clearance all around the unit. Also ensure that the patient circuit is suitably connected to both the ventilator and the patient and that the patient circuit, including all hoses, is not damaged or obstructed.

WARNING:
Adding accessories to the ventilator breathing circuit, such as a humidifier and water trap(s), may result in a decrease in tidal volume delivered to the patient due to the added compressible volume of the accessory. Always assure that the patient is receiving the appropriate inspired volume when altering the breathing circuit configuration.

4.5 Filters

WARNING:
Regularly check the cleanliness of the air inlet filter located on the rear of the ventilator. If necessary, replace the filter before the recommended replacement period is over (see Chapter 8, "Routine Maintenance"). This is particularly important when the ventilator is installed on a wheelchair, because environmental conditions may cause the filter to become dirty more rapidly.

The ventilator features two filter types:
- Air inlet filter
- Bacteria filter
Air Inlet Filter

Consisting of foam and fine particle filter media and located at the rear of the ventilator, this filters the air as it enters the ventilator.

Figure 4-10. Air Inlet Filter

⚠️ WARNING:
The air inlet filter is for use on a single patient and is not reusable; do not attempt to wash, clean, or reuse it.

⚠️ WARNING:
Failing to replace a dirty air inlet filter, or operating the ventilator without a filter, may cause serious damage to the ventilator.

Bacteria Filter

It is highly recommended that you install a bacteria filter (see Figure 4-11.) on the single-limb patient circuit, connected to the TO PATIENT port.

This filter protects the ventilator from contamination by the patient (primarily, rebreathed gas). See Figure 4-11.
4.6 Humidifier

The humidifier (Figure 4-12.) adds moisture (water vapor) and warms the gas in the patient circuit. It is inserted into the patient circuit between the main outlet and the patient (see Figure 4-8. and Figure 4-9.).

WARNING: During invasive ventilation (when an artificial airway bypasses the patient’s upper respiratory system), the patient’s upper respiratory system cannot humidify the incoming gas. For this reason, the use of a humidifier, to minimize drying of the patient’s airways and subsequent irritation and discomfort, is required.

WARNING: Always position a humidification device so that it is lower than both the ventilator and the patient. Use water traps, if necessary, to limit water in the patient circuit and periodically empty these water traps.

WARNING: If a heated humidifier is used, you should always monitor the temperature of the gas delivered to the patient. Gas delivered from the ventilator that becomes too hot may burn the patient's airway.

WARNING: Adding accessories to the ventilator breathing circuit, such as a humidifier and water trap(s), may result in a decrease in tidal volume delivered to the patient due to the added compressible volume of the accessory. Always assure that the patient is receiving the appropriate inspired volume when altering the breathing circuit configuration.

See the manufacturer’s instructions for more information about the use and maintenance of bacteria filters.
When a humidification device is used, any condensation that forms in the patient circuit is collected in the water trap. If you notice any moisture in the patient circuit, you need to replace the wet circuit components with dry ones.

See the humidification device's instruction for information on operating, cleaning, and sterilizing the humidifier.

4.7 Oxygen

WARNING:
The ventilator must not be used with flammable anesthetic substances.

WARNING:
To reduce the risk of a fire hazard, keep matches, lighted cigarettes, and all other sources of ignition (such as flammable anesthetics and/or heaters) away from the ventilator and oxygen hoses.

4.7.1 Administering Oxygen

WARNING:
Oxygen therapy for patients with respiratory failure is a common and effective medical prescription. However, be aware that inappropriate oxygen use may potentially lead to serious complications, including, but not limited to, patient injury.

Oxygen administered to the patient is introduced from an external source into the machine through the oxygen connector at the rear of the ventilator. It is then integrated into the total volume of delivered gas. Remove the oxygen inlet connector from the back of the ventilator when external oxygen is not in use.
The specific oxygen flow to the patient depends on the physiological characteristics of the patient and the ventilator settings.

The oxygen flow setting should be adjusted for each patient and established in relation to a calibrated oxygen analyzer. As the factors that affect administered oxygen flow may change over time, you must ensure that these settings always correspond to the current oxygen therapy objectives specified by the physician.

WARNING:
To avoid injury to the patient and/or possible damage to the ventilator: before using the ventilator, use a flow meter (flow regulator) to regulate the oxygen supply to specifications before connecting the ventilator to the oxygen supply.

WARNING:
Ensure that the oxygen supply pressure to the machine never exceeds 7 psi (50 kPa) or a flow of 15 lpm. Refer to Table A-8. on page A-4 for sensitivity tolerances.

WARNING:
The Puritan Bennett™ 520 Ventilator can be used with an oxygen analyzer with minimum and maximum concentration alarms. Always measure the delivered oxygen with a calibrated oxygen analyzer that features a minimum and maximum concentration alarm in order to ensure that the prescribed oxygen concentration is delivered to the patient.

4.7.2 Connecting the Oxygen Supply

WARNING:
Ensure that the only gas supplied to the ventilator through the dedicated oxygen supply connector is medical-grade oxygen.

WARNING:
The hose connecting the ventilator to the oxygen source must be designed exclusively for use with medical-grade oxygen. Under no circumstances should the oxygen hose be modified by the user. In addition, the hose must be installed without the use of lubricants.

A connector (Figure 4-13., item 1) for an external low pressure oxygen source is available at the rear of the ventilator. It is essential that you also use the special coupler (item 2) supplied with the ventilator to attach the external low pressure oxygen source to the connector. The connector is also fitted with a non-return airtight valve system. The non-return airtight valve system includes a stud (item 3) and a locking tab (item 4).
Figure 4-13. Rear Panel Oxygen Connector

WARNING:
Before connecting the oxygen supply, ensure that the stud on the oxygen connector (Figure 4-14, item 3) is protruding outwards.

WARNING:
Inspect the oxygen coupler (Figure 4-14, item 2) before use to ensure it has its black o-ring attached and in good condition. Do not use an oxygen coupler with a missing, damaged, or worn o-ring.

To connect the oxygen supply system to the ventilator:

See Figure 4-14.

1. Inspect the oxygen supply’s connector (Figure 4-14, item 1) to ensure that connector’s black o-ring (item 2) is not missing.

2. Push the oxygen supply’s oxygen connector (item 1) into the ventilator’s oxygen connector (Figure 4-14, item 3).

 • The ventilator’s oxygen connector’s locking stud (item 4) retracts.

 • The ventilator’s oxygen connector’s locking tab (item 5) is released, ensuring that the oxygen connection is locked and secured in place.
To disconnect the oxygen supply system from the ventilator:

Ensure the oxygen source is turned off prior to placing the ventilator in standby or turning off the ventilator.

1. Stop the oxygen flow from the oxygen supply.

2. Press the locking tab of the ventilator’s oxygen connector, as shown in Figure 4-15, to unlock the oxygen connection.

3. Disconnect the oxygen supply’s oxygen connector by pulling it towards you.

The ventilator’s oxygen connector’s locking stud (Figure 4-14, item 4) will then extend outwards, which is required before the oxygen connector can be reconnected.
WARNING:
The coupler must not remain connected to the oxygen connector unless it also connected to a leak-proof, external oxygen gas source. When an oxygen supply is not being used with the ventilator, disconnect the oxygen source completely from the ventilator.

WARNING:
In the event of an oxygen leak, shut down the supply of oxygen at its source. In addition, remove and/or keep any incandescent source away from the device, which may be enriched with oxygen. Circulate fresh air into the room to bring the oxygen level down to normal.

WARNING:
To prevent any interference with the internal sensors of the ventilator, do not install a humidifier upstream of the ventilator.

4.8 Fitting the Ventilator into the Dual Bag

The dual bag is a carrying bag with a dual function. It allows the Puritan Bennett 520 Ventilator to either be mounted onto a wheelchair or carried as a backpack (see Figure 4-16).

WARNING:
Ensure that the ventilator is switched off and disconnected from all external power supplies before installation.

To fit the ventilator into the dual bag, do the following:
1. Open the rear panel of the dual bag.
2. Slip the ventilator into the dual bag, pushing it completely to ensure a snug fit.
3. Shut the rear panel of the dual bag ensuring that the hook and loop fastener strips are securely fastened.

4.9 Mounting the Ventilator on a Wheelchair

WARNING:
To reduce the risk of a fire hazard, keep matches, lighted cigarettes, and all other sources of ignition (such as flammable anesthetics and/or heaters) away from the ventilator and oxygen hoses.

WARNING:
Due to its limited internal battery’s reserve capacity, the ventilator should only be operated on the internal battery when no other power source is available. Ensure that the internal battery never
becomes fully discharged. Alarms will sound when the charge on the internal battery is low. See Table 3-1. Overview of Alarms.

WARNING:
Do not operate the ventilator in direct sunlight, near heat sources, outdoors, or near installations where liquid may pose a risk without first providing adequate protection for the device.

WARNING:
To avoid damage to the ventilator, in particular the batteries or electrical components, fluids must not be allowed to enter the device, particularly through the air inlet filter or the cooling apertures located in the side, rear, and bottom panels of the ventilator.

WARNING:
Before using the ventilator’s internal battery, ensure that the battery is fully charged and that the charge holds.

WARNING:
Back up ventilators or those in storage should be connected to an AC power source to protect the integrity of the battery.

WARNING:
Due to typical voltage fluctuations that occur during normal power wheelchair use, the wheelchair mains battery should never be used to power the Puritan Bennett™ 520 Ventilator, nor should the ventilator’s battery be used to power the wheelchair. The ventilator should always be connected to an independent power source (e.g. AC power, extra batteries, or DC power source).

WARNING:
Regularly check the cleanliness of the air inlet filter located on the rear of the ventilator. If necessary, replace the filter before the recommended replacement period is over (see Chapter 8, “Routine Maintenance.”) This is particularly important when the ventilator is installed on a wheelchair, because environmental conditions may cause the filter to become dirty more rapidly.

WARNING:
To minimize the risk of damage, you must use the ventilator’s Dual Bag to transport the ventilator. See Table E-1. List of Consumables and Accessories.

To install the dual bag onto a wheelchair, do the following:

See Figure 4-16.

1. Unclip the two backpack straps from the side clips.
2. Clip the suspension belt onto the central ring.
3. Secure the dual bag on the wheelchair’s push handle.
4. Attach the nonadjustable side of the maintaining belt to the side clip of the dual bag.
5. Pass the maintaining belt around the back of the wheelchair.

6. Adjust the length of the maintaining belt and attach the adjustable side of the belt to the clip on the other side of the dual bag.

Figure 4-16. Using the Dual Bag

4.10 Mounting the Ventilator on the Utility Cart

Match the mounting holes (item 1) on the bottom of the Puritan Bennett 520 Ventilator to the mounting studs (item 2) on the top of the utility cart platform.

Figure 4-17. Mounting the Ventilator on the Utility Cart
4.11 Connecting the Nurse Call Cable

Connect the nurse call cable (Figure 4-19, item 1) to the nurse call monitor connector (item 2).

WARNING:
Before using the Nurse Call system, ensure that its connections are secure and it operates properly.
WARNING:
To connect the ventilator to a Nurse Call device, check the ventilator's compatibility with the Nurse Call device and order a suitable connection cable.

WARNING:
Do not use Nurse Call devices that operate based on the closure of an electrical circuit, because the devices often do not take into account possible cable disconnection or a total loss of power. Ensure that the Nurse Call device is always connected to the ventilator.

The nurse call function provides for remote alerts of ventilator alarm conditions (for example, when the ventilator is used in an isolation room), and features the following:

- The ventilator signals an alarm using a normally open (NO) or a normally closed (NC) signal.
- A remote alarm is activated when an alarm condition occurs, unless either of the following is true:
 - The audio pause function is active.
 - The ventilator power switch is OFF.
- The alarm delay, once generated from the ventilator, to the nurse call output/input cable connectors is less than 100 ms.
- The remote alarm port is an eight-pin female connector; allowable current is 100 mA at 24 VDC (max).
5 Operating Procedures

5.1 Turning on the Ventilator

WARNING: Before operating the ventilator, read, understand, and strictly follow the information contained in Chapter 1, “Safety Information.”

WARNING: The ventilator is not intended to be used for patients without breathing autonomy or who are ventilator dependent.

WARNING: If the ventilator has been transported or stored at a temperature that differs more than ±20°C (±68 °F) from the temperature in which it will be operating, the ventilator should be allowed to stabilize in its operating environment for at least two (2) hours prior to use.

WARNING: To reduce the risk of a fire hazard, keep matches, lighted cigarettes, and all other sources of ignition (such as flammable anesthetics and/or heaters) away from the ventilator and oxygen hoses.

WARNING: While the ventilator is in use, an alternative means of ventilation should always be available in the event of a ventilator problem. Supplementary observation, appropriate for the patient's condition, is also recommended.

WARNING: To ensure that ventilation continues uninterrupted, ensure alternative power sources are available (AC power source, extra batteries, or an auxiliary DC car adapter). Be prepared for the possibility of power failure by having an alternative means of ventilation ready for use.

WARNING: Do not start ventilation until you ensure that the device is suitably assembled, that the air inlet filter is properly installed and is not obstructed, and that there is proper clearance all around the
unit. Also ensure that the patient circuit is suitably connected to both the ventilator and the patient and that the patient circuit, including all hoses, is not damaged or obstructed.

WARNING:
Users must always possess an additional breathing circuit and exhalation valve while using the Puritan Bennett™ 520 Ventilator.

WARNING:
Verify the functionality of the alarm conditions before connecting the patient to the ventilator. Refer to Appendix C, “Alarms Tests.”

WARNING:
Before starting ventilation, always verify that all settings are properly set in accordance with the required prescription.

WARNING:
If the ventilator fails the alarm tests or if you cannot complete the tests, refer to section 3.8, “Troubleshooting” or call your equipment supplier or Covidien.

WARNING:
Due to its limited internal battery’s reserve capacity, the ventilator should only be operated on the internal battery when no other power source is available. Ensure that the internal battery never becomes fully discharged. Alarms will sound when the charge on the internal battery is low. See Table 3-1. Overview of Alarms.

To turn the ventilator on:

Set the I/O switch (a covered, rocker-type switch located at the rear of the ventilator) to the I position, as shown in Figure S-1.
The following events occur:

- The ventilator is turned on.
- A Power On Self Test (POST) is carried out (when plugged in to an AC power source).
- The front panel indicators flash (except for the indicator showing the type of power supply in use, which remains lit).
- The audible alarms briefly sound.
- The display’s backlight turns on.
- The PURITAN BENNETT logo is shown momentarily. The blue \textbf{VENT STDBY} indicator to the right of the \textbf{VENTILATION ON/OFF} key illuminates, indicating the device is in standby mode.
- A Welcome menu screen is shown for about 5 seconds, which includes the machine hours counter and patient hours counter, as shown in \textit{Figure 5-2}.

\textbf{Figure 5-1. Turning on the Ventilator}
If the ventilator had been previously stopped by use of the I/O switch while ventilation was in progress, the ventilator starts directly in ventilation mode and does not show the Welcome menu screen.

The alarm, technical fault, and event logs are stored in nonvolatile memory on the main CPU PCB, ensuring that the information is retained when the ventilator is turned off and during power loss conditions.

To skip the Welcome menu:
Press VENTILATION ON/OFF to start ventilation immediately. The Ventilation menu screen is then shown.

By default, the starting ventilation mode is the last one used, the settings being those that were active when the machine was last stopped.
If the ventilator’s memory of the settings is faulty, a CHECK SETTINGS alarm is activated. If this occurs, the desired parameters should be reset and saved; otherwise the machine will operate on default parameter values.

5.2 USB Menu Parameters

The USB menu is accessible even if the Locking key has been enabled (refer to section 5.3, “Starting Ventilation” on page 5-9).

The USB menu is automatically shown when the USB memory device is connected to the ventilator, when ventilation is either on or off.

Only one USB memory device shall be connected at any time, otherwise an error message will be shown. The USB Menu is not accessible from the Setup menu or Maintenance menu.

To access patient data via a PC, a dedicated software package, Puritan Bennett™ Respiratory Insight Software, is available for clinicians. Contact Covidien or your Puritan Bennett product representative for further information.

5.2.1 USB Memory Device Specifications

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Supported formats</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB compatibility</td>
<td>USB flash memory USB 2.0 or USB 1.1, 32 bit format</td>
</tr>
<tr>
<td>Number of files</td>
<td>Maximum 999 (sector size: 512-2,048 bytes)</td>
</tr>
<tr>
<td>USB size</td>
<td>128 MB to 4 GB (to guarantee accuracy of transfer time, at least 10% of the USB memory device capacity must be free).</td>
</tr>
</tbody>
</table>

5.2.2 USB Menu

To access the USB menu when a USB memory device is connected:

Press the MENU key several times, until the USB menu appears:
In case of high priority alarm activation, the ventilator will automatically show the alarm page. To return to the USB menu, press the **MENU** key.

The adjustable parameters in this menu include the following:

- Transfer Continuously
- Transfer Trends
- Erase Key

5.2.3 Transfer Continuously

Up to 48 hours worth of data can be transferred from a ventilator to a USB memory device. To record continuously, the USB memory device must be permanently connected to the ventilator with ventilation active.

The following data will be recorded to the USB memory device:

- Monitoring: pressure, leak waveforms, and inspired flow
- Trends: leaks, VTI, Rate, I:E, M. Vol, PIP, and PEEP measurements.

The data can be accessed by a doctor or service provider using the Puritan Bennett Respiratory Insight Software.
To transfer continuous data from a ventilator to a USB memory device:

1. Use the **UP** or **DOWN** arrow keys to place the cursor at the Transfer Continuously position.

2. Press **ENTER**.
 - The cursor changes to the plus/minus symbol.
 - The parameter selected to be modified flashes.

3. Press **UP** or **DOWN** to change the selected parameter’s value.

4. Press **ENTER** to confirm the new parameter setting.
 - The new parameter setting is shown continuously.
 - The cursor is placed at the **STOP** position.

5. To manually stop continuous transfer, press the **ENTER** key.

If a parameter change is not confirmed by pressing **ENTER** before 7 seconds elapse, the ventilator resets the parameter to its previous value.

Note:
All ventilator menus remain accessible during transfer time.

Note:
The message “TRANSFER IN PROGRESS... REMAINING TIME” is shown during the transfer time.

Note:
Other functions of the USB memory device are not available during continuous recording.
Note:
If the memory capacity on the USB memory device is insufficient, the message “TRANSFER NOT ALLOWED - USB CAPACITY INSUFFICIENT” is shown and data transfer is not allowed. Delete the data on the USB memory device before restarting data transfer.

Note:
In case of USB memory device disconnection or transfer error, the message “TRANSFER ERROR - USB DISCONNECTION” or “TRANSFER ERROR - TECHNICAL PROBLEM” is shown. In this case, restart the transfer process. If the problem persists, contact your technical service representative.

5.2.4 Transfer Trends

Up to 1 year’s worth of trend data can be transferred from a ventilator to a USB memory device. Ventilation trends such as leaks, VTI, Rate, I:E, M. Vol, PIP, and PEEP measurements can be transferred from the ventilator to a USB memory device.

The data can be accessed by a doctor or service provider using the Puritan Bennett Respiratory Insight Software.

Figure 5-6. Selecting Transfer Trends

To transfer trend data from a ventilator to a USB memory device:

1. Use the **UP** or **DOWN** arrow keys to place the cursor at the Transfer Trends position.

2. Press **ENTER**.
 - The cursor changes to the plus/minus symbol.
 - The parameter selected to be modified flashes.

3. Press **UP** or **DOWN** to change the selected parameter’s value.

4. Press **ENTER** to confirm the new parameter setting.
 - The new parameter setting is shown continuously.
The cursor is placed at the STOP position.

5. To manually stop trend transfer, press ENTER.

If a parameter change is not confirmed by pressing ENTER before 7 seconds elapse, the ventilator resets the parameter to its previous value.

<table>
<thead>
<tr>
<th>Amount of trends data (in months)</th>
<th>Transfer time from ventilator to USB memory device</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 months</td>
<td>Approximately 2 minutes</td>
</tr>
<tr>
<td>6 months</td>
<td>Approximately 4 minutes</td>
</tr>
<tr>
<td>9 months</td>
<td>Approximately 6 minutes</td>
</tr>
<tr>
<td>12 months</td>
<td>Approximately 8 minutes</td>
</tr>
</tbody>
</table>

Note:
The message “TRANSFER IN PROGRESS... REMAINING TIME” is shown during the transfer time.

Note:
Other USB memory device functions are available during transfer of trends.

Note:
If the memory capacity on the USB memory device is insufficient, the message “TRANSFER NOT ALLOWED - USB CAPACITY INSUFFICIENT” is shown and data transfer is not allowed. Delete the data on the USB memory device before restarting data transfer.

Note:
In case of USB memory device disconnection or transfer error, the message “TRANSFER ERROR - USB DISCONNECTION” or “TRANSFER ERROR - TECHNICAL PROBLEM” is shown. In this case, restart the transfer process. If the problem persists, contact your technical service representative.

5.3 Starting Ventilation

Before starting ventilation, refer to Appendix B, “Operational Verification Checklist.”

WARNING:
Verify the functionality of the alarm conditions before connecting the patient to the ventilator.

WARNING:
Before starting ventilation, ensure that the device is properly assembled and that the air inlet, cooling vents, and alarm sound diffusion holes are not obstructed. Ensure also that the patient circuit is of the proper configuration, properly connected to the ventilator, and that the circuit hoses are neither damaged nor compressed and contain no obstructions or foreign bodies.
Note:

Many of the functions of the ventilator are not accessible when the Locking key is enabled. For additional assistance contact your clinician or equipment representative.

When the ventilator is in standby (the ventilator is on, but ventilation has not started), a message that prompts the ventilator operator to press VENTILATION ON/OFF to start ventilation is shown in the right-hand window of the Ventilation and Alarm menus (Figure 5-7).

Figure 5-7. Prompt to Start Ventilation

To start ventilation:

Press and release VENTILATION ON/OFF (Figure 5-8, item 1).

- The blue light indicator, at the upper right of the VENTILATION ON/OFF key (Figure 5-8, item 2), turns off.
 - A “beep” sounds.
 - The ventilation starts.
 - The values of the monitored parameters are shown in the right-hand window.

Figure 5-8. Starting Ventilation
5.4 Stopping Ventilation

WARNING:
Do not allow a patient to remain connected to the ventilator when ventilation is stopped, because a substantial quantity of expiratory gas, primarily carbon dioxide, may be inhaled by the patient. In some circumstances, inhaling carbon dioxide may lead to under-ventilation, suffocation, and serious injury or death.

You can stop your ventilator at any time.

To stop the ventilator:

1. Press and hold down the VENTILATION ON/OFF key (*Figure 5-8.* item 1) for 3 seconds.
 - A message prompting the user to keep the button pressed appears on the monitoring window, as shown in *Figure 5-9.*

 ![Figure 5-9. Stopping Ventilation (1)](image)

2. While keeping the VENTILATION ON/OFF key pressed:
 - A new message appears that directs the user to press the key again to confirm ventilation stop, as shown in *Figure 5-10.*

 ![Figure 5-10.](image)
• A double “beep” sounds.

3. Release VENTILATION ON/OFF key.

4. Press the VENTILATION ON/OFF key again to confirm ventilation stop, otherwise ventilation will continue.

• Ventilation stops.

• The blue LED located to the upper-right of the VENTILATION ON/OFF key (Figure 5-8. , item 2) illuminates to indicate ventilation is on Standby.

• A prompt for a new start of ventilation is shown (see Figure 5-7.).

5.5 Turning Off the Ventilator

⚠️ WARNING:
When the ventilator is switched back on after it was switched off while ventilation was in progress, it will immediately begin ventilating—without the user first having to press the VENTILATION ON/OFF key.

⚠️ WARNING:
Handle the ventilator with care after use, particularly when ambient temperatures are high. Some ventilator surfaces may be very hot, even if safety specifications are not exceeded.

Set the I/O switch to the O position to turn off the ventilator.

• The blue LED to the right of the VENTILATION ON/OFF key turns off.

• The ventilator screen switches off.
Note:
When the ventilator is completely stopped, but is still connected to the AC power source (the green AC POWER indicator is illuminated), the internal battery continues charging.

Note:
A continuous alarm condition will be activated if the ventilator power switch is turned off while ventilation is in progress. When the power switch is turned back on again, the ventilation will resume without having to press the VENTILATION ON/OFF button.
6 Internal Battery

WARNING:
Ensure that the ventilator’s internal battery is fully charged before using the ventilator with an external DC power source. Powering the ventilator using an external 12–30 VDC power source (via the DC power cable) does not enable charging of its internal battery.

WARNING:
The maximum recommended shelf life of the internal battery is two (2) years. Do not use a battery that has been stored for two years or more prior to its first use.

WARNING:
Periodic recharging is important to help maximize useful life of the battery. Do not store the internal battery for extended periods, without recharging, as this may reduce the maximum life.

WARNING:
Even though the Puritan Bennett™ 520 Ventilator meets current safety standards, and although the internal Lithium-ion battery of the device is considered to be Dangerous Goods for transport in commerce, this devices lithium battery is below the 100Wh threshold and is therefore excepted from being a Class 9 – Miscellaneous - Dangerous Goods (DG). As such, the Puritan Bennett™ 520 Ventilator and/or the associated Lithium-ion battery are subject to some transport conditions under the Dangerous Goods Regulation for air transport (IATA: International Air Transport Association), International Maritime Dangerous Goods code for sea and the European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR) for Europe. Private individuals who transport the device are excluded from these regulations although for air transport some requirements apply. For air transport, the Puritan Bennett™ 520 Ventilator is permitted as checked-in or carry-on baggage. Spare batteries may be taken on board as carry-on luggage only. This classification and regulatory requirements may vary depending upon the country and mode of transport. Therefore it is recommended that users verify with the carrier / airline as to which measures to take before the voyage.

6.1 Battery Capacity

The reserve capacity offered by the internal battery depends on the level of ventilation parameters, the environmental conditions (primarily in terms of temperature) and the physiological characteristics of the patient.
With a fully charged battery at a normal room temperature of 25°C (±5°C), the ventilator can be expected to operate on internal battery power for the average durations shown in Table 6-1.

Checking the battery charge level requires that the ventilator be running on battery power at the time of the battery check. To check the battery charge level, temporarily disconnect the ventilator from AC power (while in standby mode or while providing ventilation) and read the percent charge level shown adjacent to the battery icon at the top of the ventilator’s display screen.

Table 6-1. Internal Battery Reserve Capacity

<table>
<thead>
<tr>
<th>Displayed values</th>
<th>Average operating time on internal battery power<sup>1</sup></th>
</tr>
</thead>
</table>
| Vt = 200 ml (±5 ml)
PIP = 10 mbar (±2 mbar)
Rate = 20 bpm | 5 hours (–10%) |
| Vt = 300 ml (±5 ml)
PIP = 20 mbar (±2 mbar)
Rate = 15 bpm | 4 hours (–10%) |
| Vt = 500 ml (±5 ml)
PIP = 30 mbar (±2 mbar)
Rate = 15 bpm | 3 hours (–10%) |
| Vt = 750 ml (±5 ml)
PIP = 45 mbar (±2 mbar)
Rate = 20 bpm (maximum ventilation parameters) | 2 hours (–10%) |

¹ Average durations shown are with a fully charged battery having less than 50 charge/recharge cycles. Actual operating time may be shorter than the average time depending on the level of ventilation parameters, the environmental conditions (primarily in terms of temperature), and the physiological characteristics of the patient.

6.2 Battery Operation

WARNING:
Before using the ventilator’s internal battery, ensure that the battery is fully charged and that the charge holds.

WARNING:
Back up ventilators or those in storage should be connected to an AC power source to protect the integrity of the battery.

Note:
Buzzer and battery alarms may occur when the unit is first powered on after the internal battery has been completely drained. Connect to an AC power source and recycle power.

In the event of AC power interruption or disconnection of the external AC or DC power supply, the ventilator automatically switches to its internal battery and the following events occur:
• The battery symbol is shown at the top on the general information line.

• Battery reserve capacity is shown on the right of the battery symbol.

• The internal battery indicator at the top left of the ventilator’s front panel is continuously lit (Figure 6-1).

Figure 6-1. Internal Battery Indicator

• A loss of external power supply alarm is activated.

If ventilation is stopped, the internal battery reserve capacity is shown as a percentage of battery charge. See Figure 6-2.

Figure 6-2. Battery Reserve Capacity as a Percentage

If the ventilator is running, the internal battery reserve is momentarily shown as a percentage. Then, after the ventilator calculates the battery time remaining (which takes about 2 minutes, depending on the power consumption of the ventilator), the internal battery reserve is then shown in hours and minutes (rounded to the nearest 10 minutes). See Figure 6-3.
The LOW BATTERY and EMPTY BATTERY alarms (see Chapter 3, “Alarms and Troubleshooting”) are triggered when the internal battery reserve is reduced.

WARNING:
Due to its limited internal battery’s reserve capacity, the ventilator should only be operated on the internal battery when no other power source is available. Ensure that the internal battery never becomes fully discharged. Alarms will sound when the charge on the internal battery is low. See Table 3-1.

WARNING:
When the “LOW BATTERY“ alarm is triggered, immediately connect the ventilator to an AC power supply to maintain ventilation and recharge the internal battery.

From the time that an EMPTY BATTERY alarm is activated, if no external supply is connected to the ventilator, other alarms may be triggered due to insufficient supply voltage.

In the final discharge phase, the EMPTY BATTERY alarm will become continuous, and ventilation may be interrupted at any time during this phase.

Note:
The EMPTY BATTERY alarm symbol may disappear shortly before the ventilator completely stops, but it always triggers a final, continuous alarm until the battery is fully depleted.

6.3 Testing the Battery

Your ventilator continuously and automatically checks the state of the internal battery, even when the battery is not used as the main source of energy. The BATTERY FAULT1 alarm is activated whenever a problem is detected in the battery or the charger.

However, on a monthly basis you should disconnect the ventilator from the external power supply to check that the internal battery functions correctly.

6.4 Recharging the Battery

In the event that the battery charge level is considered insufficient, as per the reserve capacity display, recharge of the internal battery is necessary. In general, it is recommended that the ventilator
be allowed to charge when the battery drops below 80%, and that the ventilator be recharged systematically after storage and before using it again.

Note:
To avoid cycling and extend battery life while connected to an AC power source, the battery will not begin charging until it has dropped below an 85%-90% charge.

To charge the internal battery, do the following:
Connect the ventilator to the AC power source.

- The AC POWER indicator illuminates (*Figure 6-4.*, item 1).
- The INTERNAL BATTERY indicator flashes (*Figure 6-4.*, item 2).

![Figure 6-4. Power Indicators When Charging the Battery](image)

When the battery charge is complete, the INTERNAL BATTERY indicator turns off.

WARNING:
In ambient temperatures above 40°C (104°F) the battery may not be fully charged even if the “INTERNAL BATTERY” charging indicator is not lit. This is due to the battery’s internal heat safety device.

Although it is not necessary to start the ventilator to charge the battery, charging the battery during operation will increase the time required to fully charge the internal battery.

When recharging a depleted internal battery, it may be necessary to leave the ventilator on charge for up to 6 hours if the ventilator is on standby and about 13 hours if ventilation is operating.

WARNING:
Ensure that the ventilator’s internal battery is fully charged before using the ventilator with an external DC power source. Powering the ventilator using an external 12–30 VDC power source (via the DC power cable) does not enable charging of its internal battery.
6.5 Storage

If the ventilator is to be stored for an extended period of time, it is not necessary to remove the battery. However, the ventilator should be stored in cool, dry, well-ventilated environment, as follows:

- Temperature: approximately 21°C (70°F)
- Humidity: less than 80% RH

Note:
When the device is in storage it should be recharged monthly to maximize battery life. To charge the battery, plug the ventilator into AC power (mains).

If the battery is stored for more than one month at a temperature greater than 21°C (70°F), or for more than 1 or 2 weeks at a temperature greater than 45°C (113°F), the reserve capacity of the battery may be affected. It will then be necessary to recharge the battery before using it again.

If the ventilator has been in storage for longer than 30 days, connect it to an AC power source, turn on the unit by the I/O switch at the rear of the ventilator, and let it charge for 15 minutes prior to starting ventilation.

The battery should not be stored for more than 2 years, whatever the conditions.

Note:
Fully charge the internal battery prior to disconnecting from AC power source ("mains").
7 Cleaning

WARNING: A patient treated by mechanical ventilation is highly vulnerable to the risks of infection. Dirty or contaminated equipment is a potential source of infection. Clean the ventilator and its accessories regularly and systematically before and after each use and following any maintenance procedure to reduce the risks of infection.

WARNING: To reduce the risk of infection, wash your hands thoroughly before and after handling the ventilator or its accessories.

7.1 Cleaning the Ventilator

Clean all external panels and surfaces before and after each patient use and as often as necessary to keep the ventilator clean. You should clean the ventilator periodically, whenever it is soiled or dirty, before any maintenance operation, and before storing the ventilator.

WARNING: Use all cleaning solutions and products with caution. Read and follow the instructions associated with the cleaning solutions you use to clean your ventilator. Use only those solutions listed in Table 7-1.

WARNING: The ventilator should never be immersed in any liquid, and any liquid on the surface of the device should be wiped away immediately.

WARNING: To avoid damage to the ventilator, in particular the batteries or electrical components, fluids must not be allowed to enter the device, particularly through the air inlet filter or the cooling apertures located in the side, rear, and bottom panels of the ventilator.

To clean the surface of the ventilator:

1. Dip a clean, soft cloth into a mixture of mild soap and water, or other approved cleaning solution. Refer to Table 7-1. for a list of approved cleaning solutions.
2. Squeeze the cloth thoroughly to remove excess liquid.

3. Lightly wipe the external casing of the ventilator, taking care not to allow excess moisture to enter any of the openings on the ventilator’s surface. See the warnings in this section.

4. Dry the ventilator surface with a clean, soft, lint-free cloth.

7.2 Cleaning the Accessories

Follow the accessory manufacturer’s instructions for cleaning the ventilator’s accessories and components, including the patient circuit.

- **WARNING:**
 After assembling, cleaning, or reassembling the patient circuit, and on a daily basis, inspect the hoses and other components to ensure that there are no cracks or leaks and that all connections are secure.

- **WARNING:**
 Never use a liquid cleaner inside the patient circuit, or on any component of a gas pathway. Clean the patient circuit only as specified by the manufacturer’s instructions.

7.3 Cleaning the Ventilator Between Patients

To prepare the ventilator for use with a new patient, do the following:

1. Change the patient circuit and all filters.

2. Clean the ventilator (see section 7.1, “Cleaning the Ventilator”).

Table 7-1. Approved Cleaning Solutions for Exterior Ventilator Surfaces

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild dishwashing detergent</td>
</tr>
<tr>
<td>70% isopropyl alcohol (rubbing alcohol)</td>
</tr>
<tr>
<td>10% chlorine bleach (90% tap water)</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
</tr>
<tr>
<td>Hospital disinfectant cleaners</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>15% ammonia (85% tap water)</td>
</tr>
<tr>
<td>Ammonia-based household cleaners</td>
</tr>
<tr>
<td>Household cleaners</td>
</tr>
</tbody>
</table>
8 Routine Maintenance

WARNING:
On a DAILY basis, inspect the patient circuit to ensure that it shows no signs of damage, is properly connected, and is operating correctly without leakage.

WARNING:
Do not attempt to open, repair or otherwise service the ventilator yourself. Doing so might endanger the patient, damage the ventilator, and/or void your warranty. Only personnel authorized and qualified by Covidien should repair, open or service the ventilator.

8.1 Replacing the Air Inlet Filter

WARNING:
Regularly check the cleanliness of the air inlet filter located on the rear of the ventilator. If necessary, replace the filter before the recommended replacement period is over. This is particularly important when the ventilator is installed on a wheelchair, because environmental conditions may cause the filter to become dirty more rapidly.

WARNING:
Failing to replace a dirty air inlet filter, or operating the ventilator without a filter, may cause serious damage to the ventilator.

WARNING:
The air inlet filter is for use on a single patient. It is not reusable; do not attempt to wash, clean, or reuse it.

If the ventilator is used indoors, the condition of the air inlet filter should be checked monthly. If the ventilator is used outdoors or in a dusty environment, the air inlet filter should be checked weekly and replaced as necessary.
To replace the air inlet filter:
1. Hold the filter between your fingers (see Figure 8-1., item 1).
2. Remove the filter (Figure 8-1., item 2) and discard it.
3. Place the new filter in the device, while ensuring that:
 - The fine particle side of the filter faces outwards, away from the ventilator.
 - The filter is properly installed in its housing. Proper installation of the filter prevents particles from entering the device.

Figure 8-1. Replacing the Air Inlet Filter

8.2 Recommended Schedule of Maintenance

Consumables and Replacement Intervals
When used under normal circumstances—a relatively dust-free atmosphere, and without damage to the device and its components (shocks, cracks, significant dirt)—the intervals for replacing the ventilator’s consumable elements are as follows:

<table>
<thead>
<tr>
<th>Elements</th>
<th>Recommended replacement intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air inlet filter (foam + fine particle)</td>
<td>Once a month or more often, depending on the extent of soiling</td>
</tr>
<tr>
<td>Inspiratory bacteria filter</td>
<td>See manufacturer’s recommendation</td>
</tr>
<tr>
<td>Patient circuit</td>
<td>See manufacturer’s recommendation</td>
</tr>
<tr>
<td></td>
<td>Single use, single patient</td>
</tr>
</tbody>
</table>

Note:
For a list of parts and accessories, see Appendix E, “Parts and Accessories,” contact your service representative, or consult www.covidien.com/rms/.
Note:
For all additional accessories not necessarily considered as consumables, consult the manufacturer’s recommendations.

Note:
To prevent any risk of cross contamination, Covidien recommends the use of STERIVENT filters (Ref: 351/5856 or equivalent) to protect the patient outlet port.

WARNING:
Regularly check the cleanliness of the air inlet filter located on the rear of the ventilator. Replace it when necessary—even before the recommended replacement period has elapsed, and particularly when the ventilator is installed on the wheelchair. Environmental conditions may cause the filter to become dirty more rapidly.

Failure to observe these recommendations may result in a loss of performance, excessive overheating, a loss of certain functions and, in the long term, compromise the longevity of the ventilator.

Maintenance of the Internal Battery
The internal battery does not need to be removed to verify its correct operation.

Periodic Test of the Internal Battery
Your ventilator continuously and automatically checks the state of the internal battery, even when the internal battery is not used as the main power source.

However, the battery charge status should be checked MONTHLY by disconnecting the ventilator from external power supplies (see section 6.2, “Recommended Schedule of Maintenance”). Such a test is imperative after opening the ventilator or after a prolonged period of non-use (1 month or more), in order to ensure the correct operation of internal connections linking the battery to other components.

WARNING:
The maximum recommended shelf life of the internal battery is two (2) years. Do not use a battery that has been stored for two years or more prior to its first use.

WARNING:
Periodic recharging is important to help maximize useful life of the battery. Do not store the internal battery for extended periods, without recharging, as this may reduce the maximum life.

Replacement of the Internal Battery
The internal battery should be replaced when the battery capacity drops below 1920 mAh. Keep in mind that, for environmental protection, the ventilator and its components—including its internal battery—cannot be disposed of with household waste. You must submit the ventilator and its components for suitable selective collection and possible recycling and observe all applicable regulations.
Note:
As the total number of battery charge/discharge cycles approaches 300, a drop in potential of as much as 20% may be detected.

8.3 Service Assistance

WARNING:
If a problem with the ventilator is suspected, FIRST CHECK THAT THE PATIENT IS NOT IN DANGER. If necessary, remove the patient from the ventilator and provide an alternative means of ventilation.

WARNING:
Do not attempt to open, repair or otherwise service the ventilator yourself. Doing so might endanger the patient, damage the ventilator, and/or void your warranty. Only qualified service personnel should open, repair or service the ventilator.

In the event of a problem with the ventilator, see Chapter 3, "Alarms and Troubleshooting." If you cannot determine the cause of the problem, contact your equipment supplier or Covidien.

For more information and local Covidien Technical Service contact details, see the Technical Support section in the Preface.
A Specifications

A.1 Physical

<table>
<thead>
<tr>
<th>Table A-1. Physical Description (Excluding Accessories)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator weight</td>
</tr>
<tr>
<td>Ventilator dimensions</td>
</tr>
<tr>
<td>Connectors</td>
</tr>
<tr>
<td>Device airway volume</td>
</tr>
<tr>
<td>Breathing circuit volume</td>
</tr>
<tr>
<td>• Adult, single limb</td>
</tr>
<tr>
<td>• Pediatric, single limb</td>
</tr>
<tr>
<td>Air inlet filter</td>
</tr>
<tr>
<td>Inspiratory bacteria filter requirement</td>
</tr>
</tbody>
</table>

A.2 Electrical

<table>
<thead>
<tr>
<th>Table A-2. AC Electrical Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>100 VAC to 240 VAC</td>
</tr>
<tr>
<td>12 VDC</td>
</tr>
<tr>
<td>30 VDC</td>
</tr>
</tbody>
</table>
Table A-3. Internal Lithium Ion Battery

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>25.2 VDC</td>
</tr>
<tr>
<td>Full-load capacity</td>
<td>2.4 Ah</td>
</tr>
</tbody>
</table>
| Ampere-hour rating | On standby: 1.5 Ah
| | During ventilation: 0.5 Ah |
| Watt hour rating | 62 Wh to 63 Wh |
| Charging current | 1.5 A/hr. (duration: <4 hr.)
| Standby mode | 0.5 A/hr. (duration: <8 hr.)
| Ventilation mode| |

Average operating time at 25°C (± 5°C) with a fully charged battery (having less than 50 charge/discharge cycles) at the following displayed values:

- Vt = 200 ml (±5 ml), PIP = 10 mbar (±2 mbar), Rate = 20 bpm
 5 hr. (–10%)
- Vt = 300 ml (±5 ml), PIP = 20 mbar (±2 mbar), Rate = 15 bpm
 4 hr. (–10%)
- Vt = 500 ml (±5 ml), PIP = 30 mbar (±2 mbar), Rate = 15 bpm
 3 hr. (–10%)
- Vt = 750 ml (±5 ml), PIP = 45 mbar (±2 mbar), Rate = 20 bpm
 2 hr. (–10%)

(maximum settings)

Table A-4. Remote Alarm

Remote alarm port: Also known as the nurse call port, it provides for remote alerts of ventilator alarm conditions.

An example of a setting that requires such a feature is when the ventilator is used in an isolation room. The ventilator signals an alarm using a normally open (NO) or a normally closed (NC) signal.

A remote alarm is activated when an alarm condition occurs, unless the audio paused function is active or the ventilator power switch is turned off.

The alarm delay, once generated from the ventilator, to the nurse call output/input cable connectors is less than 100 ms.

The remote alarm port is an 8-pin female connector. Allowable current is 100 mA at 24 VDC (maximum).

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Remote alarm wire color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>relay common</td>
<td>black</td>
</tr>
<tr>
<td>2</td>
<td>normally open (NO)</td>
<td>brown</td>
</tr>
<tr>
<td>3</td>
<td>normally closed (NC)</td>
<td>orange</td>
</tr>
<tr>
<td>4</td>
<td>remote supply - (not used)</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>RX signal (not used)</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>TX signal (not used)</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>remote supply + (not used)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
A.3 Indicators and Alarms

Table A-5. Power Indicators

<table>
<thead>
<tr>
<th>Ventilation ON/OFF</th>
<th>AC power</th>
<th>DC power</th>
<th>Internal battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue in standby mode</td>
<td>Green</td>
<td>Green</td>
<td>Flashing if the battery charge is in progress.</td>
</tr>
<tr>
<td>Not lit if ventilation is in progress.</td>
<td></td>
<td></td>
<td>Continuously lit if the ventilator is powered by the internal battery.</td>
</tr>
</tbody>
</table>

Table A-6. Alarm Indicators

<table>
<thead>
<tr>
<th>High priority</th>
<th>Medium priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red flashing LED</td>
<td>Yellow flashing LED</td>
</tr>
</tbody>
</table>

Table A-7. Audio Alarms

<table>
<thead>
<tr>
<th>Audio paused</th>
<th>Alarm volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 s ±1 s</td>
<td>65 to 80 dB (A) ±10% at 1 meter</td>
</tr>
</tbody>
</table>
A.4 Performance

A.4.1 Specifications

<table>
<thead>
<tr>
<th>Settings</th>
<th>Range</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>5 to 55 mbar</td>
<td>±(1 mbar + 10%)</td>
</tr>
<tr>
<td>Time</td>
<td>0.3 to 6.0 s</td>
<td>±10%</td>
</tr>
<tr>
<td>Rate</td>
<td>1 to 60 bpm</td>
<td>± 1 bpm</td>
</tr>
<tr>
<td>Inspiratory Sensitivity</td>
<td>0 to 5</td>
<td>N/A</td>
</tr>
<tr>
<td>Exhalation Sensitivity</td>
<td>5 to 95%</td>
<td>±(4 lpm + 10% of target exhalation flow) based on E Sens within 50ms</td>
</tr>
<tr>
<td>I:E Ratio</td>
<td>1:4 to 1:1</td>
<td>Insp. time ±50 ms and Exh. time ±50 ms or I:E ratio ±10%, whichever is greater</td>
</tr>
<tr>
<td>I/T Ratio</td>
<td>20% to 50%</td>
<td>Insp. time ±50 ms and Exh. time ±50 ms or I/T ratio ±10%, whichever is greater</td>
</tr>
</tbody>
</table>

1. The ventilator parameters' displayed values could vary based on patient settings.

A.5 Monitored Parameters

<table>
<thead>
<tr>
<th>Ventilator parameters</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Inspiratory Pressure (PIP)</td>
<td>±(2 mbar + 8%)</td>
</tr>
<tr>
<td>Positive End Expiratory Pressure (PEEP)</td>
<td>±(2 mbar + 8%)</td>
</tr>
<tr>
<td>Inspiratory Tidal Volume (VTI)</td>
<td>±(10 ml + 10%) and ±(20 mL + 20%) in CPAP mode above 200 mL or in NIV configuration</td>
</tr>
<tr>
<td>Total Breath Rate (Rtot)</td>
<td>±1 bpm</td>
</tr>
<tr>
<td>I:E Ratio (I:E)</td>
<td>Insp. time ±50 ms and Exh. time ±50 ms or I:E ratio ±10%, whichever is greater</td>
</tr>
<tr>
<td>I/T Ratio (I/T)</td>
<td>Insp. time ±50 ms and Exh. time ±50 ms or I/T ratio ±10%, whichever is greater</td>
</tr>
<tr>
<td>Inspiratory Time (I Time)</td>
<td>±100 ms</td>
</tr>
<tr>
<td>Inspiratory Minute Volume (M Vol)</td>
<td>±(10 mL + 10% VTI) x Rate (with exhalation valve) and ±(20 mL + 20% VTI) x Rate in NIV configuration (without exhalation valve)</td>
</tr>
</tbody>
</table>
A.6 Range, Resolution, and Accuracy

Table A-9. Monitored Parameter Tolerances (Continued)

<table>
<thead>
<tr>
<th>Ventilator parameters</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak</td>
<td>±(3 lpm + 20%)</td>
</tr>
<tr>
<td>Apnea Index (AI)</td>
<td>±1 ev/h</td>
</tr>
<tr>
<td>Apnea Time</td>
<td>±1 s</td>
</tr>
<tr>
<td>% Spontaneous (Spont)</td>
<td>±1%</td>
</tr>
<tr>
<td>Peak Airway Pressure (Paw)</td>
<td>±(2 mbar + 8%)</td>
</tr>
</tbody>
</table>

1. The Puritan Bennett™ 520 Ventilator does not have the capability to reduce pressure below the PEEP pressure during the exhalation phase.

Table A-10. lists the ranges, resolutions, and accuracies for ventilator settings, alarm settings, and patient data.

Table A-10. Ventilator Range, Resolution, and Accuracy

<table>
<thead>
<tr>
<th>Ventilator settings</th>
<th>Range, resolution, and accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Range: P A/C, PSV, CPAP
Resolution: N/A
Accuracy: N/A
Default value: P A/C</td>
</tr>
<tr>
<td>Tidal Volume (Vt)</td>
<td>Range: 50 mL to 2000 mL
Resolution: 10 mL
Accuracy: ±(10 mL + 10%) of setting
Default value: 500 mL
Depends on: Insp time, R-rate in V SIMV and P SIMV
Depends on: Rate and I:E (I/T) in V A/C</td>
</tr>
<tr>
<td>Vt Target</td>
<td>Range: 50 mL to 2000 mL
Resolution: 10 mL
Accuracy: Vt target < VTI < Vt target +20% if Max P is high enough to reach Vt target
Default value: OFF (100 mL)</td>
</tr>
<tr>
<td>Inspiratory Pressure (Pi)</td>
<td>Range: 5 mbar to 55 mbar in valve configuration
Range: 6 mbar to 30 mbar in leak configuration
Resolution: 1 mbar
Accuracy: ±(1 mbar + 10%) of Pi + PEEP setting
Default value: 15 mbar
Depends on: PEEP when Relative Pressure is set to YES</td>
</tr>
</tbody>
</table>
Pressure support (P Support)
- Range: OFF or 5 mbar to 55 mbar in valve configuration
- Range: 6 mbar to 30 mbar in leak configuration
- Resolution: 1 mbar
- Accuracy: ±(1 mbar + 10%) of P Support + PEEP setting
- Default value: 15 mbar
- Depends on: PEEP when Relative Pressure is set to YES

Inspiratory Time (Insp Time)
- Range: 0.3 s to 6.0 s
- Resolution: 0.1 s
- Accuracy: ±10%
- Default value: 1.5 s
- Depends on: R-Rate

I:E Ratio (I:E)
- Range: from 1:1 to 1:4
- Resolution: 1/0.1
- Accuracy: Insp. time ±50 ms and Exh. time ±50 ms or I:E ratio ±10%, whichever is greater
- Default value: 1/2

I/T Ratio (I/T)
- Range: 20% to 50%
- Resolution: 1%
- Accuracy: Insp. time ±50 ms and Exh. time ±50 ms or I/T ratio ±10%, whichever is greater
- Default value: 33%

Respiratory rate (R-Rate)
- Range: 1 bpm to 60 bpm in P A/C mode
- Resolution: 1 bpm
- Accuracy: ±1 bpm
- Default value: 13

Inspiratory sensitivity (I Sens)
- Range: 0P-5
- Resolution: 1
- Accuracy: N/A
- Default value: 2
- In CPAP, I Sens is set to 2 and is not adjustable

Exhalation sensitivity (E Sens)
- Range: 5% to 95% of peak flow
- Resolution: 5%
- Accuracy: ±(4 lpm +10% of target exhalation flow) based on E Sens within 50ms
- Default value: 25%
- In CPAP, E Sens is fixed at 25% and is not adjustable.

PEEP
- Range: OFF (0.5 mbar) to 20 mbar
- Resolution: 1 mbar
- Accuracy: ±(1 mbar + 10%) mbar
- Default value: OFF
- Depends on: Pi in P A/C and PSV modes when Relative Pressure is set to YES

Table A-10. Ventilator Range, Resolution, and Accuracy (Continued)

<table>
<thead>
<tr>
<th>Ventilator settings</th>
<th>Range, resolution, and accuracy</th>
</tr>
</thead>
</table>
| Pressure support (P Support) | Range: OFF or 5 mbar to 55 mbar in valve configuration
 | Range: 6 mbar to 30 mbar in leak configuration
 | Resolution: 1 mbar
 | Accuracy: ±(1 mbar + 10%) of P Support + PEEP setting
 | Default value: 15 mbar
 | Depends on: PEEP when Relative Pressure is set to YES |
| Inspiratory Time (Insp Time) | Range: 0.3 s to 6.0 s
 | Resolution: 0.1 s
 | Accuracy: ±10%
 | Default value: 1.5 s
 | Depends on: R-Rate |
| I:E Ratio (I:E) | Range: from 1:1 to 1:4
 | Resolution: 1/0.1
 | Accuracy: Insp. time ±50 ms and Exh. time ±50 ms or I:E ratio ±10%, whichever is greater
 | Default value: 1/2 |
| I/T Ratio (I/T) | Range: 20% to 50%
 | Resolution: 1%
 | Accuracy: Insp. time ±50 ms and Exh. time ±50 ms or I/T ratio ±10%, whichever is greater
 | Default value: 33% |
| Respiratory rate (R-Rate) | Range: 1 bpm to 60 bpm in P A/C mode
 | Resolution: 1 bpm
 | Accuracy: ±1 bpm
 | Default value: 13 |
| Inspiratory sensitivity (I Sens) | Range: 0P-5
 | Resolution: 1
 | Accuracy: N/A
 | Default value: 2
 | In CPAP, I Sens is set to 2 and is not adjustable |
| Exhalation sensitivity (E Sens) | Range: 5% to 95% of peak flow
 | Resolution: 5%
 | Accuracy: ±(4 lpm +10% of target exhalation flow) based on E Sens within 50ms
 | Default value: 25%
 | In CPAP, E Sens is fixed at 25% and is not adjustable. |
| PEEP | Range: OFF (0.5 mbar) to 20 mbar
 | Resolution: 1 mbar
 | Accuracy: ±(1 mbar + 10%) mbar
 | Default value: OFF
 | Depends on: Pi in P A/C and PSV modes when Relative Pressure is set to YES |
Table A-10. Ventilator Range, Resolution, and Accuracy (Continued)

<table>
<thead>
<tr>
<th>Ventilator settings</th>
<th>Range, resolution, and accuracy</th>
</tr>
</thead>
</table>
| Rise time | Range: 1-4
Resolution: 1
Default value: 2
Depends on: Insp time |
| Backup rate | Range: 4-40 bpm
Resolution: 1 bpm
Default value: 13
Depends on: Min I time |
| Apnea time | Range: AUTO or 1-60 s
Resolution: 1 s
Default value: AUTO
Depends on: Backup R
In PSV, Apnea time: AUTO = 60/Backup R
In CPAP, Apnea Time: AUTO = 30 |
| Minimum Inspired Tidal Volume (Min VTI) | Range: 30 mL to 2000 mL
Resolution: 10 mL
Default value: 300
Depends on: Max VTI |
| Maximum Inspired Tidal Volume (Max VTI) | Range: 80 mL to 3000 mL
Resolution: 10 mL
Default value: 2000 mL
Depends on: Min VTI |
| Maximum Respiratory Rate (Max Rtot) | Range: 10 bpm to 70 bpm
Resolution: 1 bpm
Default value: OFF
Depends on: R-Rate |
| Minimum Inspiratory Time (Min I time) | Range: 0.1 to 2.8s
Resolution: 0.1 s
Default value: AUTO (Rise time + 300 ms)
Depends on: Max I Time, Backup R, Rise time |
| Maximum Inspiratory Time (Max I time) | Range: 0.8 to 3 s
Resolution: 0.1 s
Default value: AUTO (minimum of 3 s or 30/monitored rate)
Depends on: Min I Time, R-Rate |
A.7 Environmental

The following environmental conditions shall be observed:

Table A-11. Environmental Conditions for Storage or Transport

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Humidity</th>
<th>Atmospheric pressure</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40°C to +70°C</td>
<td>10% to 95% RH</td>
<td>500 hPa to 1060 hPa</td>
<td>-152 m to 3964 m</td>
</tr>
<tr>
<td>(-40°F to +158 °F)</td>
<td>(7.2 psi to 15.4 psi)</td>
<td></td>
<td>(-500 ft to 13 000 ft)</td>
</tr>
</tbody>
</table>

Table A-12. Environmental Conditions for Operation

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Humidity</th>
<th>Atmospheric pressure</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5°C to 40°C</td>
<td>10% to 95% RH</td>
<td>600 hPa to 1100 hPa</td>
<td>-152 m to 3964 m</td>
</tr>
<tr>
<td>(+41 °F to 104 °F)</td>
<td>(8.7 psi to 16.0 psi)</td>
<td></td>
<td>(-500 ft to 13 000 ft)</td>
</tr>
</tbody>
</table>

Under extreme conditions of use, within the limits of a supply voltage of -20% and temperatures ranging from normal to 45°C (113°F) with ≤75% RH, the ventilator should not malfunction or endanger the user. However, operating the device for prolonged periods or repeatedly under such extreme conditions could result in premature aging of components and more frequent maintenance.

A.8 USB

Table A-13. USB Memory Device Specifications

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Supported formats</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB compatibility</td>
<td>USB flash memory USB 2.0 or USB 1.1</td>
</tr>
<tr>
<td>Memory file format</td>
<td>USB 32 bit format (sector size: 512 - 2048 bytes)</td>
</tr>
<tr>
<td>Number of files</td>
<td>Maximum 999</td>
</tr>
<tr>
<td>USB size</td>
<td>128 MB to 4 GB</td>
</tr>
</tbody>
</table>
A.9 Pneumatic

Table A-14. Data Transfer Characteristics

<table>
<thead>
<tr>
<th>Ventilator data description</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trends capacity</td>
<td>86 MB</td>
</tr>
<tr>
<td>Events capacity</td>
<td>512 KB or 5500 events</td>
</tr>
<tr>
<td>Monitoring capacity</td>
<td>42 MB/48 hours</td>
</tr>
</tbody>
</table>

Table A-15. Airway Resistances

<table>
<thead>
<tr>
<th>Inspiratory</th>
<th>Exhalation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspiratory</td>
<td>Exhalation</td>
</tr>
<tr>
<td>Inspiratory</td>
<td>Exhalation</td>
</tr>
<tr>
<td>1.0 mbar at 30 lpm flow ±0.1 mbar</td>
<td>0.5 mbar at 30 lpm ±0.1 mbar</td>
</tr>
<tr>
<td>3.7 mbar at 60 lpm flow ±0.1 mbar</td>
<td>1.1 mbar at 60 lpm ±0.1 mbar</td>
</tr>
</tbody>
</table>

Table A-16. Air Inlet Resistance (Filter)

1.1 cmH₂O (1.079 mbar) at 30 lpm flow

Table A-17. Oxygen Inlet Specifications

<table>
<thead>
<tr>
<th>Maximum pressure</th>
<th>Maximum flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kPa (7 psi)</td>
<td>15 lpm</td>
</tr>
</tbody>
</table>

See Table A-8. “Performance Parameter Specifications and Tolerances”

Table A-18. Performance Specifications

<table>
<thead>
<tr>
<th>Working pressure</th>
<th>Sound pressure level</th>
<th>Maximum pressure limit</th>
<th>Internal compliance (ventilator)</th>
<th>Inspiratory triggering response time (Ttr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mbar–55 mbar</td>
<td>30 dBA (per NF EN ISO 17510-1 test conditions)</td>
<td>60 mbar</td>
<td>.0001 l/mbar</td>
<td>100 ms</td>
</tr>
</tbody>
</table>
A.10 Manufacturer’s Declaration

The following tables, Table A-19, through Table A-23, contain the manufacturer’s declarations for the ventilator’s electromagnetic emissions, electromagnetic immunity, and recommended separation distances between the ventilator and portable and mobile RF communications equipment, as well as a list of compliant cables.

⚠️ WARNING:
The Puritan Bennett™ 520 ventilator requires special precautions for electromagnetic compatibility and should be installed and started according to the recommendations found in Appendix A, “Specifications.” In particular, the use of nearby mobile and portable communications equipment using radio frequencies, such as mobile telephones or other systems exceeding the levels set in the IEC 60601-1-2 standard, may affect its operation. Refer to section A.10, “Manufacturer’s Declaration.”

⚠️ WARNING:
The use of any accessory other than those specified, with the exception of the power supplies or cables sold by Covidien, may lead to an increase in electromagnetic emissions or a decrease in the equipment protection against electromagnetic emissions. If the ventilator is used adjacent to such accessories or stacked with such devices, the ventilator’s performance should be monitored to verify normal operation.

<table>
<thead>
<tr>
<th>Table A-19. Electromagnetic Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF emissions</td>
</tr>
<tr>
<td>CISPR 11/EN 55011</td>
</tr>
<tr>
<td>Group 1</td>
</tr>
<tr>
<td>The ventilator uses RF energy only for its internal functions. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.</td>
</tr>
</tbody>
</table>

| RF emissions |
| CISPR 11/EN 55011 |
| Class B |
| The ventilator is suitable for use in all establishments including domestic establishments and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes. |

| Harmonic emissions |
| IEC/EN 61000-3-2 |
| Class A |

| Voltage fluctuations/flicker emissions |
| IEC/EN 61000-3-3 |
| Complies |
The ventilator is intended for use in the electromagnetic environment specified below. The customer or the user of the ventilator should ensure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Immunity test</th>
<th>IEC/EN 60601 test level</th>
<th>Compliance level</th>
<th>Electromagnetic environment—guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD)</td>
<td>±6 kV contact</td>
<td>±6 kV contact</td>
<td>Floors should be wood, concrete, or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>IEC/EN 61000-4-2</td>
<td>±8 kV air</td>
<td>±8 kV air</td>
<td></td>
</tr>
<tr>
<td>Electrical fast transient/burst</td>
<td>±2 kV for power supply lines</td>
<td>±2 kV for power supply lines</td>
<td>AC power ("mains") quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>IEC/EN 61000-4-4</td>
<td>±1 kV for input/output lines</td>
<td>±1 kV for input/output lines</td>
<td></td>
</tr>
<tr>
<td>Surge</td>
<td>±1 kV lines/lines</td>
<td>±1 kV lines/lines</td>
<td>AC power ("mains") power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>IEC/EN 61000-4-5</td>
<td>±2 kV lines/earth</td>
<td>±2 kV lines/earth</td>
<td></td>
</tr>
<tr>
<td>Voltage dips, short interruptions and voltage variations on power supply input lines</td>
<td>@ 5% UT (# 95% dip in UT for 0.5 cycle)</td>
<td>@ 5% UT (# 95% dip in UT for 0.5 cycle)</td>
<td>AC power ("mains") power quality should be that of a typical commercial or hospital environment. If the user of the ventilator requires continued operation during power mains interruptions, it is recommended that the ventilator be powered from an uninterruptible power supply or a battery.</td>
</tr>
<tr>
<td>IEC/EN 61000-4-11</td>
<td>40% UT (60% dip in UT for 5 cycles)</td>
<td>40% UT (60% dip in UT for 5 cycles)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70% UT (30% dip in UT for 25 cycles)</td>
<td>70% UT (30% dip in UT for 25 cycles)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 5% UT (# 95% dip in UT for 5 s)</td>
<td>@ 5% UT (# 95% dip in UT for 5 s)</td>
<td></td>
</tr>
<tr>
<td>Power frequency (50/60 Hz) magnetic field</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>IEC/EN 61000-4-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

UT is the AC mains voltage prior to application of the test level.
The ventilator is intended for use in the electromagnetic environment specified below. The customer or the user of the ventilator should assure that it is used in such an environment.

Table A-21. Electromagnetic Immunity—Conducted and Radiated RF

<table>
<thead>
<tr>
<th>Immunity test</th>
<th>IEC/EN60601-1-2 test level</th>
<th>Compliance level</th>
<th>Electromagnetic environment—guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted RF</td>
<td>IEC/EN 61000-4-6</td>
<td>3 Vrms 150 kHz to 80 MHz outside ISM bands¹</td>
<td>3 Vrms 150 kHz to 80 MHz outside ISM bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 Vrms inside ISM bands¹</td>
<td>10 Vrms inside ISM bands</td>
</tr>
<tr>
<td>Radiated RF</td>
<td>IEC/EN 61000-4-3</td>
<td>10 V/m 80 MHz to 2.5 GHz</td>
<td>10 V/m 80 MHz to 2.5 GHz</td>
</tr>
</tbody>
</table>

Portable and mobile RF communications equipment should be used no closer to any part of the ventilator, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.

Recommended separation distance

\[
d = \begin{cases}
0.35\sqrt{P} & \text{for } 80 \text{ MHz to } 800 \text{ MHz} \\
1.2\sqrt{P} & \text{for } 800 \text{ MHz to } 2.5 \text{ GHz} \\
2.3\sqrt{P} & \text{for } 800 \text{ MHz to } 2.5 \text{ GHz}
\end{cases}
\]

where \(P \) is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and \(d \) is the recommended separation distance in meters (m)².

Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey³, should be less than the compliance level in each frequency range.⁴ Interference may occur in the vicinity of equipment marked with the following symbol:

[Symbol]
At 80 MHz and 800 MHz, the higher frequency range applies.

These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

1. The ISM (industrial, scientific, and medical) bands between 150 kHz and 80 MHz are 6.765 MHz to 6.795 MHz; 13.553 MHz to 13.567 MHz; 26.957 MHz to 27.283 MHz; and 40.66 MHz to 40.70 MHz.

2. The compliance levels in the ISM frequency bands between 150 kHz and 80 MHz and in the frequency range 80 MHz to 2.5 GHz are intended to decrease the likelihood that mobile/portable communications equipment could cause interference if it is inadvertently brought into patient areas. For this reason, an additional factor of 10\(^{3/2}\) is used in calculating the recommended separation distance for transmitters in these frequency ranges.

3. Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radio, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the ventilator is used exceeds the applicable RF compliance level above, the Puritan Bennett 520 Ventilator should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the Puritan Bennett 520 Ventilator.

4. Over the frequency range 150 kHz to 80 MHz, field strengths should be less than 10 V/m.
Table A-22. Recommended Separation Distances

The ventilator is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the ventilator can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the ventilator as recommended below, according to the maximum output power of the communications equipment.

<table>
<thead>
<tr>
<th>Rated maximum output power of transmitter (W)</th>
<th>Separation distance according to frequency of transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150 kHz to 80 MHz (outside ISM bands)</td>
</tr>
<tr>
<td></td>
<td>$d = 0.35 \sqrt{P}$</td>
</tr>
<tr>
<td>0.01</td>
<td>0.035 m</td>
</tr>
<tr>
<td>0.1</td>
<td>0.11 m</td>
</tr>
<tr>
<td>1</td>
<td>0.35 m</td>
</tr>
<tr>
<td>1.1 m</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>3.5 m</td>
</tr>
</tbody>
</table>

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in meters (m) can be determined using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

Note:

At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

Note:

The ISM (industrial, scientific, and medical) bands between 150 kHz and 80 MHz are 6.765 MHz to 6.795 MHz; 13.553 MHz to 13.567 MHz; 26.957 MHz to 27.283 MHz; and 40.66 MHz to 40.70 MHz.

Note:

An additional factor of 10/3 is used in calculating the recommended separation distance for transmitters in the ISM frequency bands between 150 kHz and 80 MHz and in the frequency range 80 MHz to 2.5 GHz to decrease the likelihood that mobile/portable communications equipment could cause interference if it is inadvertently brought into patient areas.

Note:

These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.
A.11 Standards Compliance and IEC Classification

General Standards
- The ventilator will be constructed to comply with the following product Classifications as detailed in Clause 5 of 60601-1:
 - Class II Equipment
 - Internally Powered Equipment
 - Type BF Applied Parts
 - IP31 with respect to access to hazardous parts and ingress of moisture
 - Not suitable for use in the presence of flammable anesthetic mixtures
 - Not suitable for sterilization
 - Suitable for continuous operation
 - Detachable power supply cable

Table A-23. Compliant Cables and Accessories

<table>
<thead>
<tr>
<th>Cable or accessory</th>
<th>Maximum length</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK AC power cable assembly</td>
<td>1.8 m (5.9 ft)</td>
</tr>
<tr>
<td>Japan AC power cable assembly</td>
<td>1.8 m (5.9 ft)</td>
</tr>
<tr>
<td>China AC power cable assembly</td>
<td>1.8 m (5.9 ft)</td>
</tr>
<tr>
<td>South Africa AC power cable assembly</td>
<td>1.8 m (5.9 ft)</td>
</tr>
<tr>
<td>India AC power cable assembly</td>
<td>1.8 m (5.9 ft)</td>
</tr>
<tr>
<td>Australia AC power cable assembly</td>
<td>1.8 m (5.9 ft)</td>
</tr>
<tr>
<td>Europe AC power cable assembly</td>
<td>1.8 m (5.9 ft)</td>
</tr>
<tr>
<td>Canada AC power cable assembly</td>
<td>1.8 m (5.9 ft)</td>
</tr>
<tr>
<td>Nurse call cable</td>
<td>5 m (16.4 ft)</td>
</tr>
<tr>
<td>12V DC car adapter cable</td>
<td>5 m (16.4 ft)</td>
</tr>
<tr>
<td>Oxygen inlet connector</td>
<td>-</td>
</tr>
</tbody>
</table>
Specifications

Collateral Standards

Particular Standards

Air Transportation Standards

B Operational Verification Checklist

The operational verification and safety checks listed in Table B-1. below should be performed to ensure the ventilator is operating properly in the following circumstances:

- Prior to using the ventilator with a patient
- Regularly, according to institutional protocol
- Following maintenance or changes in ventilator settings

If the ventilator fails any of the safety checks below, or if you cannot complete these checks, see section 3.8, “Troubleshooting” on page 3-14 or call the equipment supplier or Covidien (see section 8.3, “Service Assistance” on page 8-4).

WARNING:
Provide the patient with an alternate means of ventilation before conducting these tests.

WARNING:
To reduce the risk of infection, wash your hands thoroughly before and after handling the ventilator or its accessories.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verify the proper appearance and cleanliness of the ventilator.</td>
</tr>
<tr>
<td>2</td>
<td>Verify all of the labels and markings on the ventilator are clear and legible.</td>
</tr>
<tr>
<td>3</td>
<td>Confirm the air inlet filter is clean and correctly installed.</td>
</tr>
<tr>
<td>4</td>
<td>Ensure the AC power cable does not exhibit any signs of damage, such as kinks, breaks, or damaged insulation.</td>
</tr>
<tr>
<td>5</td>
<td>Connect the AC power cable. Ensure that all power supply indicators on the front panel flash, except for the AC power supply (mains) indicator, which should remain lit.</td>
</tr>
<tr>
<td>6</td>
<td>Push the power switch I/O to the I position to activate the ventilator test: Check that the two alarm indicators and the standby indicator (located close to the VENTILATOR ON/OFF key) flash. Ensure also that the two alarm buzzers sound.</td>
</tr>
</tbody>
</table>
Table B-1. Operational Verification Checklist (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Task</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Perform the Functioning Alarms Test regularly according to institutional protocol (see Appendix C, "Alarms Tests").</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Verify the alarm volume is adapted to the patient environment.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verify that the preventive maintenance schedule for the ventilator is followed. See Chapter 8, "Routine Maintenance."</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ensure the patient breathing circuit is correctly attached to the ventilator, with all the necessary components, and is free from any signs of damage and leaks.</td>
<td></td>
</tr>
</tbody>
</table>
C Alarms Tests

Before connecting the ventilator to the patient, perform the following tests to ensure the ventilator’s alarms are working properly.

WARNING:
Do not perform ventilator alarm tests while the patient is connected to the ventilator. Provide the patient with an alternate means of ventilation before conducting these tests.

WARNING:
If the ventilator fails any alarm test or if you cannot complete these tests, see the Troubleshooting section (refer to Chapter 3, “Alarms and Troubleshooting” on page 3-1) of this manual or call your equipment supplier or Covidien (refer to section 8.3, “Service Assistance” on page 8-4).

Note:
Many of the functions of the ventilator are not accessible when the Locking key 🛠 is enabled. For additional assistance contact your clinician or equipment representative.

Note:
Most of these tests require that an approved patient circuit be connected to the ventilator. Ensure that your patient circuit is properly connected prior to performing these tests.

C.1 Low Pressure Test

1. Before proceeding, set the ventilation and alarm parameters specified by the patient’s clinician and install a single limb circuit setup.

2. Press the VENTILATION ON/OFF key to start ventilation.

3. Keep the patient’s end of the breathing circuit open and allow ventilation to continue.

4. Wait for (Apnea time + 2 seconds; Apnea time is not always 5 seconds), then ensure that:

 • The high priority indicator (red color) lights up

 • The PATIENT DISCONNECTION alarm is shown
• The audible alarm sounds

5. Press the ALARM CONTROL key once to pause the alarm.

6. Press and hold the VENTILATION ON/OFF key for 3 seconds, then release it. Press the VENTILATION ON/OFF key again to confirm stop. The ventilator will switch to standby mode and cancel the alarms.

C.2 Circuit Check Test

C.2.1 Performing a Circuit Check

Perform a circuit check whenever replacing or altering a patient circuit. Ensure the patient is fully disconnected from the ventilator prior to starting this test.

Note:
Before performing a circuit check, stop ventilation using the VENTILATION ON/OFF key, not the I/O switch. If the I/O switch was used to stop ventilation, the circuit check function cannot be used unless first stopping ventilation using the VENTILATION ON/OFF key.

1. Press and hold the MENU key during power up to access the circuit check test screen.

![Circuit Check Screen (Before Starting)](image)

2. Verify that the proximal pressure tube of the patient circuit is properly connected to the proximal pressure port (see section 4.4, “Patient Circuit,” on page 4-8.)

3. Verify that the exhalation valve tube is connected to the exhalation valve port.

4. Block the patient connection port of the patient circuit (see Figure C-2.)
Circuit Check Test

Figure C-2. Blocking the Patient End of a Single Limb Circuit

5. Activate the circuit test by pressing the **ENTER** key.

6. During the circuit check (which typically takes about 10 seconds to complete), the ventilator will do the following:

 a. Sound a short beep
 b. Close the exhalation valve
 c. Show Test Status as **RUNNING** (see Figure C-3.)

 ![Circuit Check (Running)](VEN_11951_A)

 Figure C-3. Circuit Check (Running)

 - **CIRCUIT CHECK**
 - Leak Test
 - Leak
 - Test Status
 - 0.0 Lpm
 - **RUNNING**
 - PASS or FAIL in the Test Status field
7. Review the results. A FAIL result indicates leak(s) of greater than 1 L/min exist.

To rerun circuit check test, press the ENTER key again. To cancel the circuit check while it is running, press the UP, DOWN, ENTER, VENTILATION ON/OFF, or MENU key.

C.2.2 Troubleshooting a Failed Check

If the circuit check fails, do the following:

1. Ensure an approved circuit is in use. Reference Table E-2. List of Circuits.

2. Check patient circuit connections to the ventilator, examining each for leakage and tightness.

3. Replace the patient circuit if necessary.

4. Rerun the circuit check test.

5. If the failure persists, have the ventilator evaluated by a qualified technician.
C.3 Power Failure Test

Note:
If the ventilator is operating on either the external power supply or the internal battery, you must plug it in to an AC power source before beginning this test.

1. Disconnect the ventilator from its AC power supply. Ensure that the following events occur:
 - The medium priority indicator (yellow color) illuminates
 - The AC POWER DISCONNECTION alarm activates
 - An audible alarm sounds
 - The **DC POWER** indicator illuminates if the DC power source is connected; otherwise, the INTER-NA L BATTERY indicator illuminates

2. Press the **ALARM CONTROL** key twice to reset the alarm.

Reconnect the ventilator to its AC power supply.

C.4 Occlusion Test

1. **Verify** that the pressure tube of the patient circuit is properly connected to the appropriate fitting on both the ventilator and the proximal pressure port (see section 4.4, “Patient Circuit” on page 4-8).

2. Block the exhalation port on the exhalation valve of the patient circuit. See **Figure C-6**.

 Figure C-6. Blocking the Patient End of a Single Limb Circuit

3. Press the **VENTILATION ON/OFF** key to start ventilation.

4. Allow the ventilator to deliver three consecutive breaths. At the beginning of the fourth breath, ensure that the following events occur:
Alarms Tests

- The high priority indicator (red color) illuminates
- The Occlusion alarm activates
- An audible alarm sounds

5. Press the **ALARM CONTROL** key to pause the alarm.

6. Unblock the exhalation port.
 - The occlusion alarm is canceled.

7. Press and hold the **VENTILATION ON/OFF** key for 3 seconds, then release it. Press the **VENTILATION ON/OFF** key again to confirm stop.
 - Ventilation stops.

C.5 **Battery Test**

The ventilator is capable of testing the power of the battery (see Chapter 6, "Internal Battery"). You can determine which power source the ventilator is using by checking the power indicator, located on the top panel. The indicator light will be lit to indicate which power source is currently available.

1. Disconnect the AC power supply cable and the DC power cable (if it is connected) from the ventilator.
 - A POWER DISCONNECTION alarm will trigger.

2. Press the **ALARM CONTROL** key twice to pause the alarm. Ensure that the following events occur:
 - The INTERNAL BATTERY indicator to the upper-left of the display illuminates
 - The BATTERY symbol is shown at the top of the screen (along with its reserve capacity)

3. Connect the AC (mains) power supply. Ensure that the following events occur:
 - The AC POWER indicator to the upper-left of the display illuminates
 - The indicator to the upper-left of the display is flashing, which indicates that the battery is charging (this only occurs if the ventilator has run on battery power long enough to lose enough charge that the charger will turn on)
 - The BATTERY symbol is no longer shown at the top of the screen
C.6 Involuntary Stop Test

To verify proper functioning of the very high priority audible alarm, perform the following:

1. Press the VENTILATION ON/OFF key to start ventilation.

2. Set the I/O switch to the O (off) position to turn off the ventilator during ventilation. Ensure that the following events occur:
 - An audible alarm sounds continuously
 - The ventilator turns off. There should be no alarm indicators illuminated and no alarm messages shown.

3. Press the ALARM CONTROL key once to pause the audible alarm.
D Unpacking and Preparation

The Puritan Bennett™ 520 Ventilator is delivered with the following items:

(1) Printed user’s manual (language as requested by the customer)
(1) Clinician’s manual on CD (a print copy is available upon request by the customer)
(1) Patient circuit and valve
(1) Set of six combination foam/fine particle air inlet filters
(1) Carrying bag
(1) Oxygen connector
(1) AC power cable

WARNING:
Users must always possess an additional circuit and valve while using the Puritan Bennett™ 520 Ventilator.

WARNING:
To minimize the risk of damage, you must use the Dual Bag to transport the Puritan Bennett™ 520 Ventilator. Refer to Figure D-2.

To unpack and prepare the ventilator, follow the steps below:

1. From the plastic bag, remove the following:
 - Plastic pocket containing the clinician’s manual
 - The ventilator and its components or accessories

2. Remove the patient circuit, the AC (“mains”) power cable, and the set of fine-particle air inlet filters.

3. Inspect the ventilator and ensure that:
 - The ventilator’s outer casing and the I/O switch’s protective cover do not have any dents or scratches, which may indicate possible damage.
 - The ventilator’s labels and markings are clear and legible.
 - The AC power cable does not exhibit any signs of damage, such as kinks, breaks, or cuts
WARNING:
Never use a ventilator or any components or accessories that appear to be damaged. If any signs of damage are evident, contact your equipment supplier or Covidien.

4. Clean the ventilator with a mild soap solution, if necessary (see Chapter 7, “Cleaning”).

5. Ensure that the air inlet filter is installed.

Figure D-1. Puritan Bennett 520 Ventilator

Figure D-2. Dual Bag
Table E-1. provides a list of accessories that are available for the Puritan Bennett™ 520 Ventilator. To order parts or accessories, contact your equipment supplier or Covidien representative.

Note:
The ventilator is delivered with the following items: a printed user’s manual, a CD with clinician’s manual (printed copy available upon request), one patient circuit with valve, one set of six combination foam/fine particle air inlet filters, one carrying bag, one O₂ connector, and one AC power cable.

Table E-1. List of Consumables and Accessories

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrying bag (grey)</td>
</tr>
<tr>
<td>Oxygen inlet connector</td>
</tr>
<tr>
<td>Ventilator cart</td>
</tr>
<tr>
<td>Dual bag (blue or pink)</td>
</tr>
<tr>
<td>delivered with:</td>
</tr>
<tr>
<td>Backpack padded straps, 2 each</td>
</tr>
<tr>
<td>Suspension belt</td>
</tr>
<tr>
<td>Carrying belt</td>
</tr>
</tbody>
</table>

⚠️ WARNING:

To minimize the risk of damage, you must use the ventilator’s Dual Bag to transport the ventilator. See Figure D-2. on page D-2.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (mains) power cable</td>
</tr>
<tr>
<td>DC pow cable (for connection to an external DC power source, such as a car 12 volt DC outlet)</td>
</tr>
<tr>
<td>Nurse call cable (5 meters)</td>
</tr>
<tr>
<td>Inlet air combi-filter, fine (pack of 6)</td>
</tr>
</tbody>
</table>

Note:

This is the “foam plus fine particle” filter listed in Table 8-1. “Consumables and Replacement Intervals” on page 8-2.
Table E-1. List of Consumables and Accessories (Continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal battery</td>
<td></td>
</tr>
<tr>
<td>External battery</td>
<td></td>
</tr>
<tr>
<td>3-way DAR™ valve</td>
<td></td>
</tr>
<tr>
<td>DAR™ inspiratory bacteria filters</td>
<td></td>
</tr>
<tr>
<td>Barrierbac</td>
<td></td>
</tr>
<tr>
<td>Barrierbac S</td>
<td></td>
</tr>
<tr>
<td>Barrierbac S Angled</td>
<td></td>
</tr>
<tr>
<td>Hygrobac</td>
<td></td>
</tr>
<tr>
<td>Hygrobac S</td>
<td></td>
</tr>
<tr>
<td>Hygrobac S Angled</td>
<td></td>
</tr>
<tr>
<td>Hygroboy</td>
<td></td>
</tr>
<tr>
<td>Hygroster</td>
<td></td>
</tr>
<tr>
<td>Hygroster Mini</td>
<td></td>
</tr>
<tr>
<td>Sterivent</td>
<td></td>
</tr>
<tr>
<td>Sterivent S</td>
<td></td>
</tr>
<tr>
<td>Sterivent Mini</td>
<td></td>
</tr>
<tr>
<td>Hygrolife II</td>
<td></td>
</tr>
</tbody>
</table>

Table E-2. provides a list of consumable parts available for the ventilator.

WARNING:

To ensure proper performance of the ventilator, use a patient circuit recommended by Covidien in this manual; refer to Chapter 4, “Installation and Assembly” and Appendix E, “Parts and Accessories.” The total specified length of the patient circuit tubing as measured from the ventilator outlet to the ventilator inlet is 1.1 meters (3.6 ft) to 2.0 meters (6.6 feet). The tubing must conform to all applicable standards and must be fitted with Ø 22 mm terminals that also conform to all applicable standards. Ensure that both the length and the internal volume of the patient circuit are appropriate for the tidal volume: a corrugated tube of Ø 22 mm for adult patients, and a corrugated tube of Ø 15 mm for pediatric patients with a tidal volume lower than 200 ml.

Table E-2. List of Circuits

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR™ Single-limb patient circuit with exhalation valve, 180 cm, PVC, ADULT</td>
<td>5093600</td>
</tr>
<tr>
<td>DAR™ Single-limb patient circuit with exhalation valve, 180 cm, PVC, PEDIATRIC</td>
<td>5093500</td>
</tr>
<tr>
<td>DAR™ Single-limb patient circuit without exhalation valve, 180 cm, PVC, ADULT</td>
<td>5093300</td>
</tr>
<tr>
<td>DAR™ Single-limb patient circuit without exhalation valve, 180 cm, PVC, PEDIATRIC</td>
<td>5093100</td>
</tr>
</tbody>
</table>
For more information regarding parts and accessories for the Puritan Bennett 520 Ventilator contact your service representative or www.covidien.com/rms/products.
AC Power
Alternating current.

Alarm Pause
The audible and visual alarms cease and the symbol appears. The symbol will remain until the cause of the alarm is addressed. For example, when the ventilator is running on internal battery, the AC Disconnection alarm may be paused, and the alarm paused symbol will appear until the device is plugged into AC. The paused alarm will be captured in the alarm log screen and can be reactivated.

Alarm Reset
Used only for the High Pressure alarm, this function resets the visual alarm message.

Apnea
The absence of breathing or a breathing pattern capable of supporting an individual’s respiratory needs.

Apnea Index (AI)
The Apnea index is average number of apnea events per hour of ventilation. It is based on the Apnea alarm.

Apnea Time
Time allowed between breath starts before APNEA alarm occurs when no patient effort is detected.

Assist/Control
In Assist/Control mode, the ventilator delivers an assisted breath of a set pressure when the patient’s breathing effort creates a flow or pressure drop that is greater than the SENSITIVITY setting. In absence of patient breathing effort, the ventilator will deliver a controlled breath of the set pressure. (Does not apply in PSV/CPAP mode).

Assisted Breath
A pressure breath triggered by the patient but then controlled and terminated by the ventilator.

Audio Pause
Pauses the audible alarm for 60 seconds at a time and shows the symbol.
Back Up Rate
Rate of control cycles in PSV mode during apnea phase.

Battery Level
Display of the remaining battery capacity; located adjacent to the battery symbol.

Bias flow
Turbine flow during exhalation phase through the patient circuit to avoid rebreathing.

bpm
An abbreviation for “breaths per minute,” which is the unit of measure for breath rate (see below).

Breath Rate
The total number of breaths, both machine and spontaneous, delivered by a ventilator in one minute.

Caregiver
An individual who assists a patient with the tasks of daily living. This may be a family member, a live-in assistant, or the nursing staff of a health care facility.

cmH₂O
An abbreviation for “centimeters of water,” which is a unit of measure for pressure.

Continuous Positive Airway Pressure (CPAP)
Continuous airway pressure maintained throughout a spontaneous breath cycle.

Controlled breath
A pressure breath triggered, controlled and terminated by the ventilator.

DC Power
Direct current.

Exhalation Phase
Phase of the breath cycle during which the patient exhaled.

Exhalation Sensitivity
The exhalation sensitivity (E Sens) level is a percentage of peak flow at which a pressure-supported breath will be terminated.

Fraction of Inspired Oxygen (FiO₂)
Amount of oxygen delivered to the patient.

Flow
Volume of gas delivered by the ventilator compared to time, expressed in liters per minute (lpm).

hPa
An abbreviation for “hectopascal,” which is a unit of measure for atmospheric pressure.
I:E ratio
Inspiratory time versus exhalation time ratio.

Inspiratory Phase
Phase of the breath cycle during which the patient inspires.

Inspiratory Pressure (Pi)
The operator-set inspiratory pressure during a Pressure Control (PC) mandatory breath.

Inspiratory Sensitivity (I Sens)
Level of inspiratory effort the patient has to provide during the initiation of a machine breath. The sensitivity levels (from 0P to 5) correspond to differences in flow compared to the bias flow. Level 0P is the most sensitive (for a pediatric use) and requires the least effort to trigger a breath. Level 5 requires the most amount of effort to trigger a breath.

Inspiratory Tidal Volume (VTI)
Volume delivered to the patient at each inspiratory phase.

I Time (Inspiratory Time)
Inspiratory time measure.

Intentional Vent Stop Alarm
Ventilation has been switched off by the user/caregiver and the ventilator is in standby.

I/T Ratio
Inspiratory time versus total breath time ratio.

L
liters (a unit of volume).

Leak
When ventilating in leak configuration, it is the average patient/circuit leak during each cycle and over the past 24-hour period.

LED
Light emitting diode; used as indicator lights on the ventilator’s front panel.

lpm
Liters per minute (a unit of volume flow rate).

Machine Hours Counter
Counter for the total ventilation time since manufacture or the last CPU board change.

Mains
AC power supply.
Max Leak
The maximum alarm setting of a high leakage threshold. An alarm will be triggered in the event the calculated leakage flow exceeds this limit.

Max Rtot (Total breath rate)
The maximum alarm setting to prevent hyperventilation or ventilator autotriggering. The HIGH RATE alarm will be triggered if the total breath rate exceeds the maximum limit set.

Max P (Maximum Inspiration Pressure)
Max P allows the ventilator to adjust the inspiratory pressure up to a maximum limit in order to reach the target tidal volume (Vt Target).

Mbar
An abbreviation for "millibar," which is a unit of measure for atmospheric pressure.

Mean Airway Pressure
Average patient pressure during each breath.

Minimum Inspiratory Time
Minimum inspiratory time before allowing the patient to exhale.

M Vol (Minute Volume)
Flow delivered at each breath to the patient is measured by the inspiratory flow sensor and that measurement is used to calculate minute volume (Vt x Rtot)

P A/C (Pressure Assist /Control)
A ventilator mode which provides machine-initiated breaths delivered at a clinician-set pressure, inspiratory time, and rate.

Patient Breath
Breathing cycle initiated by the patient.

Patient circuit
Tubing between the ventilator and the patient.

Patient effort
Inspiratory effort initiated by the patient.

Patient Hours Counter
Counter of ventilation time for the patient.

Peak Airway Pressure (PAW)
The peak airway pressure is the average peak pressure during the inspiratory phase, measured by each cycle and over the previous 24-hour period.

Peak Inspiratory Pressure (PIP)
The highest pressure measured in the patient circuit during the inspiration phase.
Positive End Expiratory Pressure (PEEP)
Pressure in the patient circuit at the end of expiration.

Pressure Control (P Control)
Augmentation of the patient’s ventilation synchronously with inspiratory effort until a preset pressure is met. Pressure is maintained throughout patient inspiratory flow, and is cycled to expiration by time (controlled by the selected Inspiratory Time setting). Used in Assist/Control mode.

Pressure Support (P Support)
Augmentation of the patient’s ventilation synchronously with inspiratory effort until a preset pressure is met. Pressure is maintained until inspiratory flow is reduced to a percentage of peak flow that depends on the exhalation sensitivity setting for the inspiration, when the ventilator cycles into exhalation.

PSI
Pounds per square inch.

PSV (Pressure Support Ventilation)
Pressure support ventilation.

Rebreathing
The patient breathes his/her exhaled gas.

Respiratory rate
The number of breath cycles (inspiration + expiration) completed within one minute. Normal resting adult respiratory rates are from 12–20 breaths per minute (bpm).

RESTART/SRVC
This is an alarm message. If the message *IF PERSISTS RESTART/SRVC occurs, restart the ventilator. If the alarm condition is not cleared, call a service representative.

Rise Time
This determines how the target pressure will be reached, and indirectly defines the minimum inspiration time.

Rtot
Parameter measured by the ventilator equal to the total number of breaths per minute (bpm).

Sensitivity
This adjustable parameter determines the amount of inspiratory effort required by the patient before the ventilator delivers an assisted breath, or demands flow in the case of a spontaneous breath.

The Puritan Bennett™ 520 Ventilator is pressure-triggered, with sensitivity levels in the range from 0P to 5: the lower the number, the more sensitive the trigger.
Spont Cyc (Spontaneous Cycling)
This is the percentage of ventilation cycles initiated by the patient over the previous 24 hour period.

Standby
The operational mode of the ventilator where it is powered (power supply I/O button set to the I position), but is not ventilating the patient.

Vent Time (Ventilation Time)
The ventilation duration data is based on the patient counter and shows the total ventilation time in hours and minutes over the previous 24-hour period.

Vt Target (Target volume)
The Vt Target feature enables the ventilator to reach a set volume of gas to be delivered to the patient using a range of pressures in the pressure-based ventilation modes.
Index

A
AC power cable securing to ventilator .. 4-4
Air circulation (Warning) ... 1-5, 4-1
Air inlet filter replacement interval .. 8-2
Air outlet (antibacterial) filter replacement interval 8-1
Air transport
Air transportation standard .. A-16
Alarm messages
BATTERY FAULT1 ... 3-10, 3-15, 6-4
BUZZER FAULT3 ... 3-10, 3-16
BUZZER LOW BATTERY .. 3-10, 3-16
CHECK BATTERY CHARGE ... 3-10, 3-16
CHECK EXH VALVE ... 3-10, 3-16
CHECK PROXIMAL LINE1 .. 3-11, 3-17
CHECK REMOTE ALARM .. 3-11, 3-17
CHECK SETTINGS ... 3-11, 3-17
DC POWER DISCONNECTION ... 4-8
EMPTY BATTERY ... 6-4
HIGH INT TEMP COOL VENT ... 3-12
HIGH PRESSURE ... 3-12
HIGH RATE ... 3-12
HIGH VTI ... 3-13, 3-21
HIGH/LOW BATTERY TEMP ... 3-12
INTENTIONAL VENT STOP .. 3-13, 3-22
KEYPAD FAULT ... 3-13, 3-20, 3-22
LOW BATTERY ... 3-22, 6-4
NO PROXIMAL LINE2 .. 3-13, 3-22
OCCLUSION CHECK CIRCUIT .. 3-13, 3-22
PATIENT DISCONNECTION .. 3-13, 3-23
POWER FAULT ... 3-23
POWER SUPPLY LOSS .. 3-23
PRES SENS FLT1 ... 3-14, 3-23
PROX SENS FLT2 ... 3-14, 3-23
REMOVE VALVE CPAP MODE ... 3-23
REMOVE VALVE OR CHANGE PRES ... 3-23
SOFTWARE VERSION ERROR ... 3-23
TURB OVERHEAT ... 3-24
Alarms tests ... C-1
Battery tests
Battery test ... C-6
Circuit Test ... C-2
continuing pressure ... C-5
Involuntary stop test ... C-7
low pressure ... C-1
Alarms, utilization ... 3-1
Alarms, ventilation ... 3-1
Antibacterial filter ... 4-15

B
BATTERY FAULT1 alarm message ... 3-10, 3-15, 6-4
Battery test ... C-6
Battery, internal
capacity ... 6-1
operation ... 6-2
reserve capacity display, ventilation running (figure) 6-3
reserve capacity, displayed ... 6-3
symbol ... 6-3
Beep ... 6-5
Breathing Circuit ... 4-8
BUZZER FAULT3 alarm message ... 3-10, 3-16
BUZZER LOW BATTERY alarm message 3-10, 3-16
C
Capacity of the battery ... 6-1
Carbon dioxide
risk of inhalation and suffocation ... 5-11
Carrying bag, ventilator (figure) .. D-2
CHECK BATTERY CHARGE alarm message 3-10, 3-16
CHECK EXH VALVE alarm message ... 3-10, 3-16
CHECK PROXIMAL LINE1 alarm message 3-11, 3-17
CHECK REMOTE ALARM alarm message ... 3-11, 3-17
CHECK SETTINGS alarm message ... 3-11, 3-17
circuit check test ... C-2
performing a circuit check ... C-2
troubleshooting a failed check ... C-4
Circuit Test ... C-2
Cleaning
ventilator ... 7-1
Connecting to
DC power ... 4-6
Consumables replacement intervals .. 8-2
Continuing pressure test .. C-5
D
DC power
connecting to ventilator ... 4-7
disconnecting from ventilator ... 4-8
connecting to ... 4-6
DC POWER DISCONNECTION alarm message 4-8
E
Electrical specifications ... A-1
Electromagnetic compatibility
and mobile/portable communications equipment 4-2
Electromagnetic emissions
and use of accessories ... 4-2
EMPTY BATTERY alarm message ... 6-4
F
FAA requirements ... 2-1
Faults, technical ... 3-1
Filters
air inlet ... 4-14
antibacterial ... 4-15
H
HIGH INT TEMP COOL VENT alarm message 3-12
HIGH PRESSURE alarm message ... 3-12
HIGH RATE alarm message ... 3-12
HIGH VTI alarm message ... 3-13, 3-21
HIGH/Low BATTERY TEMP alarm message 3-12
Holes, air circulation ... 1-5, 4-1
Hot surfaces
ventilator .. 5-12

I
Ignition sources (warning) 4-2
Indicator
VENT STDBY 5-3
Indicators
INTERNAL BATTERY 6-3, 6-5
Installation
placing the ventilator 4-1
Installation and Assembly 4-1
Intended use statement 2-1
INTENTIONAL VENT STOP alarm message ... 3-13, 3-22
Internal battery
charging (Warning) 4-2, 6-5
maintenance (none required) 8-3
recharging 6-4
replacement interval 8-3
storing ... 6-6
test interval 8-3
INTERNAL BATTERY indicator 6-5
Involuntary stop test C-7

K
KEYPAD FAULT alarm message 3-13, 3-20, 3-22
Keys
VENTILATION ON/OFF 5-3

L
LOW BATTERY alarm message 3-22, 6-4
Low pressure test C-1

M
Machine counter 5-3
Maintenance
schedule, recommended 8-2

N
NO PROXIMAL LINE2 alarm message 3-13, 3-22
Nurse Call cable 4-23
Nurse call system
connecting the cable to the ventilator .. 4-23

O
OCCLUSION CHECK CIRCUIT alarm message ... 3-13, 3-22
OCCLUSION CHECK CIRCUIT alarm message ... 3-22
Operational verification checklist B-1
O-ring, oxygen coupler (Caution) 4-18
Oxygen
connector stud 4-18
disconnecting the supply from the ventilator ... 4-19
special coupler 4-17, 4-18
using medical-grade only (Warning) 4-17

P
Patient circuit 4-8
attaching to ventilator 4-8
length and internal volume 4-12
replacement interval 8-2
single limb, connecting 4-12
Patient counter 5-3
PATIENT DISCONNECTION alarm message 3-13, 3-23
Placing the ventilator (installing) 4-1
POWER FAULT alarm message 3-23
Power On Self Test (POST) 5-3
POWER SUPPLY LOSS alarm message 3-23
Preference menu
displaying .. 5-5
PRES SENS FLT1 alarm message 3-14, 3-23
Product overview
Intended use 2-1
PROX SENS FLT2 alarm message 3-14, 3-23

R
Recharging the internal battery 6-4
REMOVE VALVE CPAP MODE alarm message ... 3-23
REMOVE VALVE OR CHANGE PRES alarm message ... 3-23
Repairing the ventilator
qualified personnel only (Warning) 8-1, 8-3
Replacement intervals
air inlet filter 8-2
air outlet (antibacterial) filter 8-2
consumables 8-2
patient circuit 8-2
Replacing
air inlet filter 8-1
Risk of fire (warning) 4-2

S
Safety information 1-22
Service assistance information 8-4
SOFTWARE VERSION ERROR alarm message ... 3-23
Specifications
electrical .. A-1
physical .. A-1
ventilator .. A-1
Storing the internal battery 6-6
Stud, oxygen connector 4-18

T
Technical faults 3-1
Transport, emergency
ventilator not intended for 2-2
TURB OVERHEAT alarm message 3-24
Turning on the ventilator 5-1

V
VENT STDBY indicator 5-3
VENTILATION ON/OFF key 5-3
Ventilator
carrying bag (figure) D-2
cleaning .. 7-1
connecting the nurse call cable 4-23
connections, proper (warning) 1-4, 4-2, 4-9
mounting on a wheelchair 4-20
potentially hot surfaces 5-12
turning on 5-1

W
Welcome Menu screen
display of .. 5-3
Index

skipping ... 5-4
Wheelchair
 mounting the ventilator onto 4-20
Page Left Intentionally Blank