Table of Contents

1 Introduction

1.1 Overview ... 1-1
1.2 Intended Audience 1-1
1.3 Safety Information 1-2
 1.3.1 Safety Symbols 1-2
 1.3.2 Warnings .. 1-2
 1.3.3 Cautions .. 1-4
1.4 Obtaining Technical Assistance 1-5
 1.4.1 Technical Services 1-5
 1.4.2 On-Screen Help 1-5
1.5 Related Documents 1-6
1.6 Warranty Information 1-6

2 Product Overview

2.1 Overview ... 2-1
2.2 Product Description 2-1
2.3 Indications for Use 2-1
2.4 List of Components 2-2
2.5 Synopsis .. 2-2
2.6 Product Views 2-3
 2.6.1 Front Panel 2-3
 2.6.2 Monitoring Screen 2-4
 2.6.3 Rear Panel 2-6
2.7 Labeling Symbology 2-7
2.8 User Interface 2-8
 2.8.1 Monitoring Screen Selection 2-8
 2.8.2 Monitoring Values 2-11
 2.8.3 Visual Alarms 2-12
 2.8.4 Audible Alarms and Indicators 2-13
2.9 Unique Parameters 2-14
 2.9.1 SatSeconds™ Alarm Management Parameter 2-14
 2.9.2 OxiMax SPD™ Alert Parameter 2-15
 2.9.3 Pulse Rate Delay Alarm Management Parameter 2-15
 2.9.4 Additional Parameters 2-16
3 Installation

3.1 Overview .. 3-1
3.2 Safety Reminders ... 3-1
3.3 Product Setup ... 3-3
 3.3.1 Mounting Options and Transport Considerations 3-3
 3.3.2 Connection to an AC Power Source 3-4
 3.3.3 Battery Insertion 3-5
 3.3.4 Battery Charge ... 3-5
 3.3.5 Battery Power Usage 3-6
3.4 Connection to Nellcor™ Sensors 3-7

4 Operation

4.1 Overview .. 4-1
4.2 Power ... 4-1
 4.2.1 AC Power ... 4-2
 4.2.2 Battery Power ... 4-2
 4.2.3 Power Up ... 4-4
 4.2.4 System Resets ... 4-6
 4.2.5 Automatic Shutdown and Power Off 4-6
4.3 Nellcor™ Sensor Usage 4-7
 4.3.1 Sensor Detection 4-7
 4.3.2 Sensor Detection Failure 4-8
4.4 User Interface ... 4-9
 4.4.1 Default Monitoring Screen and Trend Data 4-9
 4.4.2 Status Messages and Alarms in the Monitoring Status Field 4-10
 4.4.3 Introduction to Menu Options 4-10
 4.4.4 Menu Option Selection 4-12
 4.4.5 Monitoring Screen Layout Options 4-41
 4.4.6 Alarm Management and Status Messages 4-50
 4.4.7 Audible Alarm Management 4-53
 4.4.8 Visual Alarm Management 4-55
 4.4.9 HELP Option .. 4-56

5 Trend Data Access

5.1 Overview .. 5-1
5.2 Trend Data Management 5-1
 5.2.1 Trend Data Basics 5-1
 5.2.2 Real-time Trend Data 5-2
 5.2.3 Historical Trend Data 5-7
5.3 Data Port Connectivity ... 5-10
 5.3.1 Overview ... 5-10
 5.3.2 Typical Equipment Used for Connectivity 5-11
 5.3.3 Data Port Configuration Information 5-12
 5.3.4 Data Port Communications 5-18
5.4 Using the Nurse Call Interface 5-18
 5.4.1 Nurse Call Feature 5-18
 5.4.2 Setting Nurse Call RS-232 Polarity 5-19

6 Performance Considerations

6.1 Overview .. 6-1
6.2 Oximetry Considerations 6-1
 6.2.1 Monitoring System Constraints 6-1
 6.2.2 Nellcor™ Sensor Performance Considerations 6-1
6.3 Patient Conditions ... 6-4
6.4 Reducing EMI (Electromagnetic Interference) 6-5

7 Product Maintenance

7.1 Overview .. 7-1
7.2 Cleaning .. 7-1
7.3 Periodic Safety Checks 7-1
7.4 Service and Upgrades 7-2
7.5 Storage ... 7-2
 7.5.1 Monitoring System Transport and Storage 7-2
 7.5.2 Removed Battery Storage 7-2

8 Troubleshooting

8.1 Overview .. 8-1
8.2 System Condition Categories 8-1
8.3 User Prompts and Messages 8-4
8.4 Alarms and Error Conditions 8-4
 8.4.1 Alarms .. 8-4
 8.4.2 Correctable Error Conditions 8-9
8.5 Power Failure Issues .. 8-11
8.6 Monitoring Screen Issues 8-12
8.7 Alarm Issues .. 8-13
8.8 Communication Issues 8-14
8.9 Operational Performance Issues 8-14
8.10 Hardware Issues .. 8-15
8.11 System Errors and Software Issues 8-16
8.12 Non-Correctable Failures 8-16
8.13 Product Return .. 8-17

9 Accessories

9.1 Overview .. 9-1
9.2 Nellcor™ Sensors .. 9-1
 9.2.1 Selecting a Nellcor™ Sensor 9-1
 9.2.2 Nellcor™ Sensor Features 9-4
 9.2.3 Biocompatibility Testing 9-4
9.3 Optional Equipment 9-4

10 Theory of Operations

10.1 Overview ... 10-1
10.2 Theoretical Principles 10-1
10.3 Automatic Calibration 10-2
10.4 Functional Testers and Patient Simulators 10-2
10.5 Unique Technologies 10-3
 10.5.1 Functional versus Fractional Saturation 10-3
 10.5.2 Measured versus Calculated Saturation 10-4
 10.5.3 Data Update Period, Data Averaging, and Signal Processing 10-4
10.6 System Features .. 10-5
 10.6.1 Nellcor™ Sensor Technology 10-5
 10.6.2 SatSeconds™ Alarm Management Parameter 10-6
 10.6.3 OxiMax SPD™ Alert Parameter 10-10
 10.6.4 Pulse Rate Delay Alarm Management Parameter . 10-12

11 Product Specifications

11.1 Overview ... 11-1
11.2 Physical Characteristics 11-1
11.3 Electrical Requirements 11-1
 11.3.1 Power .. 11-1
 11.3.2 Battery ... 11-2
 11.3.3 Rating of Nurse Call Relay 11-2
11.4 Environmental Conditions 11-3
 11.4.1 Operating .. 11-3
 11.4.2 Transport and Storage 11-3
11.5 Sensor Accuracy and Ranges .. 11-4
11.6 Sound Pressure ... 11-5
11.7 Product Compliance .. 11-6
11.8 Manufacturer's Declaration and Guidance 11-6
 11.8.1 Electromagnetic Compatibility (EMC) 11-6
 11.8.2 Ground Integrity .. 11-12
 11.8.3 Safety Tests .. 11-12
11.9 Essential Performance .. 11-14

A Clinical Studies (REF PMMOD30N)
 A.1 Overview ... A-1
 A.2 Methodology ... A-1
 A.2.1 Hypoxia Methodology (Accuracy, Low Saturation, and Motion Studies) .. A-1
 A.2.2 Low Saturation Methodology (Low Saturation Study Only) .. A-2
 A.2.3 Motion Methodology (Motion Study Only) .. A-2
 A.3 Results ... A-3
 A.3.1 Accuracy Results (No Motion) A-3
 A.3.2 Accuracy Results (Low Saturation) A-24
 A.3.3 Accuracy Results (Motion) ... A-29
 A.4 Conclusion .. A-39
 A.4.1 No Motion .. A-39
 A.4.2 Motion .. A-39

B Clinical Studies (REF GR101777)
 B.1 Overview ... B-1
 B.2 Methods ... B-1
 B.3 Study Population ... B-2
 B.4 Study Results ... B-2
 B.5 Adverse Events or Deviations ... B-4
 B.6 Conclusion .. B-4
Page Left Intentionally Blank
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Front Panel</td>
<td>2-3</td>
</tr>
<tr>
<td>2-2</td>
<td>Sample Monitoring Screen Elements</td>
<td>2-4</td>
</tr>
<tr>
<td>2-3</td>
<td>Rear Panel</td>
<td>2-6</td>
</tr>
<tr>
<td>2-4</td>
<td>Pleth View</td>
<td>2-9</td>
</tr>
<tr>
<td>2-5</td>
<td>Trend View</td>
<td>2-9</td>
</tr>
<tr>
<td>2-6</td>
<td>Combined Pleth and Trend View</td>
<td>2-10</td>
</tr>
<tr>
<td>2-7</td>
<td>Numbers Only (Blip) View</td>
<td>2-11</td>
</tr>
<tr>
<td>3-1</td>
<td>Sensor Cable Insertion into Interface Cable</td>
<td>3-8</td>
</tr>
<tr>
<td>4-1</td>
<td>Sample POST Splash Screen</td>
<td>4-6</td>
</tr>
<tr>
<td>4-2</td>
<td>Sensor Type Message</td>
<td>4-8</td>
</tr>
<tr>
<td>4-3</td>
<td>Default Monitoring Screen Layout</td>
<td>4-9</td>
</tr>
<tr>
<td>4-4</td>
<td>ALARM LIMITS Menu Options</td>
<td>4-17</td>
</tr>
<tr>
<td>4-5</td>
<td>Adjusting Alarm Limit Settings</td>
<td>4-19</td>
</tr>
<tr>
<td>4-6</td>
<td>Setting SatSeconds Alarm Limits</td>
<td>4-20</td>
</tr>
<tr>
<td>4-7</td>
<td>Setting SPD Sensitivity</td>
<td>4-23</td>
</tr>
<tr>
<td>4-8</td>
<td>Setting Pulse Rate Delay</td>
<td>4-24</td>
</tr>
<tr>
<td>4-9</td>
<td>MONITORING HISTORY Menu Options</td>
<td>4-25</td>
</tr>
<tr>
<td>4-10</td>
<td>MONITORING HISTORY - TRENDS</td>
<td>4-26</td>
</tr>
<tr>
<td>4-11</td>
<td>Historical Trend Data Pop-Up</td>
<td>4-26</td>
</tr>
<tr>
<td>4-12</td>
<td>MONITORING HISTORY - CLINICAL LOG</td>
<td>4-27</td>
</tr>
<tr>
<td>4-13</td>
<td>MONITORING HISTORY - HISTOGRAM</td>
<td>4-28</td>
</tr>
<tr>
<td>4-14</td>
<td>MARK EVENT Menu Options</td>
<td>4-29</td>
</tr>
<tr>
<td>4-15</td>
<td>Marked Event and Pop-up in Trend View</td>
<td>4-30</td>
</tr>
<tr>
<td>4-16</td>
<td>SOUND SETTINGS Menu Options</td>
<td>4-31</td>
</tr>
<tr>
<td>4-17</td>
<td>MONITORING SETTINGS Menu Options</td>
<td>4-32</td>
</tr>
<tr>
<td>4-18</td>
<td>Selecting Adult and Pediatric vs. Neonate Alarm Mode</td>
<td>4-34</td>
</tr>
<tr>
<td>4-19</td>
<td>Response Mode Selection Screen</td>
<td>4-35</td>
</tr>
<tr>
<td>4-20</td>
<td>Time and Date Selection Screen</td>
<td>4-36</td>
</tr>
<tr>
<td>4-21</td>
<td>Alarm Silence Duration Screen</td>
<td>4-37</td>
</tr>
<tr>
<td>4-22</td>
<td>CONNECTIVITY SETTINGS Menu Options</td>
<td>4-39</td>
</tr>
<tr>
<td>4-23</td>
<td>Monitoring Layout Options</td>
<td>4-41</td>
</tr>
<tr>
<td>4-24</td>
<td>Pleth Only View</td>
<td>4-42</td>
</tr>
<tr>
<td>4-25</td>
<td>Real-time Trend Only View</td>
<td>4-44</td>
</tr>
<tr>
<td>4-26</td>
<td>Select Trends Options</td>
<td>4-45</td>
</tr>
<tr>
<td>4-27</td>
<td>SpO2 and Pulse Rate Trend Data, 1 Hour</td>
<td>4-45</td>
</tr>
<tr>
<td>4-28</td>
<td>SpO2 Only Trend Data, 1 Hour</td>
<td>4-46</td>
</tr>
<tr>
<td>4-29</td>
<td>Pulse Only Trend Data, 1 Hour</td>
<td>4-46</td>
</tr>
</tbody>
</table>
Figure 4-30. Combination Pleth and Trend View ..4-48
Figure 4-31. Numbers Only (Blip) View ..4-49
Figure 4-32. Sample user prompt message: READY ...4-51
Figure 4-33. Sample status message: MONITORING4-51
Figure 4-34. High priority alarm: BATTERY CRITICALLY LOW4-51
Figure 4-35. Medium priority alarm: SpO2 LOW ..4-51
Figure 4-36. Low priority alarm: SENSOR OFF ...4-52
Figure 4-37. Sample Alarm Limit Violations ...4-53
Figure 5-1. Graphical Trend Data Components (Historical Trend Data Shown as Example) ..5-3
Figure 5-2. Sample Real-Time Data Output ...5-4
Figure 5-3. Sample Historical Trend Data Export ..5-7
Figure 5-4. DB-15 Pin Layout ...5-13
Figure 5-5. RJ-45 Receptacle ...5-15
Figure 5-6. RJ-45 Pin Layout ...5-15
Figure 5-7. USB Pin Layout ..5-16
Figure 5-8. Nurse Call Polarity Screen ...5-20
Figure 8-1. Ready Prompt ..8-2
Figure 8-2. Sensor Disconnected Message and Help Screen8-2
Figure 8-3. Stacked Alarm/Alerts ..8-3
Figure 8-4. Sample Speaker Failure Message ..8-9
Figure 8-5. Sample System Error Screen ...8-16
Figure 10-1. Oxyhemoglobin Dissociation Curve ..10-4
Figure 10-2. Series of SpO2 Events ...10-6
Figure 10-3. First SpO2 Event: No SatSeconds Alarm10-7
Figure 10-4. Second SpO2 Event: No SatSeconds Alarm10-8
Figure 10-5. Third SpO2 Event: Triggers SatSeconds Alarm10-9
Figure 10-6. Clinically Significant Desaturation Patterns10-10
Figure A-1. Modified Bland-Altman for SpO2 (All Data - No Motion): SaO2 vs. (SpO2 - SaO2) ..A-5
Figure A-2. Modified Bland-Altman for Pulse Rate (All Data - No Motion): ECG HR vs. (Pulse Rate - ECG HR) ..A-6
Figure A-3. Modified Bland-Altman for SpO2 - MAXA Sensor (No Motion): SaO2 vs. (SpO2 - SaO2) ..A-7
Figure A-4. Modified Bland-Altman for SpO2 - MAXN Sensor (No Motion): SaO2 vs. (SpO2 - SaO2) ..A-8
Figure A-5. Modified Bland-Altman for SpO2 - MAXFAST Sensor (No Motion): SaO2 vs. (SpO2 - SaO2) ..A-9
Figure A-6. Modified Bland-Altman for SpO2 - SC-A Sensor (No Motion): SaO2 vs. (SpO2 - SaO2) ..A-10
Figure A-7. Modified Bland-Altman for SpO₂ - DS100A Sensor (No Motion):
SaO₂ vs. (SpO₂ - SaO₂) ... A-11
Figure A-8. Modified Bland-Altman for SpO₂ - OxiCliq-A Sensor (No Motion):
SaO₂ vs. (SpO₂ - SaO₂) ... A-12
Figure A-9. Modified Bland-Altman for SpO₂ - D-YSE Sensor (No Motion):
SaO₂ vs. (SpO₂ - SaO₂) ... A-13
Figure A-10. Modified Bland-Altman for Pulse Rate - MAXA Sensor
(No Motion): ECG HR vs. (Pulse Rate - ECG HR) A-14
Figure A-11. Modified Bland-Altman for Pulse Rate - MAXN Sensor
(No Motion): ECG HR vs. (Pulse Rate - ECG HR) A-15
Figure A-12. Modified Bland-Altman for Pulse Rate - MAXFAST Sensor
(No Motion): ECG HR vs. (Pulse Rate - ECG HR) A-16
Figure A-13. Modified Bland-Altman for Pulse Rate - SC-A Sensor (No Motion):
ECG HR vs. (Pulse Rate - ECG HR) .. A-17
Figure A-14. Modified Bland-Altman for Pulse Rate - DS100A Sensor
(No Motion): ECG HR vs. (Pulse Rate - ECG HR) A-18
Figure A-15. Modified Bland-Altman for Pulse Rate - OxiCliq-A Sensor
(No Motion): ECG HR vs. (Pulse Rate - ECG HR) A-19
Figure A-16. Modified Bland-Altman for Pulse Rate - D-YSE Sensor (No Motion):
ECG HR vs. (Pulse Rate - ECG HR) .. A-20
Figure A-17. Correlation Plot for SpO₂ (All Data - No Motion):
SaO₂ vs. SpO₂ ... A-21
Figure A-18. Correlation Plot for Pulse Rate (All Data - No Motion):
ECG HR vs. Pulse Rate .. A-22
Figure A-19. Modified Bland-Altman for SpO₂ (All Data - Low Saturation):
SaO₂ vs. (SpO₂ - SaO₂) ... A-25
Figure A-20. Modified Bland-Altman for Pulse Rate (All Data - Low Saturation):
ECG HR vs. (Pulse Rate - ECG HR) .. A-26
Figure A-21. Correlation Plot for SpO₂ (All Data - Low Saturation):
SaO₂ vs. SpO₂ ... A-27
Figure A-22. Correlation Plot for Pulse Rate (All Data - Low Saturation):
ECG HR vs. Pulse Rate .. A-28
Figure A-23. Modified Bland-Altman for SpO₂ (All Data - Motion):
SaO₂ vs. (SpO₂ - SaO₂) ... A-30
Figure A-24. Modified Bland-Altman for Pulse Rate (All Data - Motion):
ECG HR vs. (Pulse Rate - ECG HR) .. A-31
Figure A-25. Modified Bland-Altman for SpO₂ - MAXA Sensor (Motion):
SaO₂ vs. (SpO₂ - SaO₂) ... A-32
Figure A-26. Modified Bland-Altman for SpO₂ - MAXN Sensor (Motion):
SaO₂ vs. (SpO₂ - SaO₂) ... A-33
Figure A-27. Modified Bland-Altman for Pulse Rate - MAXA Sensor (Motion):
ECG HR vs. (Pulse Rate - ECG HR) ... A-34
Figure A-28. Modified Bland-Altman for Pulse Rate - MAXN Sensor (Motion):
ECG HR vs. (Pulse Rate - ECG HR) ... A-35
Figure A-29. Correlation Plot for SpO₂ (All Data - Motion):
SaO₂ vs. SpO₂ .. A-36
Figure A-30. Correlation Plot for Pulse Rate (All Data - Motion):
ECG HR vs. Pulse Rate .. A-37
Figure B-1. Modified Bland-Altman Plot ... B-3
List of Tables

Table 1-1. Safety Symbol Definitions ... 1-2
Table 2-1. Typical Packing List .. 2-2
Table 2-2. Labeling Symbols and Descriptions .. 2-7
Table 2-3. Visual Alarm Properties ... 2-12
Table 2-4. Audible Indicator Functions ... 2-14
Table 4-1. Battery Power Status .. 4-3
Table 4-2. Menu icons and primary user interface features 4-11
Table 4-3. Factory Default Settings .. 4-14
Table 4-4. Serial Connectivity Protocols .. 4-39
Table 5-1. Status Code Definitions ... 5-6
Table 5-2. Historical Trend Data Output Definitions .. 5-8
Table 5-3. Trend Data Output - Encoded Alarm Values 5-9
Table 5-4. Input and Output Configuration Options .. 5-11
Table 5-5. Sample Equipment Types ... 5-11
Table 5-6. DB-15 Signal Pinouts .. 5-13
Table 5-7. RJ-45 Signal Pinouts ... 5-16
Table 5-8. USB Signal Pinouts ... 5-17
Table 5-9. Nurse Call Relay Pin States ... 5-19
Table 8-1. Common User Prompts and Messages .. 8-4
Table 8-2. Initial Alarm Priority for Errors ... 8-5
Table 8-3. Common Correctable Problems and Resolutions 8-10
Table 8-4. Power Failure Issues ... 8-11
Table 8-5. Monitoring Screen Issues ... 8-12
Table 8-6. Alarm Issues .. 8-13
Table 8-7. Common Prompts and Error Messages .. 8-14
Table 8-8. Common Operational Performance Issues 8-14
Table 8-9. Common Prompts and Error Messages .. 8-15
Table 9-1. Nellcor™ Sensor Models and Patient Sizes 9-3
Table 11-1. Nellcor™ Sensor Accuracy and Ranges .. 11-4
Table 11-3. Sound Pressure in Decibels .. 11-5
Table 11-4. Frequency Band, Output Power, and Modulation Type 11-7
Table 11-5. Electromagnetic Emissions Guidelines and Compliance 11-7
Table 11-6. Electromagnetic Immunity Guidelines and Compliance 11-8
Table 11-7. Recommended Separation Distance Calculations 11-9
Table 11-8. Recommended Separation Distances ... 11-10
Table 11-9. Sensor and Cable Length ... 11-11
Table 11-10. Earth and Enclosure Leakage Current Specifications 11-12
Table A-1. SpO2 Accuracy Results (No Motion) .. A-4
Table A-2. Pulse Rate Accuracy Results (No Motion) A-4
Table A-3. RMSD of SpO2 per Decade (No Motion) A-23
Table A-4. RMSD of SpO2 per Plateau (No Motion) A-23
Table A-5. SpO2 Accuracy Results (60 to 80% SaO2) A-24
Table A-6. Pulse Rate Accuracy Results (60 to 80% SaO2) A-24
Table A-7. RMSD of SpO2 per Decade (Low Saturation) A-28
Table A-8. RMSD of SpO2 per Plateau (Low Saturation) A-28
Table A-9. SpO2 Accuracy Results During Motion A-29
Table A-10. Pulse Rate Accuracy Results During Motion A-29
Table A-11. Percent Modulation During Motion A-37
Table A-12. RMSD of SpO2 per Decade (Motion) A-38
Table A-13. RMSD of SpO2 per Plateau (Motion) A-38
Table B-1. Demographic Data .. B-2
Table B-2. SpO2 Accuracy for Nellcor™ Sensors vs. CO-oximeters B-2
1 Introduction

1.1 Overview

This manual contains information for collecting patient oxygen saturation data while operating the Nellcor™ Bedside Respiratory Patient Monitoring System. This manual applies to the following products:

- GR101704
- GR101704-RR
- PM1000N
- PM1000N-RR

1.2 Intended Audience

This manual provides information to health-care professionals acting as caregivers in a hospital or hospital-type setting for operation and maintenance of the monitoring system. Refer to the institution for any additional training or skill requirements beyond those identified here for operation and maintenance of the monitoring system. Before operating, thoroughly read this manual.
1.3 Safety Information

This section contains safety information requiring users to exercise appropriate caution while using the monitoring system.

1.3.1 Safety Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>WARNING: Warnings alert users to potential serious outcomes (death, injury, or adverse events) to the patient, user, or environment.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Caution: Cautions alert users to exercise appropriate care for safe and effective use of the product.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Note: Notes provide additional guidelines or information.</td>
</tr>
</tbody>
</table>

1.3.2 Warnings

- **WARNING:** Explosion hazard — Do not use in the presence of flammable anesthetics.
- **WARNING:** Shock hazard — Use only when connected to a grounded outlet to avoid electric shock.
- **WARNING:** Use only Covidien-approved internal batteries.
- **WARNING:** The monitoring system is not defibrillator-proof. It may remain attached to the patient during defibrillation or during use of an electrosurgical unit, however, readings may be inaccurate during use in this environment and shortly thereafter.
WARNING: Supplemental oxygen will attenuate patterns of desaturation. A patient’s respiratory compromise can be proportionally more severe before patterns appear in the saturation trend. Remain vigilant when monitoring a patient on supplemental oxygen.

WARNING: Do not silence or disable audible alarms or decrease the volume of the audible alarm if patient safety could be compromised. Do not dim or disable visual alarms if patient safety could be compromised.

WARNING: Ensure the monitoring system is clear of any obstructions that prevent awareness of visual or audible alarms. Failure to do so may result in inadvertently missing a visual alarm or an inaudible alarm tone.

WARNING: Do not use any monitoring system, sensor, cable, or connector that appears damaged. Remove any damaged equipment from service for inspection by a qualified service technician.

WARNING: Do not lift by the sensor or interface cable. The cable may disconnect, potentially dropping the monitoring system on a patient or damaging surface.

WARNING: When installing the AC power cord, ensure the cord is carefully positioned to prevent tripping and entanglement.

WARNING: Do not spray, pour, or spill any liquid on the monitoring system, its accessories, connectors, switches, or openings in the chassis, since this may cause damage to the monitoring system.
WARNING:
To ensure accurate performance and prevent device failure, do not subject to extreme moisture, such as direct exposure to rain. Such exposure may cause inaccurate performance or device failure.

WARNING:
The monitoring screen contains toxic chemicals. Do not touch a broken enclosure or monitoring screen. Physical contact with a broken enclosure or monitoring screen can result in transmission or ingestion of toxic substances.

1.3.3 Cautions

Caution:
When connecting the monitoring system to any instrument, verify proper operation before clinical use. Both the monitoring system and the instrument connected to it must utilize a grounded outlet. Any equipment connected to the data interface must be certified according to the latest IEC/EN 60950-1 standard for data-processing equipment, the latest IEC/EN 60601-1 standard for electromedical equipment, or the latest IEC/EN safety standards relevant to that equipment. All combinations of equipment must be in compliance with Requirements for Medical Electrical Systems IEC Standard 60601-1-1:2007. Anyone who connects equipment to the data interface is configuring a medical system and, therefore, is responsible for ensuring the system complies with the Requirements for Medical Electrical Systems IEC/EN Standard 60601-1-1:2007 and the electromagnetic compatibility IEC/EN Standard 60601-1-2:2007. Accuracy may degrade if it is connected to secondary I/O devices when the equipment is not connected to earth reference.

Caution:
Federal law (U.S.A.) restricts this device to sale by or on the order of a physician.
1.4 Obtaining Technical Assistance

1.4.1 Technical Services

For technical information and assistance, if unable to correct a problem while using the monitoring system, to order parts, or to order an Operator’s or Service Manual, contact Covidien or a local Covidien representative.

Covidien Technical Services: Patient Monitoring
15 Hampshire Street
Mansfield, MA 02048 USA
1.800.635.5267, 1.925.463.4635 (toll)
or contact a local Covidien representative

www.covidien.com

When calling Covidien or a local Covidien representative, have the serial number, as well as the code versions available.

To locate the serial number and code versions

1. Press MENU.
2. Press ABOUT THE MONITOR.
3. Locate the serial number under Monitor Information and code versions under Software Information.

1.4.2 On-Screen Help

The monitoring system provides users with an on-screen help system for various help topics. Reference To access on-screen help topics, p. 4-56.
1.5 Related Documents

Documentation is available online at www.covidien.com.

- **Nellcor™ Sensor Instructions for Use** — Guides sensor selection and usage. Before attaching any of the various Covidien-approved Nellcor™ sensors to the monitoring system, refer to their Instructions for Use.

- **Nellcor™ Oxygen Saturation Accuracy Specification Grid** — Provides sensor-specific guidance related to desired SpO₂ saturation accuracy measurements.

- **Nellcor™ Bedside Respiratory Patient Monitoring System Service Manual** — Provides information to qualified service technicians for use when modifying, testing, troubleshooting, repairing, and upgrading the monitoring system.

1.6 Warranty Information

To obtain information, contact Covidien or a local Covidien representative.

Covidien Technical Services: Patient Monitoring

15 Hampshire Street
Mansfield, MA 02048 USA
1.800.635.5267, 1.925.463.4635 (toll)
or contact a local Covidien representative

www.covidien.com

Purchase of this instrument confers no express or implied license under any Covidien patent to use that instrument with any sensor not manufactured or licensed by Covidien llc.
2 Product Overview

2.1 Overview

This chapter contains basic introductory information for operating the Nellcor™ Bedside Respiratory Patient Monitoring System. The monitoring system relies on unique oximetry technology and design in providing hospitals, clinicians and caregivers accurate, timely data.

2.2 Product Description

The Nellcor™ Bedside Respiratory Patient Monitoring System provides continuous noninvasive monitoring of functional oxygen saturation of arterial hemoglobin SpO₂ and pulse rate.

2.3 Indications for Use

The Nellcor™ Bedside Respiratory Patient Monitoring System is a portable pulse oximeter intended for prescription use only as a continuous non-invasive monitor of arterial oxygen saturation (SpO₂) and pulse rate of adult, pediatric, and neonatal patients during both no motion and motion conditions, and for patients who are well or poorly perfused. The monitoring system is intended for use in hospitals, hospital-type facilities, and during intra-hospital transport. The OxiMax SPD™ Alert (SPD) feature is intended only for facility-use care of adults to detect patterns of desaturation indicative of repetitive reductions in airflow through the upper airway and into the lungs.

Note:

- Hospital use typically covers such areas as general care floors (GCFs), operating rooms, special procedure areas, intensive and critical care areas within the hospital and in hospital-type facilities. Hospital-type facilities include physician office-based facilities, sleep labs, skilled nursing facilities, surgicenters, and sub-acute centers.

- Intra-hospital transport includes transport of a patient within the hospital or hospital-type facility.
Use with any particular patient requires the selection of an appropriate Nellcor™ sensor. Reference *Nellcor™ Sensor Usage*, p. 4-7.

Monitoring system users can access trend information, change alarm limits, adjust the internal time clock, select the communications protocol, and choose alternative interface languages. Reference *User Interface*, p. 4-9.

The monitoring system operates on AC power or on an internal battery.

2.4 List of Components

The typical monitoring system carton ships with the following contents.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nellcor™ Bedside Respiratory Patient Monitoring System</td>
</tr>
<tr>
<td>1</td>
<td>DOC-10 interface cable</td>
</tr>
<tr>
<td>1</td>
<td>Operator’s Manual (applicable to country of sale) and/or compact disc</td>
</tr>
<tr>
<td>1</td>
<td>Hospital-grade power cord (applicable to country of sale)</td>
</tr>
</tbody>
</table>

2.5 Synopsis

Caregivers may use the monitoring system by connecting it to an interface cable and a Nellcor™ sensor, then attaching the recommended sensor to a patient. When the monitoring system detects a valid pulse, it enters monitoring mode and displays patient parameters.

The movement of the blip bar or the plethysmographic waveform and the flashing heart icon are *visual indicators* of real-time data. The pulse beep tone is an *audible indicator* of the real-time patient data.

If the monitoring system detects an alarm condition, it provides both visual and audible alarms. Reference *Visual Alarms*, p. 2-12, for visual alarm condition behaviors. Reference *Audible Alarms and Indicators*, p. 2-13, for audible alarm condition behaviors.

After monitoring is complete, remove the recommended sensor from the patient.
2.6 Product Views

2.6.1 Front Panel

Figure 2-1. Front Panel

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power on key</td>
</tr>
<tr>
<td>2</td>
<td>AC indicator</td>
</tr>
<tr>
<td>3</td>
<td>Battery condition indicator</td>
</tr>
<tr>
<td>4</td>
<td>Speaker</td>
</tr>
<tr>
<td>5</td>
<td>Sensor port</td>
</tr>
<tr>
<td>6</td>
<td>Type BF</td>
</tr>
<tr>
<td>7</td>
<td>Data port</td>
</tr>
<tr>
<td>8</td>
<td>Ethernet port</td>
</tr>
<tr>
<td>9</td>
<td>Universal Serial Bus port</td>
</tr>
<tr>
<td>10</td>
<td>Parameter module (front)</td>
</tr>
</tbody>
</table>

1. Power on key: Powers on and off
2. AC indicator: Indicates connection to alternating current power source
3. Battery condition indicator: Indicates battery is charging
4. Speaker: Issues audible alarms
5. Sensor port: Houses interface cable connector
6. Type BF: Indicates Type BF applied part
7. Data port: Houses DB-15 serial connector
8. Ethernet port: Houses RJ-45 Ethernet receptacle
9. Universal Serial Bus port: Houses USB connector
10. Parameter module (front): Offers monitoring system modular customization
2.6.2 Monitoring Screen

Note:
The following screen is a composite of elements that can appear during monitoring system use. It does not represent an actual clinical scenario.

Figure 2-2. Sample Monitoring Screen Elements

1. **Monitor status field**
 - Contains patient information in various forms.

2. **Alarm status field**
 - Contains prioritized alarms or user prompts.

3. **Trend data type button**
 - Contains types of graphed trend data included.

4. **Plethysmographic waveform**
 - This non-normalized waveform uses real-time sensor signals, reflecting relative pulsatile strength.

5. **Trend data time scale**
 - Contains time period for graphed trend data. Press "-" or "+" to change the time period.

6. **Battery fuel gauge**
 - Indicates remaining battery charge and lists percentage of total charge remaining. Fill color indicates acceptable, low, or at a critical state of charge. Lightning bolt indicates monitoring system is connected to AC and charging if not fully charged.

7. **Fast response mode icon**
 - Indicates algorithm response to SpO2 data changes in two to four seconds.
| 8 | --- | Date and time field | Reflects current date and time. |
| 9 | Baby icon (Neonate Mode) | Indicates alarm limits are set to neonate limit values, not set to adult limit values. |
| 10 | Audio alarm paused/off icon | Yellow alarm silenced icon indicates Alarm Audio Paused. Red icon indicates Alarm Audio OFF. |
| 11 | SatSeconds™ icon and limit value | Fills in the clockwise direction with saturation readings outside limits and empties counterclockwise when within SpO2 limits. When completely full, it alarms. |
| 12 | SpO2 upper and lower limits | Displays current upper and lower alarm limit settings to the right of the dynamic SpO2 value. |
| 14 | SPD icon & sensitivity value | Fills from bottom to top as patterns of desaturation in the SpO2 trend become more severe and empties from top to bottom as the patterns become less severe. If the icon fills completely, an alarm sounds. |
| 15 | Pulse rate (BPM) upper and lower limits | Displays current upper and lower alarm limit settings to the right of the dynamic pulse rate value. |
| 16 | Pulse rate (BPM) real-time value | Indicates pulse rate in beats per minute. Green pulse rate values zero during loss-of-pulse conditions. |
| 17 | Lock bar icon | Provides option of locking out all response to monitoring screen contact except the lock bar. |
| 18 | Interference indicator | Lights when incoming signal is inadequate or degraded. Reference Performance Considerations, p. 6-1. |
| 19 | Pulse search indicator | Flashes during pulse search or lights continuously during loss-of-pulse conditions. |
| 20 | Help information icon | Provides access to on-screen help. Press for descriptions and suggestions. |
| 21 | Trend data graph | Contains patient trend data dictated by trend data type and trend data time scale. |
| 22 | Menu selection icon | Provides access to menus. Press to alter alarm limits, patient trend data history, screen selections, connectivity settings, as well as audio and visual control. |
23 Silence alarm icon

- Normally a white icon on grey background. Lights continuously as a yellow icon on grey background with silenced audible alarm, and as a disabled grey icon on grey background when audible alarms are disabled. Silence duration (not shown) counts down on screen.

- Pulse amplitude (blip bar) (Not shown in figure.) Indicates pulse beat and the relative (non-normalized) pulse amplitude in numbers only view. As the detected pulse becomes stronger, more bars light with each pulse.

- Pulse beat (heart) icon (Not shown in figure.) Flashes to indicate each real-time pulse beat.

2.6.3 Rear Panel

Figure 2-3. Rear Panel

1 Equipotential terminal (Ground)
2 AC power connector
3 Fuse drawer
4 Carrying handle
5 Screw hole for adapter plate (4x)
6 Internal battery access
7 Parameter module (rear)
2.7 Labeling Symbology

Table 2-2. Labeling Symbols and Descriptions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Must consult instructions for use</td>
<td></td>
<td>Date of manufacture</td>
</tr>
<tr>
<td></td>
<td>Caution, consult accompanying documents</td>
<td></td>
<td>Proper waste disposal for electrical and electronic equipment</td>
</tr>
<tr>
<td></td>
<td>Equipotential terminal (ground)</td>
<td></td>
<td>Type BF applied part - Not defibrillator proof</td>
</tr>
<tr>
<td></td>
<td>Fuse replacement: 1.5 amp</td>
<td></td>
<td>Federal Communications Commission: Compliance with FCC</td>
</tr>
<tr>
<td></td>
<td>Protection against fluid ingress</td>
<td></td>
<td>This side up</td>
</tr>
<tr>
<td></td>
<td>Atmospheric pressure limitations</td>
<td></td>
<td>Keep dry</td>
</tr>
<tr>
<td></td>
<td>Temperature limitations</td>
<td></td>
<td>Fragile</td>
</tr>
<tr>
<td></td>
<td>Humidity limitations</td>
<td></td>
<td>Do not use during magnetic resonance imaging</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic interference may occur in the vicinity of equipment marked with this symbol</td>
<td></td>
<td>Catalog number</td>
</tr>
<tr>
<td></td>
<td>European Community (EC) authorized representative</td>
<td></td>
<td>CSA – Canadian Standards Association certification mark</td>
</tr>
<tr>
<td></td>
<td>CE – Conformité Européenne authorization mark</td>
<td></td>
<td>Prescription only</td>
</tr>
<tr>
<td>0123</td>
<td>0123 – TÜV SÜD Product Service GmbH (notified body)</td>
<td></td>
<td>Consult instructions for use</td>
</tr>
<tr>
<td></td>
<td>Australian wireless compliance mark</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.8 User Interface

2.8.1 Monitoring Screen Selection

Screen Layout Introduction

Users receive monitoring system information via the monitoring screen. Users may choose to adjust the monitoring screen layout as needed. Reference Monitoring Screen Layout Options, p. 4-41. Institutions may specify an alternate default. Institutional default settings require changes to the available options in Service Mode by a qualified service technician.

Select the view that best suits the user, the location, and the situation. Users should ensure optimal visibility and remain within audible range or engage a remote monitoring system. Reference Nurse Call Feature, p. 5-18. The factory default setting is the plethysmographic (pleth) view.

WARNING:
Ensure the monitoring screen is clear of any obstructions. Failure to do so may reduce effective interpretation of alarms, messages, and user prompts.

Caution:
Verify the movement of the blip bar, plethysmographic waveform, or flashing heart icon before accepting any monitoring system data as a current measurement.

Note:
Prior to relocating or transporting the monitoring system, lock the monitoring screen by pressing the icon on the lock bar until it locks. This prevents any unintentional alteration. Once it is safe for further interaction with the monitoring screen, press the icon on the lock bar until it unlocks and proceed. Reference To lock the monitoring screen, p. 4-10.
Plethysmographic (Pleth) View

Figure 2-4. Pleth View

Use this view for visually monitoring the plethysmographic (pleth) waveform. Plethysmographic waveforms with peak to peak amplitudes less than ten pulse amplitude units (PAUs) are associated to one another. Each time the monitoring system detects a pulse, the heart icon in the PR field flashes. Reference Monitoring Screen Layout Options, p. 4-41.

Trend View

Figure 2-5. Trend View
Use this view for visually monitoring real-time trends. The trend data plots automatically update as monitoring system calculates each new trend point, where the interval between calculations is based on the time scale selected. The real-time trend monitoring screen includes SpO2 and/or pulse rate trend data plots, current measured SpO2 and pulse rates. Each time the monitoring system detects a pulse, the heart icon in the PR field flashes. Reference *Monitoring Screen Layout Options*, p. 4-41.

Combined View (Pleth and Trend)

Figure 2-6. Combined Pleth and Trend View

![Combined Pleth and Trend View](POX_20204_A)

Use this view for simultaneously monitoring both plethysmographic waveform and real-time trends. Reference *Plethysmographic (Pleth) View*, p. 2-9, for details on the pleth portion of the screen. Reference *Trend View*, p. 2-9, for details on the trend portion of the screen. Each time the monitoring system detects a pulse, the heart icon in the PR field flashes. Reference *Monitoring Screen Layout Options*, p. 4-41.
Numbers Only (Blip) View

Figure 2-7. Numbers Only (Blip) View

Use this view for visually monitoring the blip bar. The blip view includes a pulse amplitude blip bar, current measured SpO2 and pulse rate, current upper and lower SpO2 and pulse rate limits. Each time the monitoring system detects a pulse, the blip bar moves. Reference *Monitoring Screen Layout Options*, p. 4-41.

2.8.2 Monitoring Values

WARNING:
Failure to cover the sensor site with opaque material when operating under high ambient light conditions may result in inaccurate measurements.

The monitoring system continuously assesses the relative strength of the signal while monitoring patient SpO2 and pulse rate. Front panel values reflect the data derived from the patient.

The algorithm automatically extends the amount of data required for measuring SpO2 and pulse rate depending on measurement conditions.

1. **Normal conditions** — During normal measurement conditions, averaging time is six to seven seconds, or approximately three seconds in Fast Mode.

2. **Brief abnormal conditions** — During conditions such as those caused by low perfusion, interference (e.g., external interference such as ambient light or patient movement), or a combination of these, the monitoring system automatically
extends the amount of data required beyond seven seconds. If the resulting
dynamic averaging time exceeds 20 seconds, the pulse search indicator lights and
remains solid, while SpO2 and pulse rates update every second. If the data update
period for SpO2 and/or pulse rate exceeds 25 seconds, a low-priority Extended
Update alarm also appears.

3. **More severe conditions** — As these conditions extend, the required amount of
data continues to increase. If the dynamic averaging time reaches 40 seconds,
several things occur.

 - The pulse search indicator flashes to denote a loss-of-pulse condition.
 - SpO2 and pulse rate zero.
 - An audible alarm sounds, unless audible alarms are disabled.

2.8.3 Visual Alarms

⚠️ **WARNING:**
The monitoring system is intended only as an adjunct in patient assessment.
It must be used in conjunction with clinical signs and symptoms.

All alarm message elements flash during an alarm condition. Reference *Status
Messages and Alarms in the Monitoring Status Field*, p. 4-10.

<table>
<thead>
<tr>
<th>Category</th>
<th>Color</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>High priority alarm</td>
<td>Red</td>
<td>Fast flash, 1.5 Hz</td>
</tr>
<tr>
<td>Medium priority alarm</td>
<td>Yellow</td>
<td>Slow flash, .5 Hz</td>
</tr>
<tr>
<td>Low priority alarm</td>
<td>Yellow</td>
<td>Steady</td>
</tr>
</tbody>
</table>

Note:
Caregivers may monitor the patient remotely. Reference *Using the Nurse Call Interface*, p. 5-18. For institutions allowing caregivers to turn off all audible alarms and minimize or disable backlight brightness, refrain from reducing both audible and visual alarms unless using a remote monitoring system. When using a remote monitoring system, caregivers should still remain vigilant, periodically assessing patients.
2.8.4 Audible Alarms and Indicators

WARNING: Pressing ALARM SILENCE will keep all but certain critical alarms from sounding for the alarm silence duration period.

WARNING: Should the caregiver silence an SPD alarm, this resets the index that tracks repetitive patterns of desaturation and silences ALL alarms.

WARNING: The monitoring system is intended only as an adjunct in patient assessment. It must be used in conjunction with clinical signs and symptoms.

Caution: If the pulse beep tone does not sound with each pulse, the pulse beep volume is turned off, the speaker is malfunctioning, or the signal is corrupt. Reset the device.

Caution: Should the caregiver fail to silence or clear a primary audible alarm within two (2) minutes, the audible alarm escalates to a more frequent interval.

Audible indicators include pitched tones and beeps. Audible alarms vary, depending on the priority of the alarm. Caregivers may choose to silence alarms by pressing ALARM SILENCE. For any alarm condition still active for more than two (2) minutes, the monitoring system will increase the urgency level of the audible alarm signal by increasing its frequency.

Note: Caregivers may monitor the patient remotely. Reference Using the Nurse Call Interface, p. 5-18. For institutions allowing caregivers to turn off all audible alarms and minimize or disable backlight brightness, refrain from reducing both audible and visual alarms unless using a remote monitoring system. When using a remote monitoring system, caregivers should still remain vigilant, periodically assessing patients.
2.9 Unique Parameters

2.9.1 SatSeconds™ Alarm Management Parameter

The monitoring system monitors the percentage of hemoglobin binding sites saturated with oxygen in the blood. With traditional alarm management, upper and lower alarm limits are set to alarm at specific SpO2 levels. When the SpO2 level fluctuates near an alarm limit, the alarm sounds each time it violates the alarm threshold. SatSeconds monitors both degree and duration of desaturation as an index of desaturation severity. Thus, the SatSeconds parameter helps distinguish clinically significant events from minor and brief desaturations that may result in nuisance alarms. Reference SatSeconds™ Alarm Management Parameter, p. 10-6, for the theory behind how the SatSeconds parameter works. Reference SatSeconds™ Alarm Management Parameter Limits, p. 4-19, for information on controlling this parameter.
The SatSeconds Safety Net

The SatSeconds “Safety Net” is for patients with saturation levels frequently falling below the limit, but not staying below the limit long enough for the SatSeconds time setting to be reached. When three or more limit violations occur within 60 seconds, an alarm sounds even if the SatSeconds time setting has not been reached.

2.9.2 OxiMax SPD™ Alert Parameter

The OxiMax SPD™ Alert (SPD) parameter detects patterns of desaturation in adults that are indicative of repetitive reductions in airflow through a patient’s upper airway into the lungs. Relative reductions in a patient’s minute ventilation over a period of time may cause a progressive drop in alveolar partial pressure of oxygen, leading to arterial desaturation. If these decreases in ventilation are repetitive, they generate distinct patterns in the saturation trend. Patterns of repetitive desaturation often develop gradually over time, increasing in severity. Detection of patterns indicates that a patient might be suffering progressively severe decrements in airflow that may increase in acuity if left untreated. Reference OxiMax SPD™ Alert Parameter, p. 10-10, for the theory behind how the OxiMax SPD™ Alert parameter works. Reference OxiMax SPD™ Alert Parameter Limits, p. 4-21, for information on controlling this parameter.

2.9.3 Pulse Rate Delay Alarm Management Parameter

The monitoring system also monitors pulse rate by determining the number of pleth waves over unit time. With traditional alarm management, upper and lower alarm limits are set for monitoring pulse rate. When pulse rates fluctuate near an alarm limit, alarms trigger with each violation. Pulse Rate Delay allows a period of threshold violation before the pulse rate alarm sounds. Thus, it distinguishes clinically significant events from minor and brief pulse rate limit violations that result in nuisance alarms.

Reference Pulse Rate Delay Alarm Management Parameter, p. 10-12, for the theory behind how the Pulse Rate Delay parameter works. Reference Pulse Rate Delay Alarm Management Parameter Limits, p. 4-24, for information on controlling this parameter.
2.9.4 Additional Parameters

The monitoring system is modular in design, so users may opt to add additional parameters from Covidien. Each parameter comes with any documentation specific to that parameter as an addendum to this manual.

To order an additional parameter from Covidien
2. Place a purchase order for the desired parameter.
3. Receive the parameter kit.
4. Follow all included instructions after reviewing all enclosed documentation. Instructions may require contacting Covidien again for an activation key and adhering the kit’s enclosed adhesive label to each monitoring system receiving the additional parameter.
3 Installation

3.1 Overview

This chapter contains information for the installation and set up of the Nellcor™ Bedside Respiratory Patient Monitoring System, prior to first-time usage by the clinician. Before operating the monitoring system, thoroughly read the Operator's Manual.

Inspect the monitoring system for mechanical and functional damage or deterioration prior to every use. Do not use if it appears damaged or does not perform as expected. Have a qualified service technician install and set up the monitoring system after performing functional tests per the Service Manual.

3.2 Safety Reminders

⚠️ WARNING:
Explosion hazard — Do not use the monitoring system in the presence of flammable anesthetics.

⚠️ WARNING:
Have a qualified service technician perform a safety and functional test prior to use in a clinical setting.

⚠️ WARNING:
To ensure patient safety, do not place the monitoring system in any position where it might tip or fall on the patient. Do not allow direct contact with the patient.

⚠️ WARNING:
As with all medical equipment, carefully route patient cabling to reduce the possibility of patient entanglement or strangulation.
WARNING:
Disconnect the monitoring system and sensor from the patient during magnetic resonance imaging (MRI) scanning. Objects containing metal can become dangerous projectiles when subjected to the strong magnetic fields created by MRI equipment. Also, induced currents could potentially cause burns.

WARNING:
To ensure accurate performance and prevent device failure, do not subject the monitoring system to extreme moisture, such as direct exposure to rain. Such exposure may cause inaccurate performance or device failure.

WARNING:
Do not connect the monitoring system to an electrical outlet controlled by a wall switch, since this increases the risk of removal of AC power to the monitoring system.

WARNING:
Use only Covidien-approved sensors and interface cables when connecting to the sensor port. Connecting any other cable or sensor influences the accuracy of sensor data, which may lead to adverse results.

WARNING:
Use only Covidien-approved interface cables with the monitoring system. Use of another interface cable will adversely impact performance. Do not attach any cable intended for computer use to the sensor port.

WARNING:
The monitoring system should not be used adjacent to or stacked with other equipment. If adjacent or stacked use is necessary, observe the monitoring system to verify normal operation in the desired configuration.

WARNING:
Ensure the monitoring system is clear of any obstructions that prevent awareness of visual or audible alarms. Failure to do so may result in inadvertently missing a visual alarm or an inaudible alarm tone.
WARNING:
Do not lift the monitoring system by the interface cable or power cord. The cable or cord may disconnect, potentially dropping the monitoring system on a patient or a damaging surface.

Note:
The monitoring system incorporates watchdog timers that reset the monitoring system in the event of software errors. Any temporary limit settings are retained in the event of a watchdog reset.

3.3 Product Setup

The monitoring system receives power either from an AC connection (80-263 VAC) or from a 7.2-volt, 11.6 ampere-hour battery. The monitoring system internal battery can be used to power the monitoring system during transport or when AC power is not available. The monitoring system communicates the transition from AC power to battery power or from battery power to AC power via the AC power or battery indicator on the front panel.

A new, fully charged battery provides approximately six hours of monitoring time under typical conditions.

3.3.1 Mounting Options and Transport Considerations

Users may choose from a variety of mounting configurations, including adapter plates, wall mounts, and pole mounts. Reference Optional Equipment, p. 9-4. Follow the installation instructions included with the mounting hardware.

Prior to intra-hospital transport, ensure the monitoring system interface is locked to avoid any inadvertent changes. Reference To lock the monitoring screen, p. 4-10.
3.3.2 Connection to an AC Power Source

WARNING:
Do not connect the monitoring system to an electrical outlet controlled by a wall switch, since this increases the risk of removal of AC power to the monitoring system.

Caution:
Use only a hospital-grade power cord.

Caution:
Ensure the monitoring system is properly grounded when operating on AC power. If uncertain whether the AC outlet is properly grounded, disconnect the monitoring system from the outlet and use battery power. Contact a qualified electrician to examine the outlet for ground connections.

Caution:
Do not block cooling vents.

Ensure the monitoring system remains connected to an AC power source when not in use so a fully charged battery remains available for use at any time.

To connect to an AC power source
1. Plug the female connector end of the power cord into the power connector on the rear of the monitoring system. Reference *Rear Panel*, p. 2-6.

2. Plug the male connector of the power cord into a properly grounded AC outlet.

3. Verify the monitoring system’s AC power indicator lights.

Note:
If the AC power indicator does not light, check the power cord, user-accessible fuses, and AC power outlet.
3.3.3 Battery Insertion

WARNING:
Use only Covidien-approved batteries installed by a qualified service technician.

The monitoring system ships with a separate internal battery. The battery must be installed prior to use in a clinical setting. Ensure a qualified service technician inserts the battery and tests the monitoring system prior to use in a clinical setting. Users should immediately, completely charge the battery prior to clinical use or temporary storage of the battery. Users should also remain vigilant when running on battery power and reconnect to AC power during a low battery state.

3.3.4 Battery Charge

WARNING:
Charge only with specified charger, according to instructions. Do not heat above 80 ºC. Do not open battery, dispose of in fire, or short circuit. It may ignite, explode, leak, or get hot, causing personal injury.

Caution:
To fully recharge a low or fully-depleted battery, connect the monitoring system to an AC power outlet. Charge the battery for at least eight hours with the monitoring system turned off or twelve hours with the monitoring system turned on. Have a qualified service technician periodically check the battery; if fewer than four bars light after fully charging the battery, the technician should replace the battery. Recharge the battery at least every three months, allowing the full charge time if it is the first recharge in several weeks.

Note:
Whenever the monitoring system is connected to AC power, the battery is charging. Excessive temperatures will cause battery cell failure. Continued excessive temperatures may trigger the thermal fuse, which permanently shuts down the battery. Should this occur, replace the battery pack.
To fully charge the battery

1. Connect the monitoring system to AC power. The monitoring system will not power up without connection to AC power when the battery charge is below 4%.

2. Verify the monitoring system is off and the AC Power/Battery Charging indicator lights. On AC power up, check the battery fuel gauge. If the gauge is empty or only partially full, the battery begins charging. The monitoring system operates on AC power while the battery is charging. When the monitoring system is fully charged, the green battery fuel gauge registers 100%. Note that when the monitoring system is connected to AC, a lightning bolt appears in the battery fuel gauge.

3. Until the battery recharges, the monitoring system displays the message, BATTERY CRITICALLY LOW and supplies the additional information: THE MONITOR’S BATTERY IS CRITICALLY LOW. THE MONITOR MAY SHUT DOWN IF AC POWER IS LOST. DO NOT DISCONNECT MONITOR FROM AC POWER SOURCE. If AC power is lost before the battery is charged past the critically low state, the monitoring system will not produce a low battery alarm for the standard CRITICALLY LOW BATTERY warning duration.

3.3.5 Battery Power Usage

WARNING:
Do not use monitoring system in a depleted battery condition.

Caution:
Should a low battery alarm sound, connect the monitoring system to an AC power source and then silence the alarm by pressing ALARM SILENCE. If the monitoring system is operated on an AC power source with a depleted battery and AC power is subsequently lost, the monitoring system will shut down immediately.

The monitoring system will operate on battery when not connected to AC power. Some usage conditions draw more power from the internal battery than others. Duration of operation depends on the battery charge status. Avoid power-intensive conditions for ideal battery usage. The following conditions will help achieve the longest battery life.

- No audible alarms sound
- No analog or serial output devices are attached to the monitoring system, including serial data, analog output, and nurse call output
- 25% monitoring screen brightness setting
Ensure the monitoring system remains connected to an AC power source when not in use so a fully charged battery remains available for use at any time. When any of the following conditions are present, the monitoring system automatically shuts down.

- The monitoring system is running on battery power and the battery capacity remaining reaches 0%.
- The monitoring system has detected an internal temperature above 67 °C or 153 °F.

3.4 Connection to Nellcor™ Sensors

WARNING:
Use only Covidien-approved sensors and interface cables when connecting to the sensor port. Connecting any other cable or sensor influences the accuracy of sensor data, which may lead to adverse results.

The top of the monitoring system screen indicates the sensor type when connecting a recommended sensor to the monitoring system or when the monitoring system completes POST with an attached sensor. Reference Selecting a Nellcor™ Sensor, p. 9-1.

Note:
Physiological conditions such as excessive patient movement, medical procedures, or external agents such as dysfunctional hemoglobin, arterial dyes, low perfusion, dark pigment, and externally applied coloring agents such as nail polish, dye, or pigmented cream may interfere with the monitoring system’s ability to detect and display measurements.

Note:
Sensor LED light emissions fall within Class 1 level, according to IEC 60825-1:2001.

To fully connect a Nellcor™ sensor

1. Firmly connect a Nellcor™ interface cable to the monitoring system’s sensor port. Reference Front Panel, p. 2-3, to identify the port.

2. Open the plastic latch at the other end of the interface cable.
3. Plug the interface cable and recommended sensor together.

4. Snap the plastic latch down over the connectors.

5. Apply the recommended sensor to the patient after reading the *Instructions for Use* accompanying the sensor.

6. When the monitoring system detects a valid pulse, it enters the monitoring mode and displays real-time patient data.

7. Detach the recommended sensor from the patient on completion of monitoring.
4 Operation

4.1 Overview

This chapter identifies methods for collecting patient oxygen saturation data while using the Nellcor™ Bedside Respiratory Patient Monitoring System. It describes menu navigation, power on/off and monitoring screen options, parameter ranges, Nellcor™ sensor attachments, and configuring default settings suitable for the specific care environment.

Schedule regular maintenance and safety checks with a qualified service technician every 24 months. In the case of mechanical or functional damage, contact Covidien or a local Covidien representative.

4.2 Power

⚠️ WARNING:
Explosion hazard — Do not use the monitoring system in the presence of flammable anesthetics.

⚠️ Caution:
Have a qualified service technician replace the internal battery every 24 months.

⚠️ Caution:
Have a qualified service technician remove and store the internal battery if users expect a significant period of disuse.

⚠️ Caution:
A normal power cycle or complete discharge of the battery results in a reset of all temporary user settings to factory or institutional default settings.
4.2.1 AC Power

When the user connects the monitoring system to an AC power source, if the internal battery requires charging, the battery condition indicator on the front panel lights until the internal battery reaches complete charge. In addition, when the monitoring system is powered on, the battery fuel gauge on the monitoring screen displays a lightning bolt indicating connection to AC.

If the user powers off the monitoring system while the internal battery is charging, the battery condition indicator remains lit and the internal fan turns on until charging completes. Reference *Connection to an AC Power Source*, p. 3-4.

4.2.2 Battery Power

Battery Status

WARNING:
Do not use monitoring system with a depleted battery or in a low voltage condition.

Reference *Battery Power Usage*, p. 3-6, for details on initial internal battery setup information.

The yellow BATTERY LOW warning flashes and a medium priority alarm sounds when approximately 14% capacity remains on the existing battery charge. The red BATTERY CRITICALLY LOW warning flashes and a high priority alarm sounds when approximately 4% capacity remains on the existing battery charge. The battery will drain completely and the monitoring system will shut down if not connected to AC power during a critically low battery condition. Reference *Battery Power Status*, p. 4-3, for a description of the low and critical battery conditions.

To cancel a visual or audible battery condition alarm, connect the monitoring system to an AC power source. The low battery warning status remains as long as the battery is in a low voltage condition or until the caregiver presses DISMISS ALARM for the low battery alarm message.
Battery Fuel Gauge

⚠️ WARNING:
Do not use monitoring system with a depleted battery or in a low voltage condition.

⚠️ Caution:
Should a low battery alarm sound, connect the monitoring system to an AC power source and then silence the alarm by pressing ALARM SILENCE. If the monitoring system is operated on an AC power source with a depleted battery and AC power is subsequently lost, the monitoring system will shut down immediately.

The monitoring system runs on an internal battery when not connected to an AC power source. A battery fuel gauge displays the remaining battery power.

When connected to AC power, the battery fuel gauge displays a lightning bolt while charging and at full charge.

Reference *Connection to an AC Power Source*, p. 3-4. Reference *Battery Power Usage*, p. 3-6.

⚠️ Note:
The battery is recyclable. Do not dispose of the battery by placing it in the regular trash. Dispose of the battery in accordance with local guidelines and regulations or contact Covidien to arrange for disposal.

⚠️ Note:
As the battery is used and recharged over time, the amount of time between the onset of low battery alarms and the monitoring system shut-off may become shorter.

| Table 4-1. Battery Power Status1 |
|---------------------|-----------------|
| **Message** | **Color** | **Power Charge Status** |
| None | Green | Normal Status — Indicates 15-100% (approximately 15 minutes to 6 hours) battery capacity remains. |
| BATTERY LOW | Yellow | Low Status — Indicates 5-14% (approximately 15 minutes) battery capacity remains. |
| BATTERY CRITICALLY LOW | Red | Critical Status — Indicates 1-4% (approximately 5 minutes) battery capacity remains. |

1. The levels listed are based on a new battery. Continued battery charge and discharge eventually reduces capacity. For example, a battery two years old may provide only 75% of the capacity of a new battery.
4.2.3 Power Up

Power Prerequisites

⚠️ Caution:
If any pixel in the monitoring screen does not light at power up, do not use the monitoring system. Instead, contact a qualified service technician, Covidien, or a local Covidien representative.

⚠️ Caution:
During POST (immediately after power-up), confirm that all pixels in the monitoring screen turn on and the monitoring system speaker sounds a sequence of three ascending tones. After the POST process completes, confirm that a single one-second tone sounds.

Before using the monitoring system in a clinical setting, ensure the monitoring system is safe and working properly. Verify proper working condition at each power up by following the directions for powering up the monitoring system.

To do so, carefully view the splash screen during power on. Verify there are no black gaps on the monitoring screen during power-on self-test (POST) or when every pixel on the screen is completely lit. Should users observe any black gaps or unlit pixels, do not use the monitoring system before having the monitoring system serviced.

Power-on Self-Test (POST)

⚠️ WARNING:
Have a qualified service technician perform a safety and functional test prior to use in a clinical setting.

⚠️ WARNING:
Ensure the monitoring system is clear of any obstructions that prevent awareness of visual or audible alarms. Failure to do so may result in inadvertently missing a visual alarm or an inaudible alarm tone.

⚠️ WARNING:
If the power-on self-test (POST) pass tone does not sound, do not use the monitoring system. Instead, contact Covidien or a local Covidien representative.
WARNING:
Power-up performance tests verify both power-on self-test (POST) and power-on defaults and alarm range limits. Reference *Factory Default Alarm Limit Settings and Parameters*, p. 4-17.

At power on, the monitoring system performs a power-on self-test (POST), which tests the circuitry and functions, then proceeds to the default monitoring screen. Reference *Pleth View*, p. 4-41. Attach a sensor cable and a recommended sensor and the monitoring system is ready to register and record patient trend data. Reference *Connection to Nellcor™ Sensors*, p. 3-7.

Note:
Physiological conditions such as excessive patient movement, medical procedures, or external agents such as dysfunctional hemoglobin, arterial dyes, low perfusion, dark pigment, and externally applied coloring agents such as nail polish, dye, or pigmented cream may interfere with the monitoring system’s ability to detect and display measurements.

Note:
In addition to serving as the POST pass verification, the POST pass tone also functions as an audible confirmation that the speaker is performing properly. If the speaker does not function, the alarm warning sounds cannot be heard.

Note:
For standard usage, connect sensor cables prior to turning on the monitoring system. Have a qualified service technician perform any functional testing prior to usage.

To power up the monitoring system
1. Connect the monitoring system to an AC power source.
2. Verify the monitoring system is off and the AC Power Indicator lights.
3. Turn on the monitoring system by pressing the POWER ON key.
4. Within ten seconds, all pixels should illuminate. The monitoring screen should display a corporate logo and the firmware version of the monitoring system.
5. Observe the monitoring screen for the POST splash screen, which appears for approximately five (5) seconds.
6. Listen for three ascending tones then a one-second beep, indicating proper operation of the speaker and successful completion of power-on self-test.
If the monitoring system detects an internal problem during the POST process, an error tone sounds and the monitoring system displays an error message. Reference Troubleshooting, p. 8-1.

Note:
Physiological conditions such as excessive patient movement, medical procedures, or external agents such as dysfunctional hemoglobin, arterial dyes, low perfusion, dark pigment, and externally applied coloring agents such as nail polish, dye, or pigmented cream may interfere with the monitoring system’s ability to detect and display measurements.

4.2.4 System Resets

If the monitoring system issues a system reset, based on triggering the watchdog timer, all temporary settings are retained. Neither factory nor institutional default settings are impacted.

4.2.5 Automatic Shutdown and Power Off

Automatic Shutdown

When any of the following conditions are present, the monitoring system automatically shuts down.
- The monitoring system is running on battery power and the battery capacity remaining reaches 0%.
- The monitoring system has detected an internal temperature above 67 °C or 153 °F.
Power Off

To turn off the monitoring system, only hold the POWER ON key long enough for three descending tones to sound. Then the screen darkens and the monitoring system powers off.

4.3 Nellcor™ Sensor Usage

Reference Selecting a Nellcor™ Sensor, p. 9-1, for identifying the proper recommended sensor. Consider all possible variables. If in doubt, contact Covidien or a local Covidien representative. Reference Connection to Nellcor™ Sensors, p. 3-7, for connecting the proper recommended sensor.

4.3.1 Sensor Detection

⚠️ WARNING:
Use only Covidien-approved interface cables with the monitoring system. Use of another interface cable will adversely impact performance. Do not attach any cable intended for computer use to the sensor port.

⚠️ WARNING:
Use only Covidien-approved sensors and interface cables when connecting to the sensor port. Connecting any other cable or sensor influences the accuracy of sensor data, which may lead to adverse results.

⚠️ Caution:
If the pulse beep tone does not sound with each pulse, the pulse beep volume is set to zero, the speaker is malfunctioning, or the signal is corrupt. Reset the device.

A “SENSOR ATTACHED: xxxx” message appears for between four and six seconds when users first connect a recommended sensor. The message identifies the type of sensor connected to the monitoring system. Sensor type determines any action messages in the sensor message(s) function.
The monitoring system displays dashes for %SpO₂ and Pulse Rate while searching for a valid pulse. For optimal performance, allow the monitoring system to search and lock onto a pulse for approximately five to ten seconds.

When the monitoring system detects a valid pulse, it enters monitoring mode and displays patient parameters.

The movement of the blip bar or the plethysmographic waveform and the flashing heart icon are visual indicators of real-time data. The pulse beep tone is an audible indicator of the real-time patient data.

When users first apply a recommended sensor to a patient, the monitoring system may lose a pulse signal. Upon loss of the pulse signal, the monitoring system posts an alarm.

4.3.2 Sensor Detection Failure

Upon successful completion of the POST process, the monitoring system sounds a one-second tone indicating it has passed POST.

Should the monitoring system fail to detect a recommended sensor, it displays a user prompt indicating it is in the ready state and the caregiver should attach a recommended sensor to both the patient and the monitoring system.
4.4 User Interface

4.4.1 Default Monitoring Screen and Trend Data

Users receive monitoring system information via the monitoring screen. This is particularly relevant to real-time and historical patient trend data, which may appear as a plethysmographic waveform, a blip bar, a graph, or saturation and pulse rate values, depending on the accessed monitoring screen. Reference Monitoring Screen Layout Options, p. 4-41, to understand real-time trend data. Reference MONITORING HISTORY Menu, p. 4-25, to understand online historical trend-data. Reference Trend Data Management, p. 5-1, to better manage both real-time and historical trend data. Should the monitoring system detect corrupt trend data, it notifies the caregivers with a TREND DATA LOST message.

Users may choose to adjust the monitoring screen layout as needed, and institutions may specify an alternate default. Institutional default settings require changes to the available options in Service Mode by a qualified service technician. Reference Monitoring Screen Layout Options, p. 4-41.

Figure 4-3. Default Monitoring Screen Layout
4.4.2 Status Messages and Alarms in the Monitoring Status Field

Users receive monitoring system information via the monitoring screen. The primary area is the monitoring status field. Background color provides an additional status cue. Reference *Alarm Management and Status Messages*, p. 4-50.

- **User prompts** — This status type with a gray background prompts users to perform some action to obtain patient data.

- **Active status** — This status type notifies users of the current, active monitoring system state. Green background indicates normal status, cyan background indicates the user has selected the menu option, listing main menu items in grey.

- **Alarm status** — This status type identifies alarm conditions from highest to lowest priority. If multiple alarms occur while users are choosing menu options, the vertical alarm list of messages appears with the highest priority alarms at the top. If more than three alarms are active, the list collapses into a single VIEW ALL ALARMS line containing the total number of active alarms. Each alarm contains a MORE INFO button. Pressing the MORE INFO button provides a detailed explanation and any corrective action required.

 a. **High priority alarms** — Alarm message appears on flashing red background. High priority alarms appear first when multiple alarms occur simultaneously.

 b. **Medium priority alarms** — Alarm message appears on flashing yellow background. Medium priority alarms appear after high priority alarms and before low priority alarms.

 c. **Low priority alarms** — Alarm message appears on steady yellow background. Low priority alarms appear after high or medium priority alarms.

4.4.3 Introduction to Menu Options

Interact with and customize the monitoring system using the monitoring screen buttons. Confirm the monitoring screen is unlocked by checking for the unlocked icon on the lock bar.

To lock the monitoring screen

1. Locate the lock bar at the lower right of the monitoring screen.

2. Press and hold the unlocked icon.

3. Observe the progression of green lights to either side of the unlocked icon until all three on each side light.

4. Ensure the icon now appears as a locked icon.
To unlock the monitoring screen
1. Locate the lock bar at the lower right of the monitoring screen.

2. Press and hold the locked icon.

3. Observe the progression of green lights to either side of the locked icon until all three on each side light.

4. Ensure the icon now appears as an unlocked icon.

Press MENU to access any submenus. Use the scroll bar or adjustment arrows to select or change options. Reference Menu Option Selection, p. 4-12.

Table 4-2. Menu icons and primary user interface features

<table>
<thead>
<tr>
<th>Icons available during standard operation</th>
<th>SILENCE ALARM icon</th>
<th>DISMISS ALARM icon</th>
<th>MENU icon</th>
<th>HELP icon</th>
<th>LOCK bar with lock icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILENCE ALARM icon</td>
<td>Press to silence ANY current alarms for the alarm silence duration period. After silencing an alarm, press again to reactivate the alarm. To adjust alarm silence duration requires a qualified service technician. Remains available at all times.</td>
<td>Press to dismiss an alarm if available. Not all alarms have the dismiss option. Such alarms require user resolution or service.</td>
<td>Press to access current menu functions, including alarm limits, monitoring history, monitoring screen selections, audio controls, and connectivity settings.</td>
<td>Press to access on-screen help.</td>
<td>Press until the lock icon appears to prevent access to monitoring system options, with the exception of SILENCE ALARM. Press until the unlocked icon appears to permit access to make desired changes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu items available during menu selection</th>
<th>CANCEL or EXIT MENU icon</th>
<th>BACK icon</th>
<th>CLEAR HISTORY icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCEL or EXIT MENU icon</td>
<td>Press to return to the monitoring screen without altering the current selection.</td>
<td>Press BACK to return to the previous menu level without exiting the selected menu area entirely.</td>
<td>Press CLEAR HISTORY to delete any stored historical trend data.</td>
</tr>
</tbody>
</table>
4.4.4 Menu Option Selection

Menus and Submenus

The user interface provides for customization. Press MENU to access various menus and submenus, then save any desired changes. Changes occur immediately after users press SAVE CHANGES.

Table 4-2. Menu icons and primary user interface features (Continued)

<table>
<thead>
<tr>
<th>Icons available during standard operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVE CHANGES icon</td>
<td>Press SAVE CHANGES to retain any selection and return to monitoring.</td>
</tr>
<tr>
<td>ADJUST UP, DOWN arrows</td>
<td>During menu selection, press to increment up or down. During selection of variable parameters, press to incrementally increase or decrease the specified parameter.</td>
</tr>
<tr>
<td>ADJUST slider bar</td>
<td>During menu selection, slide to scroll up or down to access upper or lower menu options.</td>
</tr>
</tbody>
</table>

ALARM LIMITS Menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2</td>
<td>Set Upper and Lower SpO2 Alarm Limits</td>
</tr>
<tr>
<td>Pulse Rate (PR)</td>
<td>Set Upper and Lower PR Alarm Limits</td>
</tr>
<tr>
<td>SatSeconds</td>
<td>Set SatSeconds Alarm Limit Threshold</td>
</tr>
<tr>
<td>SPD</td>
<td>Set SPD Sensitivity Setting</td>
</tr>
<tr>
<td>Pulse Rate Delay</td>
<td>Set PR Delay Threshold</td>
</tr>
</tbody>
</table>

MONITORING HISTORY Menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use to view and clear historical monitoring data</td>
<td>Trends</td>
</tr>
<tr>
<td></td>
<td>Clinical Log</td>
</tr>
<tr>
<td></td>
<td>Histogram</td>
</tr>
</tbody>
</table>

MARK EVENT Menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use to add event markers to trend data</td>
<td>Intervention</td>
</tr>
<tr>
<td></td>
<td>Medication</td>
</tr>
<tr>
<td></td>
<td>Observation</td>
</tr>
<tr>
<td></td>
<td>Transfer</td>
</tr>
</tbody>
</table>
SOUND SETTINGS Menu

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Volume</td>
<td>Set - (softer) or + (louder)</td>
</tr>
<tr>
<td>Pulse Beep Volume</td>
<td>Set - (softer) or + (louder) and OFF</td>
</tr>
<tr>
<td>Button Click Volume</td>
<td>Set - (softer) or + (louder) and OFF</td>
</tr>
</tbody>
</table>

MONITORING SETTINGS Menu

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Mode</td>
<td>Adult alarm settings</td>
</tr>
<tr>
<td></td>
<td>Neonate alarm settings</td>
</tr>
<tr>
<td>Response Mode</td>
<td>NORMAL response mode</td>
</tr>
<tr>
<td></td>
<td>FAST response mode</td>
</tr>
<tr>
<td>Time and Date</td>
<td>Time settings (+ or -)</td>
</tr>
<tr>
<td></td>
<td>Date settings (+ or -)</td>
</tr>
<tr>
<td></td>
<td>Date format (DD/MM/YY, MM/DD/YY, or YY/MM/DD)</td>
</tr>
<tr>
<td>Alarm Silence Duration</td>
<td>Set Alarm Silence duration</td>
</tr>
<tr>
<td>Monitoring Layout</td>
<td>Pleth and Trend view</td>
</tr>
<tr>
<td></td>
<td>Pleth Only view</td>
</tr>
<tr>
<td></td>
<td>Trend Only view</td>
</tr>
<tr>
<td></td>
<td>Numbers Only (Blip) view</td>
</tr>
<tr>
<td>Screen Brightness</td>
<td>Set - (less bright) or + (more bright)</td>
</tr>
</tbody>
</table>

CONNECTIVITY SETTINGS Menu

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Settings</td>
<td>Set to WLAN (ASCII or SPDout)</td>
</tr>
<tr>
<td></td>
<td>Set to LAN (ASCII or SPDout)</td>
</tr>
<tr>
<td></td>
<td>Set to disconnected</td>
</tr>
<tr>
<td>Serial Connection</td>
<td>ASCII (9600 or 19200 baud)</td>
</tr>
<tr>
<td></td>
<td>Clinical (19200 baud)</td>
</tr>
<tr>
<td></td>
<td>SPDout (19200 or 115200 baud)</td>
</tr>
<tr>
<td></td>
<td>Philips (19200 baud)</td>
</tr>
<tr>
<td></td>
<td>Off</td>
</tr>
<tr>
<td>Nurse Call</td>
<td>Set to normally - or normally +</td>
</tr>
</tbody>
</table>

DATA EXPORT Menu

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use to export trend history data to alternate sources</td>
</tr>
</tbody>
</table>

ABOUT THE MONITOR Menu

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify model, software, parameter, and network information</td>
</tr>
</tbody>
</table>
Factory Defaults and Institutional Defaults

Each monitoring system ships to the customer with settings established at the factory. These are **factory default** settings.

Institutions may choose to modify such settings without losing those changes at power reset or power off. Such **institutional default** settings must be set and tested by a qualified service technician prior to use in a clinical setting.

<table>
<thead>
<tr>
<th>Option</th>
<th>Adult Defaults</th>
<th>Neonate Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm mode</td>
<td>Adult</td>
<td></td>
</tr>
<tr>
<td>Allow alarm limit adjustments</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Alarm silence duration</td>
<td>120 Seconds</td>
<td></td>
</tr>
<tr>
<td>Alarm disabled reminder</td>
<td>Yes, every three minutes</td>
<td></td>
</tr>
<tr>
<td>Allow silence duration OFF</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Allow alarm audio OFF</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Sensor alarm priorities:</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>- Sensor Disconnect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sensor Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sensor Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Each alarm may have different institutional default priorities (high, medium, or low).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%SpO2 lower alarm limit</td>
<td>85%</td>
<td></td>
</tr>
<tr>
<td>%SpO2 upper alarm limit</td>
<td>100%</td>
<td>95%</td>
</tr>
<tr>
<td>SatSeconds</td>
<td>100</td>
<td>OFF</td>
</tr>
<tr>
<td>Allow SatSeconds</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SPD sensitivity</td>
<td>1</td>
<td>Always OFF</td>
</tr>
<tr>
<td>SPD audio alert</td>
<td>Yes</td>
<td>Always OFF</td>
</tr>
<tr>
<td>Allow SPD</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pulse rate lower alarm limit</td>
<td>40 BPM</td>
<td>90 BPM</td>
</tr>
<tr>
<td>Pulse rate upper alarm limit</td>
<td>170 BPM</td>
<td>190 BPM</td>
</tr>
<tr>
<td>Pulse rate delay</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Allow pulse rate delay</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-3. Factory Default Settings (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Adult Defaults</th>
<th>Neonate Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm volume</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Pulse beep volume</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Button click volume</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Screen brightness</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Allow backlight OFF</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Wake display on alarm</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Monitoring screen layout</td>
<td>Pleth</td>
<td></td>
</tr>
<tr>
<td>Vital sign colors</td>
<td>%SpO2: Cyan, Pulse BPM: Green</td>
<td></td>
</tr>
<tr>
<td>Displayed language</td>
<td>English</td>
<td></td>
</tr>
<tr>
<td>Response mode</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Historical trend scale</td>
<td>1 hour</td>
<td></td>
</tr>
<tr>
<td>Real-time trend scale</td>
<td>1 hour</td>
<td></td>
</tr>
<tr>
<td>Real-time trend display</td>
<td>SpO2 and Pulse</td>
<td></td>
</tr>
<tr>
<td>Nurse call polarity</td>
<td>Normally high (+)</td>
<td></td>
</tr>
<tr>
<td>Remote protocol</td>
<td>Disconnected</td>
<td></td>
</tr>
<tr>
<td>Serial protocol</td>
<td>ASCII, 9600 baud</td>
<td></td>
</tr>
</tbody>
</table>

Note:
Some values cannot be saved as power-on defaults. Attempts to save such values as default result in an INVALID tone. Users may alter such limits for current patients, but limits return to factory or institutional defaults at power-off.
ALARM LIMITS Menu

⚠️ WARNING:
Ensure alarm limits are appropriate for the patient being monitored with each use of the monitoring system.

⚠️ WARNING:
Do not silence or disable audible alarms or decrease the volume of the audible alarm if patient safety could be compromised. Do not dim or disable visual alarms if patient safety could be compromised.

⚠️ WARNING:
Supplemental oxygen will attenuate patterns of desaturation. A patient’s respiratory compromise can be proportionally more severe before patterns appear in the saturation trend. Remain vigilant when monitoring a patient on supplemental oxygen.

⚠️ WARNING:
Only change the alarm threshold setting levels under the supervision of a qualified clinician.

⚠️ WARNING:
Do not preset different or inappropriate alarm limits for the same or similar equipment in any single area, since this may compromise patient safety.

⚠️ WARNING:
Only use the SPD parameter with adult patients. Do not use on neonate patients. In Neonate Mode, the SPD parameter remains OFF.

⚠️ Caution:
Do not set alarm limits to extreme values that render the monitoring system useless. Ensure alarm limits are appropriate for each patient.

⚠️ Caution:
Use of the SPD parameter does not change the need to set threshold limits appropriate to the patient being monitored.

Select standard monitoring system alarm limits for either adults or neonates. Reference To set the alarm mode, p. 4-34, for setting adult or neonate modes.
The monitoring system ships with factory default settings. Factory default alarm settings fall into two groups: adult and neonate. The monitoring system can be set to use adult-pediatric alarm limit settings or neonate alarm limit settings as the institutional default. Any temporary changes to the ALARM LIMITS menu remain active until power off or power loss greater than 30 seconds. Have a qualified service technician set institutional default settings that differ from factory default settings as described in the Service Manual.

Note:
The ability to adjust the alarm limit default settings can be enabled or disabled by qualified service personnel as described in the Service Manual.

Figure 4-4. ALARM LIMITS Menu Options

Factory Default Alarm Limit Settings and Parameters

- **SpO2 Limits** — The adult default upper limit is 100% and the lower limit is 85%. The neonate default upper limit is 95% and the lower limit is 85%. If neonate mode is enabled, the Baby icon will appear between the threshold setting values. An alarm sounds each time patient saturation violates these alarm limits. Reference To set temporary SpO2 and pulse rate alarm limit settings, p. 4-18.

- **Pulse Rate Limits** — The adult default upper limit is 170 bpm and lower limit is 40 bpm. The neonate default upper limit is 190 bpm and the lower limit is 90 bpm. If neonate mode is enabled, the Baby icon will appear between the threshold setting values. An alarm sounds each time patient pulse rate violates these alarm limits. Reference To set temporary SpO2 and pulse rate alarm limit settings, p. 4-18.
• **SatSeconds™ Alarm Management** — The adult default SatSeconds™ value is 100 SatSeconds. The neonate default SatSeconds™ value is OFF. An alarm sounds based on a violation of SatSeconds™ alarm limits. Reference *To set SatSeconds alarm limit*, p. 4-20.

• **Saturation Pattern Detection (SPD)** — The SPD™ Alert parameter is not indicated for use on pediatric patients, but on adult patients only. This option is not available for neonates. The adult default SPD alarm sensitivity is a value of one (1) for most sensitive to patterns of desaturation. Reference *To set OxiMax SPD™ Alert (SPD) sensitivity*, p. 4-22. When the SPD™ Alert parameter is enabled, the SatSeconds™ parameter is automatically enabled with a setting of 100.

• **Pulse Rate Delay parameter** — Use the pulse rate delay parameter to distinguish clinically significant alarms from minor nuisance alarms. The default setting is OFF. Reference *Pulse Rate Delay Alarm Management Parameter Limits*, p. 4-24.

Temporary Alarm Limits

The initial values in the limits screen are the *factory* default settings or are the *institutional* default settings set by qualified service personnel. Reference *Factory Default Settings*, p. 4-14. Any changes to these settings are temporary; settings return to the factory or institutional default values after power cycle.

Note:

Limit changes remain in effect as long as the monitoring system retains power, but return to the factory or institutional default limit settings at power off. Limit changes also return to factory or institutional defaults when the alarm mode is changed (e.g., from Adult to Neonate). Only qualified service personnel may configure and save institutional defaults as described in the *Service Manual*.

To set temporary SpO₂ and pulse rate alarm limit settings

1. While in normal monitoring mode, press MENU.

2. Press ALARM LIMITS.

3. Select either SpO₂ or PULSE RATE. All lower threshold values must be at least one digit lower than the upper limit threshold, so change lower thresholds first. Default limit settings depend on the selected patient mode.

4. Slide the bar up or down until reaching the desired value.
Figure 4-5. Adjusting Alarm Limit Settings

5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.
7. Ensure the selected limit value appears in the appropriate limit area.

SatSeconds™ Alarm Management Parameter Limits

For mild or brief SpO₂ limit violations, use the SatSeconds parameter to reduce nuisance alarms.

- **SatSeconds icon** — With the parameter enabled, the SatSeconds circle icon fills in the clockwise direction as the alarm management system detects SpO₂ readings outside of the limit setting. The circle icon empties in counterclockwise direction when SpO₂ readings are within limits. When the icon fills completely, a medium priority alarm sounds.

- **SatSeconds trend data** — The trend history captures the SatSeconds violation and identifies each SatSeconds alarm activation period. Caregivers should view
the data to examine SatSeconds violations in the trend data history. Reference *Real-time Trend Data*, p. 5-2.

- **SatSeconds alarms** — SatSeconds alarm settings include both audible and visual alarms.
 - **Audible alarm** — Once an audible alarm occurs, the monitoring system will continue to alarm until the caregiver clears the alarm.
 - **Visual alarm** — Once a SatSeconds alarm occurs, a medium priority alarm message flashes.

To set SatSeconds alarm limit

1. While in normal monitoring mode, press MENU.
2. Press ALARM LIMITS.
3. Press SATSECONDS.
4. Select the desired limit. The choices are 10, 25, 50, 100 SatSeconds or OFF. The default setting is 100.

5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.
7. Ensure selected limit value underneath the SatSeconds circle icon matches the desired limit just set.

Note:
The ability to adjust SatSeconds default settings can be enabled or disabled by qualified service personnel as described in the *Service Manual*.

Note:
Press HELP to display a SatSeconds alarm help dialogue.

OxiMax SPD™ Alert Parameter Limits

WARNING:
Supplemental oxygen will attenuate patterns of desaturation. A patient’s respiratory compromise can be proportionally more severe before patterns appear in the saturation trend. Remain vigilant when monitoring a patient on supplemental oxygen.

WARNING:
Only use the SPD parameter with adult patients. Do not use on neonate patients. In Neonate Mode, the SPD parameter remains OFF.

Reference *OxiMax SPD™ Alert Parameter*, p. 10-10, for specifics on how the SPD parameter works. The SPD parameter can be disabled as an institutional default. The SPD parameter communicates information to the caregiver about patterns of desaturation in a variety of ways.

- **SPD icon** — When the SPD parameter detects patterns of desaturation in the SpO₂ trend in adults, caregivers are alerted to these patterns via a visual indicator, and optionally, an audio alarm. The triangle icon for SPD appears on the monitoring system when the parameter is enabled. The triangle fills from bottom to top as patterns become more severe. The triangle empties from top to bottom as the patterns become less severe. When the icon fills completely, an alarm sounds. With SPD enabled, the default setting is ON with the sensitivity set to 1. The parameter can be turned off in the LIMITS menu. Caregivers can select from three alarm sensitivity settings: 1 (most sensitive), 2 (medium sensitivity) or 3 (least sensitive), with 1 resulting in more alarms and 3 resulting in fewer alarms. The rate at which the SPD icon fills depends on the SPD sensitivity setting.

- **SPD trend data** — The trend history captures the SPD patterns and identifies SatSeconds and SPD alarms activation periods. Once patterns exceed the SPD limit, an SPD ALERT alarm message will flash. Caregivers should view the data to examine SatSeconds and SPD patterns in the trend data history. Reference *Real-time Trend Data*, p. 5-2.
• **SPD alarms** — SPD alarm settings include both audible and visual alarms.

 – **Audible alarm** — Once an audible SPD ALERT alarm occurs, the monitoring system will continue to alarm for up to six (6) minutes after the alarm triggers or until the caregiver clears the alarm.

 – **Visual alarm** — Once an SPD ALERT alarm occurs, a low priority SPD ALERT alarm message flashes.

 When the indicator reaches capacity, indicating the SPD limit has been reached, an audible alarm sounds and an alarm message flashes. The default setting of one (1) is the most sensitive to desaturation patterns and results in more frequent alarms. For less frequent alarms, use a less sensitive setting of two (2) or three (3).

 ➡ **Note:**
 To disable audible alarms, contact a qualified service technician.

 ➡ **Note:**
 Unrecognized repetitive reductions in airflow through the upper airway occur in some clinically significant scenarios. Patients exhibiting sleep apnea symptoms were used in studies to validate the SPD™ Alert parameter. The presence of repetitive reductions in airflow was scored using a standard diagnostic polysomnogram. Study results indicate SPD is a sensitive marker in detecting repetitive reductions in airflow.

 ➡ **Note:**
 Prior to changing SPD sensitivity settings, clear all alarms.

 ➡ **Note:**
 Enabling SPD automatically sets the SatSeconds value to 100.

To set OxiMax SPD™ Alert (SPD) sensitivity

The SPD sensitivity setting establishes a threshold for how sensitive the monitoring system is to patterns of desaturation.

1. While in normal monitoring mode, press MENU.
2. Press ALARM LIMITS.
3. Press SATURATION PATTERN DETECTION (SPD).
4. Select the desired sensitivity setting. The choices are 1, 2, 3, or OFF. The default setting is 1. The setting of one (1) is the most sensitive to patterns of desaturation, but may also lead to more alarms. The setting of two (2) is moderately sensitive to patterns of desaturation. The setting of three (3) is the least sensitive to desaturation patterns, but may result in fewer alarms.

Figure 4-7. Setting SPD Sensitivity

5. Press SAVE CHANGES to save the selected setting.

6. Press EXIT.

7. Ensure selected sensitivity value underneath the SPD triangle icon matches the desired limit just set.

Note:
Press HELP to display a SPD alarm help dialogue for online assistance.
Pulse Rate Delay Alarm Management Parameter Limits

Reference Pulse Rate Delay Alarm Management Parameter, p. 10-12, for specifics on how the pulse rate delay parameter works. To use the Pulse Rate Delay parameter, set the traditional alarm management upper and lower pulse rate alarm limits. Then, set the Pulse Rate Delay. The Pulse Rate Delay limit controls the time the pulse rate level crosses either limit before an audible alarm sounds.

To set pulse rate delay

1. While in normal monitoring mode, press MENU.
2. Press ALARM LIMITS.
3. Press PULSE RATE DELAY.
4. Select the desired delay. The choices are 5, 10, or OFF. The setting of five (5) or ten (10) provides a five or ten second alarm delay, respectively. The default setting is OFF.

5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.
MONITORING HISTORY Menu

Use this menu to review historical monitoring data, including:

- **Trends** — View historical trend data with time frames ranging from the previous 15 minutes to the previous 48 hours. The default view is 1 hour.

- **Clinical log** — View a list of monitor readings, marked events, and alarms from the last 48 hours. Note that the monitor readings that appear in the log indicate status changes such as initial readings after power-up or transitions between alarm states.

- **Histograms** — View graphical data representing the percentage of time SpO2 and pulse rate values were measured in specific ranges. Select time frames ranging from the previous 15 minutes to the previous 48 hours. The default view is 1 hour.

Trend Data

To view historical trend data

1. While in normal monitoring mode, press MENU.
2. Press MONITORING HISTORY.
3. Press TRENDS.
4. Review the visible trend field.
• Change the visible time scale by pressing the - or + keys next to the trend time scale indicator. The options are 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 24 hours, 36 hours, and 48 hours. The default is 1 hour.

• Scroll left or right using the arrows or the scroll bar for any additional historical trend data.

• View specifics for visible trend data by touching the screen at the area of interest. A pop-up appears.

Figure 4-10. MONITORING HISTORY - TRENDS

Figure 4-11. Historical Trend Data Pop-Up
• Press CLEAR HISTORY to delete the trend data and then confirm or CANCEL to retain historical trend data.

5. Press EXIT to return to normal monitoring.

Clinical Log

To view the clinical log

1. While in normal monitoring mode, press MENU.

2. Press MONITORING HISTORY.

3. Press CLINICAL LOG.

4. Review the log entries.

5. Press CLEAR HISTORY to delete the log entries and then confirm or CANCEL to retain the log entries.

5. Press EXIT to return to normal monitoring.
Histograms

To view histograms

1. While in normal monitoring mode, press MENU.
2. Press MONITORING HISTORY.
3. Press HISTOGRAM.
4. Review the histograms.

![Figure 4-13. MONITORING HISTORY - HISTOGRAM](POX_20210_A)

- Change the time scale by pressing the - or + keys next to the histogram time scale indicator. The options are 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 24 hours, 36 hours, and 48 hours. The default is 1 hour.

- Press CLEAR HISTORY to delete the histograms and then confirm or CANCEL to retain the histograms.

- Press EXIT to return to normal monitoring.
MARK EVENT Menu

Use this menu to mark clinically significant events, such as interventions, medication, observations, and transfers, during patient monitoring. Marked events are stored in the monitoring history and are indicated by a white diamond in the trend view.

To mark an event

1. While in normal monitoring mode, press MENU.
2. Press MARK EVENT.
3. Select the type of event to be marked.

![Figure 4-14. MARK EVENT Menu Options](POX_20211_A)

4. Press SAVE CHANGES.
5. Press EXIT to return to normal monitoring.

A white diamond marks the event in the trend view. Touching the screen at the marked event displays pop-up information, including the type of marked event.
SOUND SETTINGS Menu

Select volume levels for alarms, pulse beep, and sound effects in increments or decrements of 25 percent.

Note:
Any adjustment of volume levels results in an issued sound not only to indicate the change, but also to indicate functionality of the speaker and audible alarm signal.
Figure 4-16. SOUND SETTINGS Menu Options

- **Alarm volume** — Adjust the volume to the desired level by pressing the minus or plus icon. Save the change to retain the change made. Options for volume settings are 25, 50, 75, and 100 percent. The default setting is 75 percent. Some institutions may allow caregivers to disable audible alarms.

- **Pulse beep volume** — Adjust the volume to the desired level by pressing the minus or plus icon. Save the change to retain the change made. Options for volume settings are OFF, 25, 50, 75, and 100 percent. The default setting is 50 percent.

- **Button click volume** — Adjust the volume to the desired level by pressing the minus or plus icon. Save the change to retain the change made. Options for volume settings are OFF, 25, 50, 75, and 100 percent. The default setting is 50 percent.
MONITORING SETTINGS Menu

WARNING:
The monitoring system is intended only as an adjunct in patient assessment. It must be used in conjunction with clinical signs and symptoms.

Use this menu to set the alarm mode, response mode, institution time and date, alarm silence duration, monitoring layout, and screen brightness.

Figure 4-17. MONITORING SETTINGS Menu Options

- **Alarm Mode** — Use to set the alarm settings for adult and pediatric patients or for neonates. The factory default alarm mode is ADULT, which does not have any indicator. The institutional default may be set to ADULT or NEONATE. Reference *Alarm Mode*, p. 4-34.
 - Adult Alarm Mode — This alarm mode establishes adult upper and lower default alarm threshold settings.
 - Neonate Alarm Mode — This alarm mode establishes neonate upper and lower default alarm threshold settings. When users select the neonate alarm mode, the Baby icon appears between the appropriate alarm limit threshold values.

- **Response Mode** — The response mode establishes the rate at which the monitoring system responds to changes in SpO₂ saturation levels, but does not affect the calculation of pulse rate or recording of trend data, which occurs at one-
second intervals. The response mode, however, may impact SPD alarm behavior. The default response mode is NORMAL. Reference Response Mode, p. 4-35.

- **Normal Response Mode** — Responds to changes in blood oxygen saturation in five (5) to seven (7) seconds.

[FAST]
- **Fast Response Mode** — Responds to changes in blood oxygen saturation levels in two (2) to four (4) seconds. This can be particularly helpful for situations that require close monitoring. The Fast Response Mode icon in italics appears near the SpO₂ value.

Note:
When in FAST response mode, the monitoring system may produce more SpO₂ and pulse rate alarms. Response mode may also impact SPD alarm behavior.

- **Time and Date** — Use to set time, date, and date format. Reference Time and Date, p. 4-36.

- **Alarm Silence Duration** — Use to set total time allocated for silencing an alarm. Reference Alarm Silence Duration, p. 4-37.

- **Monitoring Layout** — Select the desired monitoring screen layout from the available options: Pleth only, Trend only, Pleth and trend, or Blip layouts. The Pleth view is the default. Reference Monitoring Screen Layout Options, p. 4-41.
 - **PLETH and TREND** — Access a split screen containing both the plethysmographic (pleth) waveform and the trend data simultaneously. Reference Combination Pleth and Trend View, p. 4-47.
 - **PLETH ONLY** — Access plethysmographic (pleth) waveform display view. Reference Pleth View, p. 4-41.
 - **TREND ONLY** — Access trend data display view. Reference Real-Time Trend View, p. 4-43.
 - **NUMBERS ONLY (Blip)** — Access blip bar display view. Reference Numbers Only (Blip) View, p. 4-49.

- **Screen brightness** — Adjust the screen brightness of the monitoring system screen to suit each individual situation. This option does not remain after power cycle, but returns to default brightness. Some institutions may allow caregivers to disable visual alarms by turning screen brightness OFF. Reference Screen Brightness, p. 4-38.
Note:
Caregivers may monitor the patient remotely. Reference *Using the Nurse Call Interface*, p. 5-18. For institutions allowing caregivers to turn off all audible alarms and minimize or disable backlight brightness, refrain from reducing both audible and visual alarms unless using a remote monitoring system. When using a remote monitoring system, caregivers should still remain vigilant, periodically assessing patients.

Alarm Mode

To set the alarm mode

1. While in normal monitoring mode, press MENU.

2. Press MONITORING SETTINGS.

3. Press ALARM MODE.

4. Select the desired alarm setting. The factory default setting is ADULT ALARM SETTINGs.

5. Press SAVE CHANGES to save the selected setting.

6. Press YES to confirm.

![Alarm mode](POX_30139_A)

Figure 4-18. Selecting Adult and Pediatric vs. Neonate Alarm Mode
7. Press EXIT.

8. If changing from Adult to Neonate mode, confirm that the Baby icon appears between upper and lower alarm limit threshold settings.

Response Mode

To set the response mode

1. While in normal monitoring mode, press MENU.
2. Press MONITORING SETTINGS.
3. Press RESPONSE MODE.

![Figure 4-19. Response Mode Selection Screen](image)

4. Select FAST response mode. The default setting is NORMAL response mode.

5. Press SAVE CHANGES to save the selected setting.

6. Press EXIT.

7. Ensure the FAST icon appears near the SpO2 value.

8. Use the same procedure to revert back to NORMAL, selecting that option for step 4 and ensuring the FAST icon is no longer visible for step 7.
Time and Date

To set the time and date

1. While in normal monitoring mode, press MENU.
2. Press MONITORING SETTINGS.
3. Press TIME AND DATE.
4. Select the desired field for the time or date.

![Time and Date Selection Screen](image)

5. Increment or decrement to set the proper values.
6. Select the desired date format by repeatedly pressing the DATE FORMAT field to scroll through the various format options until locating the desired one. Options are the default DD/MM/YY format or the alternate MM/DD/YY or YY/MM/DD formats.

7. Press SAVE CHANGES to save the selected setting.
8. Press YES to confirm.
9. Press EXIT.
Alarm Silence Duration

To set the alarm silence duration

1. While in normal monitoring mode, press MENU.
2. Press MONITORING SETTINGS.
3. Press ALARM SILENCE DURATION.
4. Select the desired number of seconds: 30, 60, 90, 120, or OFF.

Note:
By default, setting the alarm silence duration to OFF is disabled. However, institutions may choose to enable this setting.

Figure 4-21. Alarm Silence Duration Screen

5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.
Monitoring Layout

Reference *Monitoring Screen Layout Options*, p. 4-41 for instructions for selecting the monitoring view.

Screen Brightness

To adjust the screen brightness

1. While in normal monitoring mode, press MENU.
2. Press MONITORING SETTINGS.
3. Press SCREEN BRIGHTNESS.
4. Increment or decrement to obtain the desired backlight brightness.

Note:
Any of the following conditions turns on the backlight if the backlight is dimmed:

- Pressing the monitoring screen
- Any alarm, as long as the WAKE DISPLAY ON ALARM is not set to OFF

5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.
CONNECTIVITY SETTINGS Menu

Use this menu to select the proper communication protocol for attaching the monitoring system to external devices. The monitoring system provides a bedside monitor communication for interfacing with the listed protocols.

Figure 4-22. CONNECTIVITY SETTINGS Menu Options

- **Remote Settings** — Provides flexible connectivity to a remote system. Options include variants for WLAN and LAN, as well as Disconnected. Default is DISCONNECTED.

- **Serial** — Provides flexible connectivity to a serial port. Options include ASCII, Clinical, variants for SPDout, Philips, and OFF. Default is ASCII at 9600 baud.

Table 4-4. Serial Connectivity Protocols

<table>
<thead>
<tr>
<th>Communication Protocol</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>19200</td>
</tr>
<tr>
<td>Clinical</td>
<td>19200</td>
</tr>
<tr>
<td>Philips Vuelink</td>
<td>19200</td>
</tr>
<tr>
<td>SPDout</td>
<td>19200</td>
</tr>
<tr>
<td></td>
<td>115200</td>
</tr>
</tbody>
</table>

- **Nurse Call** — Provides connectivity to a Nurse Call connection. Ensure there is no audible alarm. Then, select either option. The default is normally high (+). Select Normally + to set voltage from +5 VDC to +12 VDC. Select Normally - to set voltage from -5 VDC to -12 VDC. Voltages switch polarity when the audible alarm sounds.
DATA EXPORT Menu

Use this menu to obtain the trend data history, including any event markers. This requires an external USB flash drive to export trend data. View the trend data file using any number of standard software packages to parse the data, review the data, and compile reports from the data. The trend data can be analyzed using the Nellcor™ Analytics Tool (NAT). Reference Trend Data Access, p. 5-1.

ABOUT THE MONITOR Menu

Use this menu to obtain model number and firmware revision level information prior to contacting Covidien or a local Covidien representative.

• **Monitor Information** — This field contains the monitoring system model number and serial number.

• **Software Information** — This field contains the software version and current firmware revision running on the monitoring system.

• **Parameter Information** — This field contains the parameter name and number.

• **Network Information** — This field contains the LAN and WLAN IP addresses.
4.4.5 Monitoring Screen Layout Options

Select the preferred method of viewing real-time data. Reference Monitoring Screen Selection, p. 2-8. Selections last until power-cycle or until users manually select another monitoring screen from the monitoring layout options.

Figure 4-23. Monitoring Layout Options

Pleth View

Use this monitoring screen for visual monitoring information in waveform. The plethysmographic (pleth) monitoring screen contains a “wiper bar” plethysmographic waveform. Plethysmographic waveforms with peak to peak amplitudes less than ten pulse amplitude units (PAUs) are associated. Reference Theory of Operations, p. 10-1, for a description of the pleth waveform. This view also reflects current measured SpO₂ and pulse rates and also indicates upper and lower limit settings. When the monitoring system is not attached to AC power, it runs on the internal battery. A battery fuel gauge indicates remaining internal battery charge.

- **SatSeconds™ parameter** — For mild or brief SpO₂ limit violations, use the SatSeconds parameter to reduce nuisance alarms. With the SatSeconds parameter enabled, the monitoring screen includes a circle icon and its setting. The SatSeconds alarm limit value appears just below the circle icon. When the SatSeconds parameter is enabled, the circle icon fills in the clockwise direction as the alarm management system detects SpO₂ readings outside of the limit setting. The circle icon empties in counterclockwise direction when SpO₂ readings are within limits. When the icon fills completely, a medium-priority alarm sounds. Reference SatSeconds™ Alarm Management Parameter Limits, p. 4-19.
- **SPD parameter** — Use the SPD™ alert (SPD) parameter to detect patterns of desaturation in the SpO₂ trend in adults. Using the SPD™ Alert parameter also triggers the SatSeconds parameter. With the SPD parameter enabled, the monitoring screen includes both triangle and circle icons and their settings. The SPD alarm sensitivity value appears just below the triangle icon. When the SPD parameter is enabled, the triangle icon fills from bottom to top as desaturation patterns develop. The triangle icon empties from top to bottom as patterns dissipate. When the icon fills completely, a low-priority alarm sounds. The monitoring system will sound the SPD alarm sooner if the SPD alarm sensitivity is set to the default value of one (1). A less sensitive setting will result in less frequent alarms. Reference *OxiMax SPD™ Alert Parameter Limits*, p. 4-21.

![Figure 4-24. Pleth Only View](image)

To select the pleth view

1. While in normal monitoring mode, press MENU.
2. Press MONITORING SETTINGS.
3. Press MONITORING LAYOUT.
4. Select PLETH ONLY.
5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.
Real-Time Trend View

Use this monitoring screen for visual monitoring information related to real-time trends. The trend data plots automatically update as the monitoring system calculates each new trend point, where the interval between calculations is based on the time scale selected. The real-time trend monitoring screen includes SpO₂ and/or pulse rate trend data plots, current measured SpO₂ and pulse rates. Each time the monitoring system detects a pulse, the heart icon flashes. Should the monitoring system detect corrupt trend data, it notifies the caregivers with a TREND DATA LOST message.

This view also reflects current measured SpO₂ and pulse rates and also indicates upper and lower limit settings. When the monitoring system is not attached to AC power, it runs on the internal battery. A battery fuel gauge indicates remaining internal battery charge.

- **SatSeconds™ parameter** — For mild or brief SpO₂ limit violations, use the SatSeconds parameter to reduce nuisance alarms. With the SatSeconds parameter enabled, the monitoring screen includes a circle icon and its setting. The SatSeconds alarm limit value appears just below the circle icon. When the SatSeconds parameter is enabled, the circle icon fills in the clockwise direction as the alarm management system detects SpO₂ readings outside of the limit setting. The circle icon empties in counterclockwise direction when SpO₂ readings are within limits. When the icon fills completely, a medium-priority alarm sounds. Reference **SatSeconds™ Alarm Management Parameter Limits**, p. 4-19.

- **SPD parameter** — Use the SPD™ alert (SPD) parameter to detect patterns of desaturation in the SpO₂ trend in adults. Using the SPD™ Alert parameter also triggers the SatSeconds parameter. With the SPD parameter enabled, the monitoring screen includes both triangle and circle icons and their settings. The SPD alarm sensitivity value appears just below the triangle icon. When the SPD parameter is enabled, the triangle icon fills from bottom to top as desaturation patterns develop. The triangle icon empties from top to bottom as patterns dissipate. When the icon fills completely, a low-priority alarm sounds. The monitoring system will sound the SPD alarm sooner if the SPD alarm sensitivity is set to the default value of one (1). A less sensitive setting will result in less frequent alarms. Reference **OxiMax SPD™ Alert Parameter Limits**, p. 4-21.

Isolate oxygenation (SpO₂) or pulse trend data or view them both together (SpO₂ + Pulse).
To select the trend view

1. While in normal monitoring mode, press MENU.
2. Press MONITORING SETTINGS.
3. Press MONITORING LAYOUT.
4. Select the TREND ONLY option.
5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.

To select the type of trend data displayed

1. Follow the steps listed for selecting the trend monitoring screen.
3. Select the trend data to be displayed. The default is to display both SpO2 and Pulse Rate.
4. Press SAVE CHANGES to save the selected setting.
• **SpO₂ and Pulse Rate checked** — View oxygenation (SpO₂) and pulse (PULSE) trend data simultaneously for a specified length of time.

Figure 4-26. Select Trends Options

Figure 4-27. SpO₂ and Pulse Rate Trend Data, 1 Hour
• **SpO₂ only checked** — Isolate oxygenation (SpO₂) trend data for a specified length of time. Dashed yellow lines indicate alarm limits.

Figure 4-28. SpO₂ Only Trend Data, 1 Hour

![SpO₂ Only Trend Data, 1 Hour](image)

• **Pulse Rate only checked** — Isolate pulse (PR) trend data for a specified length of time. Dashed yellow lines indicate alarm limits.

Figure 4-29. Pulse Only Trend Data, 1 Hour

![Pulse Only Trend Data, 1 Hour](image)
To set up the trend time scale

1. Follow the steps listed for selecting the trend monitoring screen.

2. Press “-” or “+” on either side of the time scale indication to the right of the Trend field until the desired time scale appears. The options are 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 24 hours, 36 hours, and 48 hours. The default is 1 hour.

Combination Pleth and Trend View

Use this default monitoring screen for visual monitoring information related to both pleth and real-time trends.

The pleth field contains a “wiper bar” plethysmographic waveform. Plethysmographic waveforms with peak to peak amplitudes less than ten pulse amplitude units (PAUs) are associated. Reference Theory of Operations, p. 10-1, for a description of the pleth waveform.

The real-time trend field can include SpO2 and/or pulse rate trend data plots, depending on user preference. The default is for viewing both SpO2 and pulse rate trend data plots. The trend data plots automatically update as the monitoring system calculates each new trend point, where the interval between calculations is based on the time scale selected.

This view also reflects current measured SpO2 and pulse rates and also indicates upper and lower limit settings. When the monitoring system is not attached to AC power, it runs on the internal battery. A battery fuel gauge indicates remaining internal battery charge.

- **SatSeconds™ parameter** — For mild or brief SpO2 limit violations, use the SatSeconds parameter to reduce nuisance alarms. With the SatSeconds parameter enabled, the monitoring screen includes a circle icon and its setting. The SatSeconds alarm limit value appears just below the circle icon. When the SatSeconds parameter is enabled, the circle icon fills in the clockwise direction as the alarm management system detects SpO2 readings outside of the limit setting. The circle icon empties in counterclockwise direction when SpO2 readings are within limits. When the icon fills completely, a medium-priority alarm sounds. Reference SatSeconds™ Alarm Management Parameter Limits, p. 4-19.

- **SPD parameter** — Use the SPD™ alert (SPD) parameter to detect patterns of desaturation in the SpO2 trend in adults. Using the SPD™ Alert parameter also triggers the SatSeconds parameter. With the SPD parameter enabled, the monitoring screen includes both triangle and circle icons and their settings. The SPD alarm sensitivity value appears just below the triangle icon. When the SPD parameter is enabled, the triangle icon fills from bottom to top as desaturation patterns develop. The triangle icon empties from top to bottom as patterns dissipate. When the icon fills completely, a low-priority alarm sounds. The monitoring system will sound the SPD alarm sooner if the SPD alarm sensitivity is set to the
default value of one (1). A less sensitive setting will result in less frequent alarms. Reference *OxiMax SPD™ Alert Parameter Limits*, p. 4-21.

Figure 4-30. Combination Pleth and Trend View

![Combination Pleth and Trend View](image)

To select the pleth and trend view

1. While in normal monitoring mode, press MENU.
2. Press MONITORING SETTINGS.
3. Press MONITORING LAYOUT.
4. Select the PLETH AND TREND option.
5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.

Reference *p. 4-44* to select the type of trend data displayed. Reference *p. 4-47* to set the trend data time scale.
Numbers Only (Blip) View

Use this monitoring screen for visual monitoring information in blip bar (numbers only) form. This view also reflects current measured SpO2 and pulse rates and also indicates upper and lower limit settings. When the monitoring system is not attached to AC power, it runs on the internal battery. A battery fuel gauge indicates remaining internal battery charge.

- **SatSeconds™ parameter** — For mild or brief SpO2 limit violations, use the SatSeconds parameter to reduce nuisance alarms. With the SatSeconds parameter enabled, the monitoring screen includes a circle icon and its setting. The SatSeconds alarm limit value appears just below the circle icon. When the SatSeconds parameter is enabled, the circle icon fills in the clockwise direction as the alarm management system detects SpO2 readings outside of the limit setting. The circle icon empties in counterclockwise direction when SpO2 readings are within limits. When the icon fills completely, a medium-priority alarm sounds. Reference *SatSeconds™ Alarm Management Parameter Limits*, p. 4-19.

- **SPD parameter** — Use the SPD™ alert (SPD) parameter to detect patterns of desaturation in the SpO2 trend in adults. Using the SPD™ Alert parameter also triggers the SatSeconds parameter. With the SPD parameter enabled, the monitoring screen includes both triangle and circle icons and their settings. The SPD alarm sensitivity value appears just below the triangle icon. When the SPD parameter is enabled, the triangle icon fills from bottom to top as desaturation patterns develop. The triangle icon empties from top to bottom as patterns dissipate. When the icon fills completely, a low-priority alarm sounds. The monitoring system will sound the SPD alarm sooner if the SPD alarm sensitivity is set to the default value of one (1). A less sensitive setting will result in less frequent alarms. Reference *OxiMax SPD™ Alert Parameter Limits*, p. 4-21.

Figure 4-31. Numbers Only (Blip) View
To select the numbers only (blip) view

1. While in normal monitoring mode, press MENU.
2. Press MONITORING SETTINGS.
3. Press MONITORING LAYOUT.
4. Select the NUMBERS ONLY option.
5. Press SAVE CHANGES to save the selected setting.
6. Press EXIT.

4.4.6 Alarm Management and Status Messages

The status field at the top of the monitoring screen contains information describing overall monitoring system status and any active alarms. If multiple alarms occur during user interaction with a menu or dialog box, the list of alarm messages collapses to a single line listing the total number of alarms currently active. Cancellation or dismissal of an alarm message requires user intervention, whereas status messages do not. The message identifies the alarm or status. If it is an alarm, it offers users a MORE INFO button, which when pressed, provides detailed data and a means to correct the situation or clear the alarm.

The monitoring system comes with factory default alarm limit thresholds for adult-pediatric patients and for neonate patients. Reference Factory Default Alarm Limit Settings and Parameters, p. 4-17. Institutions may opt for setting institutional default settings to override the factory defaults. In addition, users may also temporarily change alarm limits. Any temporary changes to alarm limit thresholds revert back to default alarm limit settings after power-off. Reference Temporary Alarm Limits, p. 4-18.

Note:
There are no delays associated with any alarm conditions that exceed ten (10) seconds unless otherwise specified.
Message Types

Messages begin at the top of the status field and continue to tile downward until reaching three lines.

Note:
Not all high-priority alarms have a DISMISS option. If this is the case, it is a serious error and requires the user to resolve the issue or return the monitoring system to Covidien or a qualified service technician.

- **User prompt or status messages** — User prompts requiring user intervention appear as white text on a grey bar. The READY status message is the most common of this type. Status messages require no user intervention and appear as white text on a green background. The MONITORING status message is the most common of this type.

 ![Figure 4-32. Sample user prompt message: READY](POX_30326_A)

 ![Figure 4-33. Sample status message: MONITORING](POX_30327_A)

- **High priority alarm messages** — High priority alarms take precedence over any other alarm messages, so appear first. If more than one high priority alarm occurs within quick succession, alarm messages appear in order of occurrence. High priority alarms appear in a flashing, red bar in the status field.

 ![Figure 4-34. High priority alarm: BATTERY CRITICALLY LOW](POX_30328_A)

- **Medium priority alarm messages** — Medium priority alarms take precedence over low priority alarm messages. If more than one medium priority alarm occurs within quick succession, alarm messages appear in order of occurrence. Medium priority alarms appear in a flashing, yellow bar in the status field.

 ![Figure 4-35. Medium priority alarm: SpO2 LOW](POX_30329_A)
• **Low priority alarm messages** — Low priority alarms take precedence over user prompt and status messages. If more than one low priority alarm occurs within quick succession, alarm messages appear in order of occurrence. Low priority alarms appear in a steady, yellow bar in the status field.

Figure 4-36. Low priority alarm: SENSOR OFF

To correct a user prompt
1. Read the recommended action portion of the message.
2. Take the recommended action. The monitoring system triggers off the corrective action and automatically clears the message.
3. For multiple messages, press NEXT to view each message in order of priority.

To correct an alarm message
1. Press the MORE INFO button for the top, most important alarm message.
2. Read the alarm message description.
3. Take the recommended action.
4. Clear the alarm message by pressing the EXIT or DISMISS ALARM button.

Limit Threshold Violation Indicators

The monitoring system reports real-time patient data. If that data falls outside the alarm limit thresholds, a threshold violation occurs. This triggers an alarm condition, resulting in a visual alarm. Reference *Visual Alarms*, p. 2-12. An audible alarm also results, unless a SILENCE ALARM (Audio Paused) or an AUDIO OFF condition exists. Reference *Audible Alarm Management*, p. 4-53.

- **SpO2** — The monitoring system reports real-time blood oxygen saturation that falls within the upper and lower limit thresholds as a cyan value on a black background. If a threshold violation occurs, the value turns black on a yellow background.

- **Pulse (BPM)** — The monitoring system reports real-time pulsations that fall within the upper and lower limit thresholds as a green value on a black background. If a threshold violation occurs, the value turns black on a yellow background.
4.4.7 Audible Alarm Management

WARNING:
Do not silence or disable audible alarms or decrease the volume of the audible alarm if patient safety could be compromised. Do not dim or disable visual alarms if patient safety could be compromised.

Audible indicators include pitched tones and beeps. Audible alarms vary, depending on the priority of the alarm. Caregivers may choose to silence alarms by pressing ALARM SILENCE. For any alarm condition still active for more than two (2) minutes, the monitoring system will increase the urgency level of the audible alarm signal by increasing its frequency.

Note:
Caregivers may monitor the patient remotely. Reference *Using the Nurse Call Interface*, p. 5-18. For institutions allowing caregivers to turn off all audible alarms and minimize or disable backlight brightness, refrain from reducing both audible and
visual alarms unless using a remote monitoring system. When using a remote monitoring system, caregivers should still remain vigilant, periodically assessing patients.

SILENCE ALARM

The factory default setting provides both visual and audible alarms for alarm conditions. Institutions may choose to temporarily silence audible alarms and rely on visual alarms. To do so, caregivers may press the SILENCE ALARM icon. The default duration for SILENCE ALARM is two (2) minutes. To alter the default duration, a qualified service technician must set an alternate institutional default setting in the Service Mode. Reference *Alarm Silence Duration*, p. 4-37 to temporarily change this duration.

SILENCE ALARM remains available at all times. Reference *Introduction to Menu Options*, p. 4-10.

- **Not active** — If SILENCE ALARM is not active, the SILENCE ALARM icon remains white on a grey background.

- **Active** — If SILENCE ALARM is active, the SILENCE ALARM icon turns yellow on a grey background and posts the time remaining. A yellow alarm icon above the alarm limits indicates an active SILENCE ALARM status.

ALARM AUDIO OFF

The factory default setting provides both visual and audible alarms for alarm conditions. Institutions may choose to turn off audible alarms and rely on visual alarms. To allow caregivers to turn off audible alarms, a qualified service technician must alter this alarm system setting in Service Mode.

- **Not active** — If Alarm Silence Duration OFF is not active, it does not appear on the monitoring screen. Instead, the SILENCE ALARM icon remains white on a grey background.

- **Active** — If Alarm Silence Duration OFF is active, the AUDIO OFF icon replaces the SILENCE ALARM icon. The AUDIO OFF icon is yellow on a grey background. A red alarm icon above the alarm limits indicates an active ALARM AUDIO OFF status.
Note:
Caregivers may turn off audio SPD alerts in addition to ALARM AUDIO OFF. This also requires access to the Service Mode by a qualified service technician.

Note:
For institutions preferring visual alarms only, yet allowing caregivers to minimize or disable backlight brightness, it may prove useful to have a qualified service technician verify the WAKE DISPLAY ON ALARM option remains enabled.

4.4.8 Visual Alarm Management

WARNING:
The monitoring system is intended only as an adjunct in patient assessment. It must be used in conjunction with clinical signs and symptoms.

The factory default setting provides both visual and audible alarms for alarm conditions. Institutions may choose to allow caregivers to turn off or dim the backlight, thus also dimming visual alarms. The factory default is to enable the WAKE DISPLAY ON ALARM option. The monitoring system then returns to full brightness during an alarm condition. Reference Screen Brightness, p. 4-38.

Note:
Caregivers may monitor the patient remotely. Reference Using the Nurse Call Interface, p. 5-18. For institutions allowing caregivers to turn off all audible alarms and minimize or disable visual alarms or backlight brightness, refrain from reducing both audible and visual alarms unless using a remote monitoring system. When using a remote monitoring system, caregivers should still remain vigilant, periodically assessing patients.

Note:
For institutions preferring visual alarms only, yet allowing caregivers to minimize or disable backlight brightness, have a qualified service technician verify the WAKE DISPLAY ON ALARM option remains enabled.
4.4.9 HELP Option

To access on-screen help topics

1. Press HELP. The appropriate help dialog window appears.
2. Review the help dialog box for guidance.
3. Press EXIT to return to normal monitoring.
5 Trend Data Access

5.1 Overview

This chapter contains information for accessing patient trend data obtained with the Nellcor™ Bedside Respiratory Patient Monitoring System. Trend data can be viewed anytime patient trends exist.

5.2 Trend Data Management

WARNING:
In the case of a monitoring system failure, reset the monitoring system and ensure it is functioning correctly prior to usage.

5.2.1 Trend Data Basics

The monitoring system stores trend data readings in memory every second, whether monitoring a patient or not, and retains this information even during total loss of power. It can store up to 48 hours of trend data, which is available for download when desired.

Users may view real-time and historical trend data on the monitoring screen. Users may also control the type and amount of visible trend data for a selected span of time. All trend data appears in a graphical format except the Clinical Log, which appears in tabular format. The default setting is 1 hour of trend data.

Users may also choose to download trend data in a digital file, print it after downloading, or clear trend data information.

Reference *Real-time Trend Data*, p. 5-2. Reference *Historical Trend Data*, p. 5-7. Should the monitoring system detect corrupt trend data, it notifies the caregivers with a TREND DATA LOST message.
Note:
Trend memory always contains the most recent 48 hours of data, with newly collected data overwriting the oldest data on a rolling basis. The monitoring system continues to record data points as long as it is powered on, with “blank” data points collected if no recommended sensor is connected to the monitoring system or patient. “Blank” data overwrites older patient data if the memory is full. To save old patient data, turn the monitoring system off when not monitoring a patient and download the trend memory before it fills up and overwrites the old data with new data (or “blank” data).

5.2.2 Real-time Trend Data

Users may view the trend monitoring screen at any time. Reference *Real-Time Trend View*, p. 4-43. Users may choose to view graphical on-screen trend data or to view streaming trend data remotely.

- **Graphical view** — Provides access to between 15 minutes and 48 hours of continuous trend data.

- **Streaming real-time trending** — Provides real-time access to trend data via a data port. Reference *Data Port Connectivity*, p. 5-10.

Graphical Trend View

The graphical trend view provides users with data from 15 minutes to 48 hours of continuous trend data.

The default SpO₂ and Pulse trend view provides 1 hour of trend information. The most recent data readings are to the far right side of the graph. The numbers below each graph indicate the recording time as a vertical dotted line on the monitoring screen.
Figure 5-1. Graphical Trend Data Components (Historical Trend Data Shown as Example)

1. Graph y-axis contains signal amplitude values
2. Yellow triangle icon for period of SPD alert
3. White vertical line to indicate current time
4. Green pulse trend data for specified time scale
5. Graph x-axis contains time divisions, depending on specified time scale
6. Trend data time scale (press "-" or "+" to change time period)
7. Dashed horizontal yellow lines for upper and lower thresholds
8. Cyan SpO2 trend data for specified time scale
9. Yellow circle icon for period of SatSeconds alarm
10. Yellow fill for period of limit threshold violation
11. Pop-up date and time stamp for identified moment
12. Pop-up SpO2 high and low reading for identified moment
13. Pop-up pulse high and low reading for identified moment
14. Scroll bar for access to additional trend data
15. Event marker (touch to display pop-up with event details)
Streaming Real-Time Trending

Real-time data is continuously sent to the DB-15 data port for streaming to a host system or serial printer. Obtain patient data through the DB-15 data port by setting the Serial Connection to ASCII and connecting the monitoring system data port to a host system or serial printer. Reference CONNECTIVITY SETTINGS Menu, p. 4-39.

During data transmission to a host system or serial printer, a new line of data appears every second. Column headings appear or print after every 25 lines, or if one of the values in the column heading changes. Readings appear at approximately two-second intervals.

Figure 5-2. Sample Real-Time Data Output

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
<td>Time Stamp</td>
<td>Firmware Version</td>
<td>Alarm Mode</td>
<td>SatSeconds Alarm Limit Setting</td>
<td>Alarm Limits</td>
<td>Column Headings</td>
<td>Response Mode</td>
<td>Data Column Headings</td>
<td>Patient Data</td>
<td>Operating Status</td>
</tr>
</tbody>
</table>

Figure 5-2: Sample Real-Time Data Output
• **Data Source** — The model number of the monitoring system.

• **Firmware Version** — The next data field shows the firmware level and a firmware verification number (CRC: XXXX). Neither of these numbers should change during normal operation.

Note:
The firmware revision may change if a qualified service provider upgrades the monitoring system.

• **Alarm Mode** — The first field of the second line identifies the ADULT or NEONATE alarm mode.

• **Column Headings** — Every 25th line of the data output consists of a column heading. A column heading appears whenever the value within a column heading changes. The example above shows three distinct column heading sets. Starting at the top row, there are 25 lines before the second row of column headings print. The third row of column headings in the above figure appear when the operator changes the SpO2 lower alarm limit from 85 percent to 80 percent.

• **Alarm Limits** — The last data field in the top line indicates the upper and the lower alarm limits for SpO2 and for the pulse rate (PR limit). In the example, the lower alarm limit for SpO2 is 85% and the upper alarm limit is 100%. Pulse Rate alarm limits are 40 and 170 BPM. The SatSeconds alarm limit (100SAT-S) indicates the SatSeconds alarm setting. In this example, the SatSeconds alarm is set to 100.

• **Response Mode** — The second field of the second line identifies the SatSeconds alarm limit and SpO2 response (NORMAL or FAST) mode. The response mode may impact the SPD alarm behavior.

• **Data Column Headings** — Actual column headings are in the last row of the column heading line.

• **Patient Data** — Presented in the chart from left to right.
 - Time the patient data was recorded
 - Current %SpO2 value
 - Current Pulse Rate (BPM)
 - Current Pulse Amplitude (PA)
 - Operating status of the monitoring system

• **Time** — The Time column shows the value of the real-time clock.

• **Trend Data** — Parameter values appear directly beneath the heading for each parameter. In this example, the %SpO2 is 100 and the pulse rate is 190 beats per
minute. The "*" next to the 190 indicates that 190 beats per minute is outside of the alarm limits, indicated in the top row, for pulse rate. If no data for a parameter is available, three dashes [- - -] appear. PA represents the pulse amplitude value, in which the number can range from 0 to 254. There are no alarm parameters for this value. It can be used for trending information as an indication of a change in pulse volume, relative pulse strength, or circulation.

- **Operating Status** — The Status column indicates alarm conditions and operating status of the monitoring system. In this example, "PH" (Pulse High) indicates the pulse rate upper alarm limit has been exceeded. As many as four codes can appear at one time in the Status column.

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>Alarm Off</td>
</tr>
<tr>
<td>AS</td>
<td>Alarm Silence</td>
</tr>
<tr>
<td>BU</td>
<td>Battery in Use</td>
</tr>
<tr>
<td>LB</td>
<td>Low Battery</td>
</tr>
<tr>
<td>LM</td>
<td>Loss of Pulse with Motion</td>
</tr>
<tr>
<td>LP</td>
<td>Loss of Pulse</td>
</tr>
<tr>
<td>MO</td>
<td>Motion</td>
</tr>
<tr>
<td>PH</td>
<td>Pulse Rate Upper Limit Alarm</td>
</tr>
<tr>
<td>PL</td>
<td>Pulse Rate Lower Limit Alarm</td>
</tr>
<tr>
<td>PS</td>
<td>Pulse Search</td>
</tr>
<tr>
<td>SH</td>
<td>Saturation Upper Limit Alarm</td>
</tr>
<tr>
<td>SL</td>
<td>Saturation Lower Limit Alarm</td>
</tr>
</tbody>
</table>
5.2.3 Historical Trend Data

Obtaining historical trend data output requires connectivity to the USB port. Reference *Data Port Connectivity*, p. 5-10.

Historical Trend Data Output

Obtain historical trend data and export it to a digital file, then parse that data into a spreadsheet or document. Reference *To export trend data*, p. 5-17.

Note:

The trend data output format is compatible with the Nellcor™ Analytics Tool (NAT).

Figure 5-3. Sample Historical Trend Data Export

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Stamp</td>
<td>Measurement minimum/maximum</td>
<td>Upper and lower alarm limits</td>
<td>Alarm type</td>
<td>Pulsatile strength minimum/maximum</td>
<td>Sample interval (period in seconds)</td>
</tr>
</tbody>
</table>

POX_30332_A
Table 5-2 describes the data in the historical trend data output.

Table 5-2. Historical Trend Data Output Definitions

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Stamp</td>
<td>Date and time when the data was recorded.</td>
</tr>
<tr>
<td>SpO2 Max</td>
<td>Maximum SpO2 value observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>SpO2 Min</td>
<td>Minimum SpO2 value observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>SpO2 LL</td>
<td>Lower alarm limit for SpO2 as configured by the user</td>
</tr>
<tr>
<td>SpO2 UL</td>
<td>Upper alarm limit for SpO2 as configured by the user</td>
</tr>
<tr>
<td>Pulse Max</td>
<td>Maximum pulse rate value observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>Pulse Min</td>
<td>Minimum pulse rate value observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>Pulse LL</td>
<td>Lower alarm limit for pulse rate as configured by the user</td>
</tr>
<tr>
<td>Pulse UL</td>
<td>Upper alarm limit for pulse rate as configured by the user</td>
</tr>
<tr>
<td>SatSec Min</td>
<td>Minimum SatSeconds value observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>SatSec Max</td>
<td>Maximum SatSeconds value observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>SatSec Limit</td>
<td>Maximum amount of SatSeconds allowed before alarm is issued</td>
</tr>
<tr>
<td>SPD Max</td>
<td>Maximum SPD value observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>SPD Min</td>
<td>Minimum SPD value observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>SPD Limit</td>
<td>Maximum SPD limit before alarm is issued</td>
</tr>
<tr>
<td>Alarms</td>
<td>Encoded number indicating which alarms were active during the 1-sec. duration of the record.</td>
</tr>
<tr>
<td></td>
<td>Note: The alarm number is intended for interpretation by software such as the Nellcor™ Analytics Tool (NAT). It is encoded as a mathematical OR of 32 unique numbers, each indicating a unique alarm. Numbers indicating particular alarms are listed in Table 5-3. A value of 0 is reported if no alarms were active.</td>
</tr>
<tr>
<td>%Mod Max</td>
<td>Maximum modulation of the pleth signal observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>%Mod Min</td>
<td>Minimum modulation of the pleth signal observed within the 1-sec. duration of the record</td>
</tr>
<tr>
<td>Interval</td>
<td>Always 1 sec.</td>
</tr>
<tr>
<td>First Sample</td>
<td>255 indicates the first sample after a power-on. Otherwise, the value is always 0.</td>
</tr>
<tr>
<td>Event Markers (optional)</td>
<td>Indicates the type of event: Observation, Medication, Transfer, Intervention, or None if no event marker recorded. (Only appears if event markers were requested during the export.)</td>
</tr>
</tbody>
</table>
Table 5-3. Trend Data Output - Encoded Alarm Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000001</td>
<td>Battery Critical On AC</td>
</tr>
<tr>
<td>0x00000002</td>
<td>Battery Critical</td>
</tr>
<tr>
<td>0x00000004</td>
<td>Low Battery</td>
</tr>
<tr>
<td>0x00000008</td>
<td>Speaker Failure</td>
</tr>
<tr>
<td>0x00000010</td>
<td>System Failure</td>
</tr>
<tr>
<td>0x00000020</td>
<td>System Failure Stale SpO2 Pulse</td>
</tr>
<tr>
<td>0x00000040</td>
<td>Sensor Failure</td>
</tr>
<tr>
<td>0x00000080</td>
<td>Sensor Disconnected</td>
</tr>
<tr>
<td>0x00000100</td>
<td>Sensor Off</td>
</tr>
<tr>
<td>0x00000200</td>
<td>Battery Failure</td>
</tr>
<tr>
<td>0x00000400</td>
<td>Nurse Call Equipment Failure</td>
</tr>
<tr>
<td>0x00000800</td>
<td>Serial Port Equipment Failure</td>
</tr>
<tr>
<td>0x00001000</td>
<td>Analog Output Equipment Failure</td>
</tr>
<tr>
<td>0x00002000</td>
<td>Cooling Fan Equipment Failure</td>
</tr>
<tr>
<td>0x00004000</td>
<td>Over Temperature</td>
</tr>
<tr>
<td>0x00008000</td>
<td>Trend Data Lost</td>
</tr>
<tr>
<td>0x00010000</td>
<td>Clock Settings Lost</td>
</tr>
<tr>
<td>0x00020000</td>
<td>Communication Error</td>
</tr>
<tr>
<td>0x00040000</td>
<td>Communication Error - LAN</td>
</tr>
<tr>
<td>0x00080000</td>
<td>Communication Error - WLAN</td>
</tr>
<tr>
<td>0x00200000</td>
<td>Pulse Timeout</td>
</tr>
<tr>
<td>0x00400000</td>
<td>SpO2 Low</td>
</tr>
<tr>
<td>0x00800000</td>
<td>SpO2 High</td>
</tr>
<tr>
<td>0x01000000</td>
<td>Pulse Rate Low</td>
</tr>
<tr>
<td>0x02000000</td>
<td>Pulse Rate High</td>
</tr>
<tr>
<td>0x10000000</td>
<td>SPD</td>
</tr>
<tr>
<td>0x20000000</td>
<td>Data Export Canceled</td>
</tr>
<tr>
<td>0x40000000</td>
<td>Extended Update</td>
</tr>
</tbody>
</table>
Historical Trend Data Erasure

To clear trend data

1. While in normal monitoring mode, press MENU.
2. Press MONITORING HISTORY.
3. Press TRENDS.
4. Choose an action.
 - Press CLEAR HISTORY, then confirm the action by selecting YES.
 - Press EXIT to return to normal monitoring mode.

Note:
All the trend data clears after confirming the CLEAR HISTORY request.

5.3 Data Port Connectivity

5.3.1 Overview

The monitoring system contains three different data ports and two antennae. Each data port has a different intended use.

- **Serial DB-15 data port** — This female DB-15 port provides RS-232, RS-422, and differential transmission data connectivity. Use for sending historical trend data to a serial printer for an ASCII print-out.

- **RJ-45 port** — This female 100-base-T, wired, Ethernet-capable port provides connectivity for digital data output.

- **Serial USB port** — This female USB port allows for faster data transfers. Use this port for updating firmware or for digital data output storage.

- **Radio-frequency (RF) antennae** — Two radio-frequency antennae broadcast data to a wireless LAN network, should the proper configuration exist.
5.3.2 Typical Equipment Used for Connectivity

The following list contains only a small sample of potential equipment used to interface with the monitoring system.

Table 5-4. Input and Output Configuration Options

<table>
<thead>
<tr>
<th>Mutually Exclusive External Serial</th>
<th>Mutually Exclusive Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII 9600 baud</td>
<td>ASCII LAN</td>
</tr>
<tr>
<td>19200 baud</td>
<td>ASCII Wireless LAN</td>
</tr>
<tr>
<td>Philips 19200 baud</td>
<td>Philips 19200 baud</td>
</tr>
<tr>
<td>Clinical 19200 baud</td>
<td>SPDout 19200 baud</td>
</tr>
<tr>
<td>SPDout 19200 baud</td>
<td>SPDout Wireless LAN</td>
</tr>
<tr>
<td>115200 baud</td>
<td></td>
</tr>
<tr>
<td>OFF --- Disconnected</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-5. Sample Equipment Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial connection</td>
<td></td>
</tr>
<tr>
<td>Philips Open Interface</td>
<td>Wired connection to Philips Vuelink networked platform</td>
</tr>
<tr>
<td>25-pin cable</td>
<td></td>
</tr>
<tr>
<td>RJ-45 serial cable</td>
<td>RJ-45 to DB-15M adapter; wired connection to hospital network</td>
</tr>
<tr>
<td>DB-15 PC-X cable</td>
<td>DB-15M cable obtains dumps and allows for debug</td>
</tr>
<tr>
<td>USB connection</td>
<td></td>
</tr>
<tr>
<td>USB flash drive</td>
<td>Any model</td>
</tr>
<tr>
<td>USB keyboard</td>
<td>Any model</td>
</tr>
<tr>
<td>Ethernet connection</td>
<td></td>
</tr>
<tr>
<td>CAT-3 or CAT-4 cable</td>
<td>10base-T connection to network</td>
</tr>
<tr>
<td>CAT-5 cable</td>
<td>100base-T connection to network</td>
</tr>
</tbody>
</table>
5.3.3 Data Port Configuration Information

WARNING:
If the serial port, analog outputs, or nurse call lines are shorted, remote communication may be lost.

WARNING:
A loose connection to a monitoring system data port may result in bad or missing data.

WARNING:
Only use Covidien-approved hardware or remote monitoring software for data port connectivity.

Caution:
When connecting the monitoring system to any instrument, verify proper operation before clinical use. Both the monitoring system and the instrument connected to it must utilize a grounded outlet. Any equipment connected to the data port must be certified according to the latest IEC/EN 60950-1 standards for data-processing equipment, the latest IEC/EN safety standards for electromedical equipment, the latest IEC/EN 60601-1 standard for electromedical equipment, or the latest IEC/EN safety standards relevant to that equipment. All combinations of equipment must be in compliance with Requirements for Medical Electrical Systems IEC Standard 60601-1: 2007. Anyone who connects equipment to the data interface is configuring a medical system and, therefore, is responsible for ensuring the system complies with the Requirements for Medical Electrical Systems IEC Standard 60601-1-1: 2007 and the electromagnetic compatibility IEC Standard 60601-1-2: 2007. Accuracy may degrade if it is connected to secondary I/O devices when equipment is not connected to earth reference.

Use the appropriate configuration information to ensure proper connectivity.

When connecting the monitoring system to any other equipment, ensure that equipment is virus-free. When connecting the monitoring system to equipment to obtain specific patient trend data, verify proper operation of the monitoring system prior to use with a patient. The monitoring system and any appropriate equipment must be connected to a grounded AC power source.

- Connection to a network or data coupling that includes other equipment could result in previously unidentified risks to patients, operators or third parties, so it is
the responsibility of the person configuring to identify, analyze, evaluate and control these risks.

- Any subsequent changes to the network or data coupling, such as network or data coupling configuration, connection or disconnection of additional or existing items or equipment, updates or upgrades to items or equipment, might introduce new risks, so requires re-evaluation and analysis.

Serial DB-15 Requirements

Caution:
Do not create sharp bends in the cable, as this may tear or break the shielding.

![Figure 5-4. DB-15 Pin Layout](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RxD+</td>
<td>RS-422 [+] input</td>
<td>9</td>
<td>RxD-</td>
<td>RS-422 [-] input</td>
</tr>
<tr>
<td>2</td>
<td>RxD_RS232</td>
<td>RS-232 input</td>
<td>10</td>
<td>IGND</td>
<td>Signal Ground, isolated from earth ground</td>
</tr>
<tr>
<td>3</td>
<td>TxD_RS-232</td>
<td>RS-232 output</td>
<td>11</td>
<td>NC_232</td>
<td>Nurse call signal, RS-232-level-output</td>
</tr>
<tr>
<td>4</td>
<td>TxD+</td>
<td>RS-422 [+] output</td>
<td>12</td>
<td>TxD-</td>
<td>RS-422 [-] output</td>
</tr>
<tr>
<td>5</td>
<td>IGND</td>
<td>Signal Ground, isolated from earth ground</td>
<td>13</td>
<td>AN_PULSE</td>
<td>Analog pulse rate output</td>
</tr>
<tr>
<td>6</td>
<td>AN_SpO2</td>
<td>Analog saturation output</td>
<td>14</td>
<td>AN_PLETH</td>
<td>Analog pleth waveform output</td>
</tr>
<tr>
<td>7</td>
<td>NC_NO</td>
<td>Nurse call relay closure, normally open</td>
<td>15</td>
<td>F_NC_COM</td>
<td>Nurse call relay closure, common return, fused</td>
</tr>
<tr>
<td>8</td>
<td>NC_NC</td>
<td>Nurse call relay closure, normally closed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The pin layout illustrates the pins viewed from the top to the bottom of the D-shell. The conductive shell connects to earth ground when connected to external equipment.

- **RS-232 Format** — Pins 2, 3, and 5 provide RS-232 format data. When building an RS-232 cable, do not add a resistor and keep cable length to a maximum of 25 feet.

- **RS-422 Format** — Pins 1 and 4 (TxD+ and TxD-) are the differential transmit data pair. Pins 9 and 12 (RxD+ and RxD-) are the differential receive data pair. They provide RS-422 format data. When building an RS-422 cable, add a resistor (120 ohms, 1/2 watt, 5%) between pin 1 and pin 9 of the cable and keep cable length to a maximum of 4,000 feet. Plug the end of the cable with the resistor added into the monitoring system.

To save specific patient data, firmly connect and properly secure the appropriate cable from the data port to a host system or serial printer. Connect the data port to a serial printer or host system by using a cable terminated with the following devices.

- An AMP connector (AMP part number 747538-1)
- A ferrule (AMP part number 1-747579-2)
- Compatible pins (AMP part number 66570-2)

The cable should not exceed 25 feet (7.6 meters) in length using RS-232 protocol or 4,000 feet (1219.2 meters) in length using RS-422 protocol. The external ITE (Information Technology Equipment) device must be certified to the latest IEC/EN Standard 60950-1 standards. The cable used must have a braided shield that provides 100% coverage. The shield must have a 360-degree connection to the metal shell on the DB-15 connector and to the connector on the equipment.

No hardware flow control is used. However, support exists for XON/XOFF flow control in ASCII mode.

100base-T RJ-45 Requirements

Caution:

Do not create sharp bends in the cable. Bend radius cannot exceed one inch.

To save specific patient data, firmly connect and properly secure the appropriate cable from the data receptacle to a receiving device capable of 100base-T communication. Connect to the data receptacle via an RJ-45 jack properly attached to a CAT-5 or better cable. The cable should not exceed 100 meters in length. The external ITE (Information Technology Equipment) device must be certified to the latest IEC/EN Standard 60950-1 and IEE 802.3 standards.
Note:
The monitoring system also supports 10base-T with a CAT-3 or CAT-4 connection.

Note:
The pin layout illustrates the pins viewed from left to right on the RJ-45 jack, beginning with pin 8. The tab snap-fits to the receptacle and requires pressure to release it. The data lines are shielded twisted pair (STP) with an additional drain wire to reduce crosstalk or noise.

Figure 5-5. RJ-45 Receptacle

![RJ-45 Receptacle Diagram]

1. LED 1 Indicates data exchange
2. LED 2 Indicates a valid 100base-T TCP/IP link

Figure 5-6. RJ-45 Pin Layout

![RJ-45 Pin Layout Diagram]
USB Data Port Requirements

Caution:
This is a client-only connection. Only insert a USB flash drive or USB keyboard to this port. Do not attach any other device.

Use only a USB flash drive or USB keyboard when connecting to the USB data port. Transfer of trend data to an external drive is a data export function from the monitoring system to the external drive.

This port can also function as a tool for software and firmware upgrades. Contact Covidien or a qualified service technician for upgrade support.

The pin layout illustrates the pins viewed from the left to the right of the USB connector, beginning with pin 4. The data lines are shielded twisted pair (STP) to reduce crosstalk or noise. Maximum length is 5.0 meters or 16.4 feet.

Table 5-7. RJ-45 Signal Pinouts

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX_D1+</td>
<td>[+] output</td>
<td>5</td>
<td>Not used</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>TX_D1-</td>
<td>[-] output</td>
<td>6</td>
<td>RX_D2-</td>
<td>[-] input</td>
</tr>
<tr>
<td>3</td>
<td>RX_D2+</td>
<td>[+] input</td>
<td>7</td>
<td>Not used</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>Not used</td>
<td>N/A</td>
<td>8</td>
<td>Not used</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Figure 5-7. USB Pin Layout
To export trend data

1. Remove any sensor or interface cable connection to the sensor port.

2. Press MENU.

3. Press DATA EXPORT.

4. Insert a virus-free USB flash drive into the USB port.

5. To include event markers in the exported data, select INCLUDE EVENT MARKERS.

6. Press NEXT.

7. Wait for the prompt to remove the USB flash drive once the export completes. DO NOT remove the USB flash drive prior to receiving the prompt to do so.

Note:
Any cancellation of the trend data export results in an alarm.

8. Remove the USB flash drive.

9. Press FINISH.

Wireless Requirements

This option provides for both wireless LAN and LAN network connectivity. The wireless configuration supports either ASCII or SPDout options and will both transmit and receive data on an active wireless connection. Caregivers may choose from multiple wireless networks. The monitoring system will automatically associate with the first available network, using the appropriate previously established configuration. Configuring a network can only be performed by a qualified service technician.
5.3.4 Data Port Communications

To setup data port communication

1. While in normal monitoring mode, press MENU.

2. Press CONNECTIVITY SETTINGS.

3. Select the desired protocol for data exchange.

4. Press SAVE CHANGES to save the selected setting.

5.4 Using the Nurse Call Interface

5.4.1 Nurse Call Feature

⚠️ WARNING:
Do not use the nurse call feature as the primary source of alarm notification. The audible and visual alarms of the monitoring system, used in conjunction with clinical signs and symptoms, are the primary sources for notifying medical personnel that an alarm condition exists.

⚠️ WARNING:
The nurse call feature of the monitoring system is operational when the monitoring system is powered by AC power or battery power. However, the nurse call feature does not function when monitoring system alarms are silenced.

⚠️ WARNING:
A loose connection to the monitoring system data port may result in bad or missing data.

The nurse call feature allows caregivers to remotely monitor patient alarms and works in conjunction with the institution’s nurse call system. Reference DB-15 Pin Layout, p. 5-13 for port pinouts.

The monitoring system provides two different types of nurse call interfaces: an RS-232 level and relay closure. Both the RS-232 and relay-based level nurse call function operate when the monitoring system is operating either on AC power or on battery power.
When enabled, audible alarms signal the remote location. If the audible alarm has been turned off or silenced, the nurse call function is also disabled.

<table>
<thead>
<tr>
<th>Pin</th>
<th>No Alarm or Alarm Silenced</th>
<th>Audible Alarm</th>
<th>Monitoring System Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 NO</td>
<td>Open</td>
<td>Closed</td>
<td>Closed</td>
</tr>
<tr>
<td>8 NC</td>
<td>Closed</td>
<td>Open</td>
<td>Open</td>
</tr>
</tbody>
</table>

Pin 11 on the data port is the RS-232 level nurse call signal and pin 5 or 10 is ground. Reference *DB-15 Pin Layout*, p. 5-13. With no alarm condition, the voltage between pins 10 and 11 are -5 VDC to -12 VDC, or +5V DC to +12 VDC, depending on the option chosen (either NORM+ or NORM-). With an audible alarm, the output between pins 5 and 11 will reverse polarity.

Pins 7 and 15 provide a relay that closes when an alarm is sounding on the monitoring system. Pins 8 and 15 provide a relay that opens when an alarm is sounding. Pin 15 is common, pin 7 is normally open, and pin 8 is normally closed. Reference *Rating of Nurse Call Relay*, p. 11-2.

Test the nurse call function prior to using it in any institution and whenever setting up the monitoring system in a location that uses nurse call. Users should periodically confirm not only a firm connection of cables, but also periodically confirm the functionality of the connection. If an attached recommended sensor is not connected to a patient, the screen does not register any data and the monitoring system remains in the Pulse Search Mode for five seconds, then the monitoring system displays three dashes [- - -] in the %SpO2 and pulse rate area of the screen.

One way to test the nurse call function is to create an alarm condition (for example, SENSOR DISCONNECT) and verify activation of the institution’s nurse call system.

5.4.2 Setting Nurse Call RS-232 Polarity

The nurse call polarity can be set to a positive signal or a negative signal during an alarm condition.

To set nurse call polarity

1. While in normal monitoring mode, press MENU.
2. Press CONNECTIVITY SETTINGS.
3. Press NURSE CALL SETTINGS.
4. Press NORM + for a normally high OR press NORM - for a normally low setting.

5. Press SAVE CHANGES to save the selected setting.
6 Performance Considerations

6.1 Overview

This chapter contains information for assisting users to optimize the performance of the Nellcor™ Bedside Respiratory Patient Monitoring System. Prior to initial installation in a clinical setting, have a qualified service technician verify the performance of the monitoring system per the Service Manual.

6.2 Oximetry Considerations

6.2.1 Monitoring System Constraints

WARNING:
Do not utilize for measurements outside the display levels listed for the monitoring system while monitoring patients.

- **Pulse Rate** — The monitoring system only displays pulse rates between 20 and 250 bpm. Detected pulse rates above 250 bpm appear as 250. Detected pulse rates below 20 appear as a zero (0).

- **Saturation** — The monitoring system displays saturation levels between 1% and 100%.

6.2.2 Nellcor™ Sensor Performance Considerations

WARNING:
Incorrect application or inappropriate duration of use of a sensor can cause tissue damage. Inspect the sensor site as directed in the Instructions for Use.

WARNING:
Pulse oximetry readings and pulse signal can be affected by certain ambient conditions, sensor application errors, and certain patient conditions.
WARNING:
Use only Covidien-approved sensors and interface cables when connecting to the sensor port. Connecting any other cable or sensor influences the accuracy of sensor data, which may lead to adverse results.

WARNING:
Failure to cover the sensor site with opaque material when operating under high ambient light conditions may result in inaccurate measurements. Pulse oximetry readings and pulse signals can be affected by certain environmental conditions, sensor application errors, and certain patient conditions.

Inaccurate Sensor Measurement Conditions

A variety of conditions can cause inaccurate sensor measurements.
- Incorrect application of the recommended sensor
- Placement of the recommended sensor on an extremity with a blood pressure cuff, arterial catheter, or intravascular line
- Ambient light
- Failure to cover the sensor site with opaque material when operating under high ambient light conditions
- Excessive patient movement
- Dark skin pigment
- Intravascular dyes or externally applied coloring, such as nail polish or pigmented cream

Signal Loss

Loss-of-pulse signal can occur for several reasons.
- Recommended sensor applied too tightly
- Inflation of a blood pressure cuff on the same extremity as the attached sensor
- Arterial occlusion proximal to the recommended sensor
- Poor peripheral perfusion
Recommended Usage

Select an appropriate recommended sensor, apply it as directed, and observe all warnings and cautions presented in the Instructions for Use accompanying the sensor. Clean and remove any substances such as nail polish from the application site. Periodically check to ensure that the recommended sensor remains properly positioned on the patient.

High ambient light sources such as surgical lights (especially those with a xenon light source), bilirubin lamps, fluorescent lights, infrared heating lamps, and direct sunlight can interfere with the performance of a recommended sensor. To prevent interference from ambient light, ensure the recommended sensor is properly applied, and cover the sensor with opaque material.

If patient movement presents a problem, try one or more of the following remedies to correct the problem.

- Verify the recommended sensor is properly and securely applied.
- Move the sensor to a less active site.
- Use an adhesive sensor that improves patient skin contact.
- Use a new sensor with fresh adhesive backing.
- Keep the patient still, if possible.

If poor perfusion affects performance, consider using the Nellcor™ forehead SpO₂ sensor (MAXFAST), which provides superior detection in the presence of vasoconstriction. Nellcor™ forehead SpO₂ sensors work particularly well on supine patients and mechanically ventilated patients. During low perfusion conditions, Nellcor™ forehead SpO₂ sensors reflect changes to SpO₂ values up to 60 seconds earlier than digit sensors.
6.3 Patient Conditions

Application issues and certain patient conditions can affect the measurements of the monitoring system and cause the loss of the pulse signal.

- **Anemia** — Anemia causes decreased arterial oxygen content. Although SpO₂ readings may appear normal, an anemic patient may be hypoxic. Correcting anemia can improve arterial oxygen content. The monitoring system may fail to provide an SpO₂ reading if hemoglobin levels fall below 5 gm/dl.

- **Dysfunctional hemoglobins** — Dysfunctional hemoglobins such as carboxyhemoglobin, methemoglobin, and sulfhemoglobin are unable to carry oxygen. SpO₂ readings may appear normal; however, a patient may be hypoxic because less hemoglobin is available to carry oxygen. Further assessment beyond pulse oximetry is recommended.

- Additional possible patient conditions may also influence measurements.
 - Poor peripheral perfusion
 - Excessive patient movement
 - Venous pulsations
 - Dark skin pigment
 - Intravascular dyes, such as indocyanine green or methylene blue
 - Externally applied coloring agents (nail polish, dye, pigmented cream)
 - Defibrillation
6.4 Reducing EMI (Electromagnetic Interference)

WARNING:
EMI disruption can cause erratic readings, cessation of operation, or other incorrect functioning.

WARNING:
The monitoring system is intended for use by healthcare professionals only. It may cause radio interference or may disrupt the operation of nearby equipment. Mitigation for such disruption may require re-orienting or relocating the monitoring system or shielding the location.

Caution:
This device has been tested and found to comply with the limits for medical devices related to IEC 60601-1-2: 2007. These limits are designed to provide reasonable protection against harmful interference in a typical medical installation.

Because of the proliferation of radio frequency transmitting equipment and other sources of electrical noise in health care environments (for example, electrosurgical units, cellular phones, mobile two-way radios, electrical appliances, and high-definition television), it is possible that high levels of such interference due to close proximity or strength of a source might result in disruption of monitoring system performance. Reference *Electromagnetic Emissions*, p. 11-7.

The monitoring system is designed for use in environments in which electromagnetic interference might obscure the client’s pulse. During such interference, measurements may seem inappropriate or the monitoring system may not seem to operate correctly. EMI disruption can cause erratic readings, cessation of operation, or other incorrect functioning. If this occurs, survey the site of use to determine the source of this disruption, and take the listed actions to eliminate the source.

- Turn equipment in the vicinity off and on to isolate the interfering equipment.
- Reorient or relocate the interfering equipment.
- Increase the separation between the interfering equipment and the monitoring system.

The monitoring system generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with these instructions, may itself cause harmful interference with other susceptible devices in the vicinity.
Page Left Intentionally Blank
7 Product Maintenance

7.1 Overview

This chapter describes the steps required to maintain, service, and properly clean the Nellcor™ Bedside Respiratory Patient Monitoring System.

7.2 Cleaning

⚠️ WARNING:
Do not spray, pour, or spill any liquid on the monitoring system, its accessories, connectors, switches, or openings in the chassis.

For surface cleaning and disinfection of the monitoring system, follow institutional procedures or the recommended actions below.

- **Surface cleaning** — Use a soft cloth dampened with either a commercial, non-abrasive cleaner or a solution of 70% alcohol in water, lightly wiping the surfaces of the monitoring system.

- **Disinfection** — Use a soft cloth saturated with a solution of 10% chlorine bleach in tap water, lightly wiping the surface of the monitoring system.

Before attempting to clean a Nellcor™ sensor, read the *Instructions for Use* enclosed with the sensor. Each sensor model has cleaning instructions specific to that sensor. Follow the sensor cleaning and disinfecting procedures in the particular sensor’s *Instructions for Use*.

7.3 Periodic Safety Checks

Perform the following checks every 24 months.

- Inspect the monitoring system for mechanical and functional damage or deterioration.

- Inspect the safety relevant labels for legibility. Contact Covidien or a local Covidien representative, if labels are damaged or illegible.

- Inspect the internal fuses for proper value and rating.

- Ensure all user interface items, cables, and accessories function normally.
7.4 **Service and Upgrades**

WARNING:
Only qualified service personnel should remove the monitoring system cover. There are no user-serviceable parts inside. Users may not modify any components of the monitoring system.

To service or upgrade the monitoring system, contact Technical Services or a local Covidien representative for a referral to a qualified service technician. Reference *Obtaining Technical Assistance*, p. 1-5.

- The monitoring system generally requires no calibration. In rare instances, the monitoring screen requires re-calibration. Reference *Operational Performance Issues*, p. 8-14.

- Have a qualified service technician replace the battery at least every 24 months.

Note:
The battery is recyclable. Do not dispose of the battery by placing it in the regular trash. Dispose of the battery in accordance with local guidelines and regulations or contact Covidien to arrange for disposal.

7.5 **Storage**

7.5.1 **Monitoring System Transport and Storage**

The only true difference between transport and storage with or without the shipping container is in the temperature. It is less tolerant of heat when not in a shipping container. Reference *Transport and Storage*, p. 11-3.

7.5.2 **Removed Battery Storage**

Optimum storage for a removed battery is room temperature. Elevated temperatures will reduce storage life. Newly ordered batteries ship with 30 - 50% remaining capacity to give at least six (6) months shelf life at room temperature. Recharge the battery if storing for a longer period than six (6) months.
8 Troubleshooting

8.1 Overview

This chapter describes how to troubleshoot common problems while using the Nellcor™ Bedside Respiratory Patient Monitoring System. This chapter includes information about the on-screen help function, error code messages, and how to obtain technical help and support.

8.2 System Condition Categories

WARNING:
Have a qualified service technician perform a safety and functional test prior to use in a clinical setting.

WARNING:
In the case of a monitoring system failure, reset the monitoring system and ensure it is functioning correctly prior to usage.

WARNING:
Only qualified service personnel should remove the monitoring system cover. There are no user-serviceable parts inside. Users may not modify any components of the monitoring system.

WARNING:
Do not spray, pour, or spill any liquid on the monitoring system, its accessories, connectors, switches, or openings in the chassis.

WARNING:
If uncertain about the accuracy of any measurement, check the patient's vital signs by alternate means. Ensure the monitoring system is functioning correctly. The monitoring system is designed to provide instant feedback to guide caregivers in taking whatever action requires their attention. Alarm conditions
appear in order of priority. To access suggestions for resolving the particular message, press the MORE INFO button. If the monitoring system allows the caregiver to dismiss the condition, pressing DISMISS ALARM clears the alarm, but does not clear the condition until the caregiver takes appropriate action.

If the monitoring system detects a condition requiring caregiver intervention, it displays a either a prompt or an error message with a recommended action.

Note:

Pressing ALARM SILENCE silences any audible tone for a period of up to two (2) minutes. A countdown timer reflects any silence time remaining.

- **Prompts** — Prompts require a response. For example, the READY: ATTACH SENSOR TO PATIENT AND MONITOR prompt reminds users to connect both an interface cable and sensor to the monitoring system and to the patient.

 ![Figure 8-1. Ready Prompt](image)

- **Alarms and Error condition messages** — When the monitoring system detects an error condition, it displays the alarm message, suggests corrective action, and sounds an alarm. It continues monitoring the patient. For example, the SENSOR DISCONNECTED error message leaves any action to the discretion of the user, but the PULSE RATE LOW error message requires immediate caregiver intervention.

 ![Figure 8-2. Sensor Disconnected Message and Help Screen](image)
Figure 8-3. Stacked Alarm/Alerts

1. **SpO2 LOW Alarm** — Patient saturation is below the lower SpO2 threshold.
2. **PULSE RATE LOW Alarm** — Patient pulse rate is below the lower pulse rate threshold.
3. **SPD ALERT Alarm** — Patient is experiencing multiple, sequential occurrences of a desaturation.
4. **SPD Alert Alarm Icon** — Appears in the trend data graph each time an SPD Alert alarm occurs.
5. **SatSeconds Alarm Icon** — Appears in the trend data graph each time an SatSeconds alarm occurs.
6. **Silence Alarm Icon** — Remains yellow until caregiver presses it to silence all alarms.
7. **SatSeconds Alarm Icon** — Icon remains black on a yellow background until the error condition clears.
8. **Saturation Value with Alarm** — Values remain black on a yellow background until the error condition clears.
9. **SPD Alert Alarm Icon** — Icon remains black on a yellow background until the error condition clears.
10. **Pulse Rate Value with Alarm** — Values remain black on a yellow background until the error condition clears.

Messages remain on the screen until the condition clears. Users may dismiss some messages. Most high-priority messages require user intervention or service to clear the condition.
8.3 User Prompts and Messages

Prompts require a response from or action by the caregiver. Messages provide the caregiver with useful information.

Table 8-1. Common User Prompts and Messages

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Condition</th>
<th>Resolution</th>
<th>Dismiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>Ready: Attach sensor to patient and monitor</td>
<td>Awaiting patient connection to begin monitoring</td>
<td>Connect the interface cable to the sensor port and the appropriate sensor to the interface cable and to the patient. Reference Selecting a Nellcor™ Sensor, p. 9-1.</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>Monitoring</td>
<td>Proper connection established, patient monitoring in progress</td>
<td>None.</td>
<td>---</td>
</tr>
</tbody>
</table>

8.4 Alarms and Error Conditions

This section covers alarms and correctable error conditions. Reference Non-Correctable Failures, p. 8-16, for non-correctable errors.

8.4.1 Alarms

The status field at the top of the monitoring screen contains information describing overall monitoring system status and any active alarms. If multiple alarms occur during user interaction with a menu or dialog box, the list of alarm messages collapses to a single line listing the total number of alarms currently active. Cancellation or dismissal of an alarm message requires user intervention, whereas status messages do not. The message identifies the alarm or status. If it is an alarm, it offers users a MORE INFO button, which when pressed, provides detailed data and a means to correct the situation or clear the alarm. Press DISMISS ALARM to clear the alarm if that is an option. If it is not an option, take the recommended action. If that does not clear the alarm, reset it. If a reset does not clear the alarm, return it for service.
Note:

Not all high-priority alarms have a DISMISS ALARM option. These are serious errors and require the user to resolve the issue or return the monitoring system to Covidien or a qualified service technician.

Alarm Prioritization

Alarms have an assigned priority. Stacked alarms display in order of criticality and priority. Reference *Message Types*, p. 4-51, for details on high, medium, and low priority alarms. Occasionally, the monitoring screen field contains one or more prompts or error messages. Stacked alarms display in order of criticality and priority. High priority messages appear above low priority messages. Alarms of the same priority appear in order of occurrence. If the caregiver does not resolve the issue and clear the condition, the monitoring system may escalate the alarm by increasing the frequency of the alarm.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Condition</th>
<th>Resolution</th>
<th>Dismiss</th>
</tr>
</thead>
</table>
| Med. | Pulse Rate | 1. If Pulse Rate Delay is enabled and not set to OFF, patient pulse rate violates the lower pulse rate limit threshold and exceeds the Pulse Rate Delay limit
 | Low | 2. If Pulse Rate Delay is disabled or set to OFF, patient pulse rate violates the lower pulse rate limit threshold | Pulse rate is below the alarm limit. Check patient immediately. | No |
| Med. | Pulse Rate | 1. If Pulse Rate Delay is enabled and not set to OFF, patient pulse rate violates the upper pulse rate limit threshold and exceeds the Pulse Rate Delay limit
 | High | 2. If Pulse Rate Delay is disabled or set to OFF, patient pulse rate violates the upper pulse rate limit threshold | Pulse rate is above the alarm limit. Check patient immediately. | No |
| Med. | SpO2 Low | 1. If the SatSeconds alarm is enabled and not set to OFF, patient SpO2 violates the lower SpO2 limit threshold AND exceeds the SatSeconds limit
 | | 2. If the SatSeconds alarm is disabled or set to OFF, patient SpO2 value violates the lower SpO2 limit threshold | SpO2 is below the alarm limit. Check patient immediately. | No |
Troubleshooting

Table 8-2. Initial Alarm Priority for Errors (Continued)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Condition</th>
<th>Resolution</th>
<th>Dismiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med.</td>
<td>SpO2 High</td>
<td>1. If the SatSeconds alarm is enabled and not set to OFF, patient SpO2 violates the upper SpO2 limit threshold AND exceeds the SatSeconds limit 2. If the SatSeconds alarm is disabled or set to OFF, patient SpO2 value violates the upper SpO2 limit threshold</td>
<td>SpO2 is above the alarm limit. Check patient immediately.</td>
<td>No</td>
</tr>
<tr>
<td>Low</td>
<td>SPD Alert</td>
<td>SPD sensitivity value is reached.</td>
<td>The SPD limit has been exceeded. Check patient.</td>
<td>Yes</td>
</tr>
<tr>
<td>High</td>
<td>Pulse Timeout</td>
<td>Sensor connected to a patient AND has detected a pulse in the past, AND now is unable to determine pulse rate value.</td>
<td>Unable to determine pulse rate or oxygen saturation. Check patient immediately. Reposition or replace sensor.</td>
<td>No</td>
</tr>
<tr>
<td>Low</td>
<td>Sensor Disconnected¹</td>
<td>Patient sensor is disconnected from monitor</td>
<td>Sensor disconnected. Check all connections. If problem persists, replace cable and/or sensor.</td>
<td>Yes</td>
</tr>
<tr>
<td>Low</td>
<td>Sensor Off¹</td>
<td>Patient sensor is not attached to patient</td>
<td>Sensor not attached to patient. Reposition or replace sensor.</td>
<td>Yes</td>
</tr>
<tr>
<td>Low</td>
<td>Sensor Failure¹</td>
<td>Bad Sensor, Bad Signal, Sensor Error, Defective Sensor</td>
<td>Defective sensor detected. Replace the sensor.</td>
<td>No</td>
</tr>
<tr>
<td>Med</td>
<td>Battery Critically Low</td>
<td>AC power usage AND battery level critical</td>
<td>Continue charging on AC</td>
<td>Yes</td>
</tr>
<tr>
<td>High</td>
<td>Battery Low</td>
<td>Battery power usage AND battery level critical</td>
<td>Connect to AC power</td>
<td>No</td>
</tr>
<tr>
<td>Med</td>
<td>Battery Low</td>
<td>Battery power usage AND battery level low</td>
<td>Connect to AC power</td>
<td>Yes</td>
</tr>
<tr>
<td>High</td>
<td>Battery Failure</td>
<td>Battery missing OR battery charger failure</td>
<td>Return to a qualified service technician.</td>
<td>No</td>
</tr>
<tr>
<td>Low</td>
<td>Trend Data Lost</td>
<td>Corrupt trend data detected at start up</td>
<td>Corrupt trend data detected. Some or all trend data cleared.</td>
<td>Yes</td>
</tr>
<tr>
<td>Data export cancelled</td>
<td>Data export cancelled</td>
<td>Interruption or cancellation during data export.</td>
<td>Retry data export.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 8-2. Initial Alarm Priority for Errors (Continued)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Condition</th>
<th>Resolution</th>
<th>Dismiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Communication Error</td>
<td>Unable to connect to the network</td>
<td>Unable to connect to the network. Return to a qualified service technician.</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unable to connect to the wireless network</td>
<td>Unable to connect to wireless network. Corrupt trend data detected. Old trend data cleared.</td>
<td>No</td>
</tr>
<tr>
<td>Low</td>
<td>Communication Error</td>
<td>Unable to establish a connection with the remote system</td>
<td>Cannot establish a connection with remote system. Return to a qualified service technician.</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication failure between host and monitor is detected</td>
<td>Unable to connect to the network. Return to a qualified service technician.</td>
<td>No</td>
</tr>
<tr>
<td>High</td>
<td>Speaker Failure</td>
<td>Primary speaker failure is detected during operation.</td>
<td>Primary speaker error occurred. Remove from service immediately. Return to a qualified service technician.</td>
<td>No</td>
</tr>
<tr>
<td>High</td>
<td>System Failure</td>
<td>Monitor was reset unexpectedly</td>
<td>Unexpected reset. Settings lost. If problem persists, remove from service. Return to a qualified service technician.</td>
<td>Yes</td>
</tr>
<tr>
<td>Low</td>
<td>Extended Update</td>
<td>Sensor is connected to a patient and has successfully detected SpO2 and pulse rate during the measurement session, but current conditions are causing the SpO2 and/or pulse rate update period(s) to exceed 25 seconds.</td>
<td>Check patient. Reposition sensor, replace sensor, or assess alternative Nellcor™ sensor if condition persists.</td>
<td>Yes</td>
</tr>
<tr>
<td>Low</td>
<td>System Failure</td>
<td>The graphical display of SpO2 or pulse rate data has not been updated for over 30 seconds.</td>
<td>Reset the monitoring system. If the problem persists, remove from service and return to a qualified service technician.</td>
<td>No</td>
</tr>
</tbody>
</table>
Sample Alarm Condition

The monitoring system may detect a failure of the primary speaker and sound a high-pitched piezo tone. A primary speaker failure alarm appears.

To access an alarm message

1. Press MORE INFO or VIEW ALL to continue, depending on which is available. A description of the error and any recommended action appears. This particular alarm cannot be cleared.

Table 8-2. Initial Alarm Priority for Errors (Continued)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Condition</th>
<th>Resolution</th>
<th>Dismiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Equipment Failure</td>
<td>Nurse call output system error</td>
<td>A Nurse Call error occurred. Return to a qualified service technician.</td>
<td>No</td>
</tr>
<tr>
<td>Low</td>
<td>Serial Communications system failure</td>
<td>Serial communication error occurred. Return to a qualified service technician.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Analog output system failure</td>
<td>Analog output error occurred. Return to a qualified service technician.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Cooling fan failure</td>
<td>A cooling fan failure occurred. Return to a qualified service technician.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Over Temperature</td>
<td>Thermal control system is above thermal limit</td>
<td>Internal temperature is above thermal limit. The monitor may shut down if the internal temperature continues to increase. Return to a qualified service technician.</td>
<td>Yes</td>
</tr>
<tr>
<td>Low</td>
<td>Clock Settings Lost</td>
<td>Invalid date and time value detected during start up</td>
<td>Date and time setting lost. Set the date and time. Return to a qualified service technician.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. The priority for this alarm may be Low, Medium, or High as an institutional setting. The default priority is Low.
2. Press ALARM SILENCE to silence the high-pitched piezo tone. This provides the caregiver two (2) minutes to resolve the issue.

3. Take the recommended action to resolve the issue.

8.4.2 Correctable Error Conditions

When an error code other than a correctable error appears, turn the monitoring system off and back on again. If the error code reappears, record it and notify service personnel. When this occurs, the monitoring system will stop monitoring the patient until the caregiver takes corrective action and clears the error condition.
Table 8-3. Common Correctable Problems and Resolutions

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Recommended Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Reference Power Failure Issues, p. 8-11.</td>
</tr>
<tr>
<td>• No power, even though attached to AC and/or DC power source</td>
<td></td>
</tr>
<tr>
<td>• Power membrane switch panel LEDs do not light at appropriate times</td>
<td></td>
</tr>
<tr>
<td>• Powers down or resets without apparent cause</td>
<td></td>
</tr>
<tr>
<td>• Power indicator is ON but monitoring screen is dim</td>
<td></td>
</tr>
<tr>
<td>• Power indicator is ON but monitoring screen is blank</td>
<td></td>
</tr>
<tr>
<td>• No response or unexpected response to touch</td>
<td></td>
</tr>
<tr>
<td>• Pixels do not all light</td>
<td></td>
</tr>
<tr>
<td>• Screen burn or legibility issue such as cracking, scratches, pen marks, pencil lead, or indents</td>
<td></td>
</tr>
<tr>
<td>Audio or visual alarm</td>
<td>Reference Alarm Issues, p. 8-13.</td>
</tr>
<tr>
<td>• Audible alarms do not sound</td>
<td></td>
</tr>
<tr>
<td>• Audible alarms are faint or too loud</td>
<td></td>
</tr>
<tr>
<td>• Alarms sound without apparent cause</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>Reference Communication Issues, p. 8-14.</td>
</tr>
<tr>
<td>• Data ports do not function properly, data transfers incomplete</td>
<td></td>
</tr>
<tr>
<td>• Communications with external sources are not working</td>
<td></td>
</tr>
<tr>
<td>• Trend data sent through the data ports is incomplete or garbled</td>
<td></td>
</tr>
<tr>
<td>• Monitoring screen appears functional, but is not registering patient data</td>
<td></td>
</tr>
<tr>
<td>• Patient data appears suspect</td>
<td></td>
</tr>
<tr>
<td>• Intermittent or corrupt patient data</td>
<td></td>
</tr>
</tbody>
</table>
8.5 Power Failure Issues

Table 8-4. Power Failure Issues

<table>
<thead>
<tr>
<th>Problem</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is no response when pressing the POWER ON key.</td>
<td>A fuse may be malfunctioning. Notify a qualified service technician to check and, if necessary, replace the fuse. If operating on battery power, the battery may be missing or discharged. If the battery is discharged, charge the battery. Reference Battery Power, p. 4-2. If the battery does not charge, notify a service personnel to replace the battery.</td>
</tr>
<tr>
<td>The monitoring system is operating on battery power, even though it is connected to an AC power source.</td>
<td>Ensure the power cord is properly connected to the monitoring system. Check to see if power is available to other equipment on the same AC circuit.</td>
</tr>
<tr>
<td>Even though it is connected to an AC power source, the monitoring system displays the following System Error when powered on: “Battery missing or damaged. Contact a qualified service technician.”</td>
<td>The battery may not be installed. The battery must be installed prior to use.</td>
</tr>
</tbody>
</table>
Monitoring Screen Issues

Table 8-5. Monitoring Screen Issues

<table>
<thead>
<tr>
<th>Problem</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power indicator is ON but monitoring screen is dim.</td>
<td>Increase the monitoring screen brightness. Reference To adjust the screen brightness, p. 4-38.</td>
</tr>
<tr>
<td>One or more display elements do not light during the power-on self-test (POST).</td>
<td>Do not use the monitoring system. Return the monitoring system to a qualified service technician. Reset and power back on. Return to a qualified service technician.</td>
</tr>
<tr>
<td>Power indicator is ON but monitoring screen is blank.</td>
<td></td>
</tr>
<tr>
<td>Monitoring screen is not responsive to touch.</td>
<td>Ensure the monitoring screen is unlocked. Clean the monitoring screen. Use a firmer touch. The monitoring screen responds after touch slightly deforms the surface. Have a qualified service technician re-calibrate the touchscreen. Return to a qualified service technician.</td>
</tr>
<tr>
<td>Monitoring screen is cracked or marred.</td>
<td>Return to a qualified service technician.</td>
</tr>
</tbody>
</table>
8.7 Alarm Issues

Table 8-6. Alarm Issues

<table>
<thead>
<tr>
<th>Problem</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Pulse Search Indicator is lit for more than 10 seconds (before any measurements take place).</td>
<td>Check the sensor Instructions for Use to confirm appropriate usage and proper application. Check sensor and interface cable connections. Test the sensor on another patient and/or try another sensor or interface cable. Perfusion may be too low for the monitoring system to track the pulse. Check the sensor site. Try another type of Nellcor™ sensor. Interference may be preventing the monitoring system from tracking the pulse. Keep the sensor still, if possible. Verify that the sensor is securely applied and replace it if necessary. Change the sensor site. Electromagnetic interference may be preventing the monitoring system from tracking the pulse. Remove the source of interference and/or try to stabilize the environment. Use a type of sensor that tolerates more patient movement; for example, a Nellcor™ adhesive sensor. The sensor may be too tight, there may be excessive ambient light, or the sensor may be on an extremity with a blood pressure cuff, arterial catheter, or intravascular line. Reposition the sensor as necessary.</td>
</tr>
<tr>
<td>The Pulse Search indicator illuminates after successful measurements occur.</td>
<td>Check the status of the patient. Perfusion may be too low for the monitoring system to track the pulse. Test the monitoring system on another patient. Change the sensor site and/or try another type of Nellcor™ sensor. Interference may be preventing the monitoring system from tracking the pulse. Verify the sensor is securely applied and replace it if necessary. Change the sensor site. Use a type of sensor that tolerates more patient movement; for example, an Nellcor™ adhesive sensor. Electromagnetic interference may be preventing the monitoring system from tracking the pulse. Remove the source of interference and/or try to stabilize the environment. The sensor may be too tight, there may be excessive ambient light, or the sensor may be on an extremity with a blood pressure cuff, arterial catheter, or intravascular line. Reposition the sensor as necessary.</td>
</tr>
<tr>
<td>Alarms only briefly actuate.</td>
<td>Check patient trend data. Examine the patient. Determine if Alarm Audio Off is enabled. If so, an alarm will sound every three (3) minutes.</td>
</tr>
</tbody>
</table>

Examine the patient. Determine if Alarm Audio Off is enabled. If so, an alarm will sound every three (3) minutes.
8.8 Communication Issues

Table 8-7. Common Prompts and Error Messages

<table>
<thead>
<tr>
<th>Problem</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unable to connect to the network.</td>
<td>Review system requirements for compatibility. Check one port at a time for IP address, cable connection, cable damage. Wireless, Ethernet, and serial ports are each mutually exclusive. Check to ensure all network connections are properly connected and configured. Replace any suspect cables. Fiber is not always visibly damaged. Contact an IT specialist to review the network connection. Return to a qualified service technician.</td>
</tr>
<tr>
<td>Unable to connect to the wireless network.</td>
<td></td>
</tr>
<tr>
<td>Unable to establish a connection with the remote system.</td>
<td></td>
</tr>
<tr>
<td>Communication failure between host and monitor is detected.</td>
<td></td>
</tr>
</tbody>
</table>

8.9 Operational Performance Issues

Table 8-8. Common Operational Performance Issues

<table>
<thead>
<tr>
<th>Problem</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring screen appears functional, but is not registering patient data.</td>
<td>Ensure pulse oximetry sensor and interface cable are both Nellcor™ products. Check the monitoring screen for the jagged interference indicator. If lit, ensure Nellcor™ sensor is firmly connected and patient remains still. Check the for the loss-of-pulse indicator. If lit, ensure Nellcor™ sensor is firmly connected. Reference Nellcor™ Sensor Performance Considerations, p. 6-1.</td>
</tr>
<tr>
<td>Patient data appears suspect.</td>
<td>Reset the monitoring system. Check sensor and interface cable connections.</td>
</tr>
<tr>
<td>Intermittent or corrupt patient data.</td>
<td>Reset the monitoring system. Check sensor and interface cable connections.</td>
</tr>
</tbody>
</table>
8.10 Hardware Issues

WARNING:
If the monitoring system reports a primary speaker failure, do not use the monitoring system longer than necessary to ensure patient safety. Contact Covidien or a local Covidien representative.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary speaker failure is detected during operation.</td>
<td>Remove from service immediately. Return to a qualified service technician.</td>
</tr>
<tr>
<td>Monitor was reset unexpectedly.</td>
<td>If problem persists, remove from service. Return to a qualified service technician.</td>
</tr>
<tr>
<td>SpO2 or pulse rate data has not been updated for over 30 seconds.</td>
<td>Return to a qualified service technician.</td>
</tr>
<tr>
<td>Nurse call output system error.</td>
<td></td>
</tr>
<tr>
<td>Serial Communications system failure.</td>
<td></td>
</tr>
<tr>
<td>Analog output system failure.</td>
<td></td>
</tr>
<tr>
<td>Cooling fan failure.</td>
<td></td>
</tr>
<tr>
<td>Invalid date and time value detected during start up.</td>
<td>Set the date and time. Replace the battery, if stored for too long. Return to a qualified service technician.</td>
</tr>
</tbody>
</table>
8.11 System Errors and Software Issues

The monitoring system may encounter a software problem, which results in a screen very similar to the initial splash screen during power up. This indicates a serious error. Reset the device. If the error occurs again, return to a qualified service technician.

Figure 8-5. Sample System Error Screen

8.12 Non-Correctable Failures

Contact Covidien or a local Covidien representative should the monitoring system detect a non-correctable failure. When a non-correctable error occurs, several events also occur.

- The monitoring system sounds a low priority alarm that cannot be silenced except by power cycling the monitoring system.
- Measurements stop.
- All information on the screen vanishes, displaying an error code message.

Note:
Cycling the power may clear the non-correctable error. If it does not, return to a qualified service technician.
8.13 **Product Return**

Contact Covidien or a local Covidien representative for shipping instructions, including a Returned Goods Authorization (RGA) number. Unless otherwise instructed by Covidien, it is not necessary to return the sensor or other accessory items with the monitoring system. Pack the monitoring system in its original shipping carton. If the original carton is not available, use a suitable carton with the appropriate packing material to protect it during shipping. Return the monitoring system by any shipping method that provides proof of delivery.
9 Accessories

9.1 Overview

This chapter contains information for selecting the appropriate sensor for connection to the appropriate interface cable and identifies optional equipment for use with the Nellcor™ Bedside Respiratory Patient Monitoring System. Refer to the Covidien web site to obtain current part numbers for all related items.

9.2 Nellcor™ Sensors

9.2.1 Selecting a Nellcor™ Sensor

WARNING:
Before use, carefully read the sensor Instructions for Use, including all warnings, cautions, and instructions.

WARNING:
Use only Covidien-approved sensors and interface cables when connecting to the sensor port. Connecting any other cable or sensor influences the accuracy of sensor data, which may lead to adverse results.

WARNING:
Do not use any monitoring system, sensor, cable, or connector that appears damaged. Remove any damaged equipment from service for inspection by a qualified service technician.

WARNING:
Do not use a damaged sensor or interface cable. Do not use a sensor with exposed optical components.

WARNING:
Shock hazard — Do not immerse or wet the sensor.
WARNING: Do not attach any cable to the sensor port connector that is intended for computer use.

WARNING: Incorrect application or duration of use of a sensor can cause tissue damage. Inspect the sensor site periodically as directed in the sensor Instructions for Use.

WARNING: Do not lift by the sensor or interface cable. The cable may disconnect, potentially dropping the monitoring system on a patient or damaging surface.

WARNING: Pulse oximetry readings and pulse signal can be affected by certain ambient environmental conditions, sensor application errors, and certain patient conditions.

WARNING: The monitoring system may retain trend data from multiple patients if transferring the monitoring system from one patient to another.

Caution: The sensor disconnect error message and associated alarm indicate that the sensor is either disconnected or the wiring is faulty. Check the sensor connection and, if necessary, replace the sensor, interface cable, or both.

Caution: Adhesive sensors are intended for single-patient use only. Do not transfer a sensor from one patient to a second patient.

Caution: Single-patient use sensors are intended for single-patient use only. Do not transfer an adhesive sensor from one patient to a second patient.

When selecting a Nellcor™ sensor, consider the patient’s weight and activity level, the adequacy of perfusion, and the available sensor sites, the need for sterility, and the anticipated duration of monitoring. Use the recommended
sensor’s Instructions for Use to guide sensor selection or contact Covidien or a local Covidien representative. Reference Nellcor™ Sensor Performance Considerations, p. 6-1.

The Nellcor™ interface cable connects the monitoring system with the Nellcor™ sensor. Do not attach any cable to the sensor port that is intended for computer use. Use only Covidien-approved sensors and interface cables when connecting to the sensor port.

Table 9-1. Nellcor™ Sensor Models and Patient Sizes

<table>
<thead>
<tr>
<th>Nellcor™ Sensor</th>
<th>SKU</th>
<th>Patient Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nellcor™ Preemie SpO2 Sensor, non-adhesive (Single-patient use)</td>
<td>SC-PR</td>
<td><1.5 kg</td>
</tr>
<tr>
<td>Nellcor™ Neonatal SpO2 Sensor, non-adhesive (Single-patient use)</td>
<td>SC-NEO</td>
<td>1.5 to 5 kg</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Sensor, non-adhesive (Single-patient use)</td>
<td>SC-A</td>
<td>>40 kg</td>
</tr>
<tr>
<td>Nellcor™ Adult-Neonatal SpO2 Sensor with Wraps (Reusable with adhesive)</td>
<td>OXI-A/N</td>
<td><3 or >40 kg</td>
</tr>
<tr>
<td>Nellcor™ Pediatric-Infant SpO2 Sensor with Wraps (Reusable with adhesive)</td>
<td>OXI-P/I</td>
<td>3 to 40 kg</td>
</tr>
<tr>
<td>Nellcor™ Pediatric SpO2 Sensor, Two Piece (Sterile, single-use only)</td>
<td>P</td>
<td>10 to 50 kg</td>
</tr>
<tr>
<td>Nellcor™ Neonatal-Adult SpO2 Sensor, Two Piece (Sterile, single-use only)</td>
<td>N</td>
<td><3 or >40 kg</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Sensor, Two Piece (Sterile, single-use only)</td>
<td>A</td>
<td>> 30 kg</td>
</tr>
<tr>
<td>Nellcor™ Neonatal-Adult SpO2 Sensor (Sterile, single-use only)</td>
<td>MAXN</td>
<td><3 or >40 kg</td>
</tr>
<tr>
<td>Nellcor™ Infant SpO2 Sensor (Sterile, single-use only)</td>
<td>MAXI</td>
<td>3 to 20 kg</td>
</tr>
<tr>
<td>Nellcor™ Pediatric SpO2 Sensor (Sterile, single-use only)</td>
<td>MAXP</td>
<td>10 to 50 kg</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Sensor (Sterile, single-use only)</td>
<td>MAXA</td>
<td>>30 kg</td>
</tr>
<tr>
<td>Nellcor™ Adult XL SpO2 Sensor (Sterile, single-use only)</td>
<td>MAXAL</td>
<td>>30 kg</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Nasal Sensor (Sterile, single-use only)</td>
<td>MAXR</td>
<td>>50 kg</td>
</tr>
<tr>
<td>Nellcor™ Forehead SpO2 Sensor (Sterile, single-use only)</td>
<td>MAXFAST</td>
<td>>10 kg</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Sensor, Reusable (Nonsterile)</td>
<td>DS100A</td>
<td>>40 kg</td>
</tr>
<tr>
<td>Nellcor™ SpO2 Sensor, Multi-site Reusable (Nonsterile)</td>
<td>D-YS</td>
<td>>1 kg</td>
</tr>
<tr>
<td>Nellcor™ SpO2 Ear Clip, Reusable (Nonsterile)</td>
<td>D-YSE</td>
<td>>30 kg</td>
</tr>
<tr>
<td>Nellcor™ Pediatric SpO2 Sensor Clip, Reusable (Nonsterile)</td>
<td>D-YSER</td>
<td>3 to 40 kg</td>
</tr>
</tbody>
</table>
Contact Covidien or a local Covidien representative for a Nellcor™ Oxygen Saturation Accuracy Specification Grid listing all of the Nellcor™ sensors used with the monitoring system. Covidien retains a soft copy at www.covidien.com.

Note:
Physiological conditions such as excessive patient movement, medical procedures, or external agents such as dysfunctional hemoglobin, arterial dyes, low perfusion, dark pigment, and externally applied coloring agents such as nail polish, dye, or pigmented cream may interfere with the monitoring system's ability to detect and display measurements.

9.2.2 Nellcor™ Sensor Features

Nellcor™ sensor features are different for sensors at a different revision level and by sensor type (adhesive, recycled, and reusable). The revision level of a sensor is located on the sensor plug.

9.2.3 Biocompatibility Testing

Biocompatibility testing has been conducted on Nellcor™ sensors in compliance with ISO 10993-1, Biological Evaluation of Medical Devices, Part 1: Evaluation and Testing. Nellcor™ sensors have passed the recommended biocompatibility testing and are therefore in compliance with ISO 10993-1.

9.3 Optional Equipment

Several mounting configurations are offered with the monitoring system. Contact Covidien or a local Covidien representative for more information.

Covidien Technical Services: Patient Monitoring
15 Hampshire Street
Mansfield, MA 02048 USA
1.800.635.5267, 1.925.463.4635 (toll)
or contact a local Covidien representative
www.covidien.com
10 Theory of Operations

10.1 Overview

This chapter explains the theory behind operations of the Nellcor™ Bedside Respiratory Patient Monitoring System.

10.2 Theoretical Principles

The monitoring system uses pulse oximetry to measure functional oxygen saturation in the blood. Pulse oximetry works by applying a Nellcor™ sensor to a pulsating arteriolar vascular bed, such as a finger or toe. The sensor contains a dual light source and a photodetector.

Bone, tissue, pigmentation, and venous vessels normally absorb a constant amount of light over time. The arteriolar bed normally pulsates and absorbs variable amounts of light during the pulsations. The ratio of light absorbed is translated into a measurement of functional oxygen saturation (SpO₂).

Ambient conditions, sensor application, and patient conditions can influence the ability of the monitoring system to accurately measure SpO₂. Reference Performance Considerations, p. 6-1

Pulse oximetry is based on two principles: oxyhemoglobin and deoxyhemoglobin differ in their absorption of red and infrared light (measured using spectrophotometry), and the volume of arterial blood in tissue (and hence, light absorption by that blood) changes during the pulse (registered using plethysmography). A monitoring system determines SpO₂ by passing red and infrared light into an arteriolar bed and measuring changes in light absorption during the pulsatile cycle. Red and infrared low-voltage light-emitting diodes (LED) in the sensor serve as light sources; a photo diode serves as the photo detector.

Since oxyhemoglobin and deoxyhemoglobin differ in light absorption, the amount of red and infrared light absorbed by blood is related to hemoglobin oxygen saturation.

The monitoring system uses the pulsatile nature of arterial flow to identify the oxygen saturation of arterial hemoglobin. During systole, a new pulse of arte-
Arterial blood enters the vascular bed, and blood volume and light absorption increase. During diastole, blood volume and light absorption reach their lowest point. The monitoring system bases its SpO₂ measurements on the difference between maximum and minimum absorption (measurements at systole and diastole). By doing so, it focuses on light absorption by pulsatile arterial blood, eliminating the effects of nonpulsatile absorbers such as tissue, bone, and venous blood.

10.3 Automatic Calibration

Because light absorption by hemoglobin is wavelength dependent and because the mean wavelength of LEDs varies, a monitoring system must know the mean wavelength of the sensor’s red LED to accurately measure SpO₂.

During monitoring, the monitoring system’s software selects coefficients that are appropriate for the wavelength of that individual sensor’s red LED; these coefficients are then used to determine SpO₂.

Additionally, to compensate for differences in tissue thickness, the light intensity of the sensor’s LEDs is adjusted automatically.

Note:
During certain automatic calibration functions, the monitoring system may briefly display a flat line on the plethysmographic waveform. This is a normal operation and does not require any user intervention.

10.4 Functional Testers and Patient Simulators

Some models of commercially available bench top functional testers and patient simulators can be used to verify the proper functionality of Covidien Nellcor™ monitoring systems, sensors, and cables. Reference the individual testing device’s operator’s manual for the procedures specific to the model of tester used. While such devices may be useful for verifying that the sensor, cabling, and monitoring system are functional, they are incapable of providing the data required to properly evaluate the accuracy of a system’s SpO₂ measurements.

Fully evaluating the accuracy of the SpO₂ measurements requires, at a minimum, accommodating the wavelength characteristics of the sensor and reproducing the complex optical interaction of the sensor and the patient’s tissue. These capabilities are beyond the scope of known bench top testers. SpO₂
measurement accuracy can only be evaluated in vivo by comparing monitoring system readings with values traceable to SaO2 measurements obtained from simultaneously sampled arterial blood using a laboratory CO-oximeter.

Many functional testers and patient simulators have been designed to interface with the monitoring system’s expected calibration curves and may be suitable for use with monitoring systems and/or sensors. Not all such devices, however, are adapted for use with the OxiMax™ digital calibration system. While this will not affect use of the simulator for verifying system functionality, displayed SpO2 measurement values may differ from the setting of the test device. For a properly functioning monitoring system, this difference will be reproducible over time and from monitoring system to monitoring system within the performance specifications of the test device.

10.5 Unique Technologies

10.5.1 Functional versus Fractional Saturation

This monitoring system measures functional saturation where oxygenated hemoglobin is expressed as a percentage of the hemoglobin that can transport oxygen. It does not detect significant amounts of dysfunctional hemoglobin, such as carboxyhemoglobin or methemoglobin. In contrast, hemoximeters such as the IL482, report fractional saturation where oxygenated hemoglobin is expressed as a percentage of all measured hemoglobin, including measured dysfunctional hemoglobins. To compare functional saturation measurements to those from a monitoring system that measures fractional saturation, fractional measurements must be converted using the listed equation.

\[
\Phi = \frac{\phi}{100 - (\eta + \Lambda)} \times 100
\]

- Φ functional saturation
- η %carboxyhemoglobin
- ϕ fractional saturation
- Λ %methemoglobin
10.5.2 **Measured versus Calculated Saturation**

When calculating saturation from a blood gas partial pressure of oxygen (PO₂), the calculated value may differ from the SpO₂ measurement of a monitoring system. This usually occurs when saturation calculations exclude corrections for the effects of variables such as pH, temperature, the partial pressure of carbon dioxide (PCO₂), and 2,3-DPG, that shift the relationship between PO₂ and SpO₂.

![Figure 10-1. Oxyhemoglobin Dissociation Curve](image)

1. % Saturation Axis
2. PO₂ (mmHg) Axis
3. Increased pH; Decreased temperature, PCO₂, and 2,3-DPG
4. Decreased pH; Increased temperature, PCO₂, and 2,3-DPG

10.5.3 **Data Update Period, Data Averaging, and Signal Processing**

The advanced signal processing of the OxiMax™ algorithm automatically extends the amount of data required for measuring SpO₂ and pulse rate depending on the measurement conditions. The OxiMax™ algorithm automatically extends the dynamic averaging time required beyond seven (7) seconds during degraded or difficult measurement conditions caused by low perfusion, signal artifact, ambient light, electrocautery, other interference, or a combination of these factors, which
results in an increase in the dynamic averaging. If the resulting dynamic averaging
time exceeds 20 seconds for SpO₂, the monitoring system displays the pulse search
indicator while continuing to update SpO₂ and pulse rate values every second. If
the dynamic averaging time exceeds 25 seconds, a low-priority Extended Update
alarm also appears.

As such measurement conditions extend, the amount of data required may
continue to increase. If the dynamic averaging time reaches 40 seconds, and/
or 50 seconds for pulse rate, a high priority alarm state results: the monitoring
system display a Pulse Timeout alarm and reports a zero saturation indicating
a loss-of-pulse condition.

10.6 System Features

10.6.1 Nellcor™ Sensor Technology

Use Nellcor™ sensors, which are specifically designed for use with the moni-
toring system. Identify Nellcor™ sensors by the Nellcor™ logo on the plug. All
Nellcor™ sensors contain a memory chip carrying information about the
sensor which the monitoring system needs for correct operation, including the
sensor’s calibration data, model type, troubleshooting codes, and error detection
data.

This unique oximetry architecture enables several new features. When a
Nellcor™ sensor is connected to the monitoring system, the monitoring
system reads the information from the sensor memory chip, ensures it is error
free, and then loads the sensor data prior to monitoring for new information.
As the monitoring system reads sensor information, it sends the sensor model
number to the monitoring screen. This process may take a few seconds. The
sensor model number disappears after the monitoring system starts tracking
the patient’s SpO₂ and pulse rate.

Any monitoring system containing OxiMax technology uses calibration data
contained in the sensor in calculating the patient’s SpO₂. With sensor calibra-
tion, the accuracy of many sensors is improved, since the calibration coeffi-
cients can be tailored to each sensor.

Contact Covidien or a local Covidien representative for a Nellcor™ Oxygen Sa-
turation Accuracy Specification Grid listing all of the sensors used with the moni-
The monitoring system uses the information in the sensor, tailoring messages to better help the clinician troubleshoot client or data issues. The sensor automatically identifies its sensor type to the monitoring system when attached.

10.6.2 **SatSeconds™ Alarm Management Parameter**

The monitoring system monitors the percentage of hemoglobin binding sites saturated with oxygen in the blood. With traditional alarm management, upper and lower alarm limits are set to alarm at specific SpO2 levels. When the SpO2 level fluctuates near an alarm limit, the alarm sounds each time it violates the alarm threshold. SatSeconds monitors both degree and duration of desaturation as an index of desaturation severity. Thus, the SatSeconds parameter helps distinguish clinically significant events from minor and brief desaturations that may result in nuisance alarms.

Consider a series of events leading to a violation of the SatSeconds alarm limit. An adult patient experiences several minor desaturations, then a clinically significant desaturation.

Figure 10-2. Series of SpO2 Events

a	First SpO2 Event
b	Second SpO2 Event
c	Third SpO2 Event
First SpO₂ Event

Consider the first event. Suppose the SatSeconds alarm limit is set to 25. The patient’s SpO₂ drops to 79% and the duration of the event is two (2) seconds before saturation again exceeds the lower alarm threshold of 85%.

\[\text{6\% drop below the lower alarm limit threshold} \times 2 \text{ second duration below the lower threshold} \]

\[12 \text{ SatSeconds; no alarm} \]

Because the SatSeconds alarm limit is set to 25 and the actual number of SatSeconds equals 12, there is no audible alarm.

Figure 10-3. First SpO₂ Event: No SatSeconds Alarm
Second SpO₂ Event

Consider the second event. Suppose the SatSeconds alarm limit is still set to 25. The patient’s SpO₂ drops to 84% and the duration of the event is 15 seconds before saturation again exceeds the lower alarm threshold of 85%.

<table>
<thead>
<tr>
<th>1% drop below the lower alarm limit threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 15 second duration below the lower threshold</td>
</tr>
</tbody>
</table>

15 SatSeconds; no alarm

Because the SatSeconds alarm limit is set to 25 and the actual number of SatSeconds equals 15, there is no audible alarm.

Figure 10-4. Second SpO₂ Event: No SatSeconds Alarm
Third SpO$_2$ Event

Consider the third event. Suppose the SatSeconds alarm limit is still set to 25. During this event, the patient’s SpO$_2$ drops to 75%, which is 10% below the lower alarm threshold of 85%. Since the patient’s saturation does not return to a value over the lower alarm threshold within 2.5 seconds, an alarm sounds.

At this level of saturation, the event cannot exceed 2.5 seconds without invoking a SatSeconds alarm.

Figure 10-5. Third SpO$_2$ Event: Triggers SatSeconds Alarm
The SatSeconds Safety Net

The SatSeconds “Safety Net” is for patients with saturation levels frequently below the limit, but not staying below the limit long enough for the SatSeconds time setting to be reached. When three or more limit violations occur within 60 seconds, an alarm sounds even if the SatSeconds time setting has not been reached.

10.6.3 OxiMax SPD™ Alert Parameter

WARNING:
Supplemental oxygen will attenuate patterns of desaturation. A patient’s respiratory compromise can be proportionally more severe before patterns appear in the saturation trend. Remain vigilant when monitoring a patient on supplemental oxygen.

Caution:
Do not modify any other alarm settings while using the SPD parameter.

The OxiMax SPD™ Alert (SPD) method of detecting patterns of desaturation in adults is a function of the software within the monitoring system, which detects repetitive occurrences of desaturation followed by resaturation. These patterns are indicative of repetitive reductions in airflow through the upper airway and into the lungs. With the SPD parameter enabled, the default value for SatSeconds alarms is 100.

Figure 10-6. Clinically Significant Desaturation Patterns
The SPD parameter detects patterns of desaturation in adults that are indicative of repetitive reductions in airflow through a patient’s upper airway into the lungs. Relative reductions in a patient’s minute ventilation over a period of time may cause a progressive drop in alveolar partial pressure of oxygen, leading to arterial desaturation. If these decreases in ventilation are repetitive, they generate distinct patterns in the saturation trend. Patterns of repetitive desaturation often develop gradually over time, increasing in severity. Detection of patterns indicates that a patient might be suffering progressively severe decrements in airflow that may increase in acuity if left untreated.

Patterns of desaturation are multiple, sequential occurrences of a desaturation followed by a resaturation. The SPD parameter qualifies patterns of desaturation resulting from such repetitive reductions in airflow based on specific characteristics.

The SPD parameter qualifies these patterns of desaturation over a period of six (6) minutes. Depending on the sensitivity setting for SPD, patterns that persist may result in an SPD alarm, alerting the caregiver to the condition.

- The severity of the desaturation event (the depth of the desaturation during the event) and the extent of the following resaturation
- The regularity of the desaturation events (how often the pattern repeats)
- The slope of the desaturation/resaturation trends that form the events

The SPD parameter communicates information to the caregiver about these patterns of desaturation in a variety of ways with icons and alarms and in trend data.

When the indicator reaches capacity, indicating the SPD limit has been reached, an audible alarm sounds and an alarm message flashes. The default setting of one (1) is the most sensitive to desaturation patterns and results in more frequent alarms. For less frequent alarms, use a less sensitive setting of two (2) or three (3).

Note:
Unrecognized repetitive reductions in airflow through the upper airway occur in some clinically significant scenarios. Patients exhibiting sleep apnea symptoms were used in studies to validate the SPD™ Alert parameter. The presence of repetitive reductions in airflow was scored using a standard diagnostic polysomnogram. Study results indicate SPD is a sensitive marker in detecting repetitive reductions in airflow.
10.6.4 **Pulse Rate Delay Alarm Management Parameter**

The monitoring system also monitors pulse rate by determining the number of pleth waves over unit time. With traditional alarm management, upper and lower alarm limits are set for monitoring pulse rate. When pulse rates fluctuate near an alarm limit, alarms trigger with each violation. Pulse Rate Delay allows a period of threshold violation before the pulse rate alarm sounds. Thus, it distinguishes clinically significant events from minor and brief pulse rate limit violations that result in nuisance alarms.

To use Pulse Rate Delay, set the traditional alarm management upper and lower pulse rate alarm limits. Then, set Pulse Rate Delay. The Pulse Rate Delay limit controls the time the pulse rate level crosses either limit before an audible alarm sounds. Reference *Pulse Rate Delay Alarm Management Parameter Limits*, p. 4-24.
11 Product Specifications

11.1 Overview

This chapter contains physical and operational specifications of the Nellcor™ Bedside Respiratory Patient Monitoring System. Ensure all product requirements are met prior to installation.

11.2 Physical Characteristics

<table>
<thead>
<tr>
<th>Weight</th>
<th>7.5 lbs. (3.4 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>10 in. x 6.5 in. x 5 in. (254 mm x 165 mm x 127 mm)</td>
</tr>
</tbody>
</table>

11.3 Electrical Requirements

11.3.1 Power

<table>
<thead>
<tr>
<th>Power Requirements</th>
<th>Rated at 80-263 volts AC (nominal 120-230 VAC), 30 VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Frequency</td>
<td>47/63 Hz</td>
</tr>
<tr>
<td>Fuses</td>
<td>Slow-blow 1.5 amp, 250 volts, IEC (5 x 20 mm) Quantity: 2 external</td>
</tr>
</tbody>
</table>
11.3.2 Battery

Note:
The battery provides approximately six hours of battery life when new and fully-charged with no alarms, no serial data, no analog output, no nurse call output, with backlight on while using a pulse simulator set for 200 bpm, high light and low modulation.

- **Type:** Lithium Ion
- **Voltage:** 7.2 Volts DC, 11.6 Ah, 83 Wh
- **Recharge:** 8 hours with monitoring system turned off
 12 hours with monitoring system turned on
- **Shelf Life:** Four months, if monitoring system runs on new, fully-charged battery
 After four months storage, units run 33% of stated battery life
- **Compliance:** IEC 62133

11.3.3 Rating of Nurse Call Relay

- **Maximum Input Voltage:** 30 VAC or VDC (polarity is not important)
- **Load Current:** 120 mA continuous (peak 300 mA @ 100 ms)
- **Minimum Resistance:** 26.5 ohms to 50.5 ohms (40.5 ohms typical) during alarms
- **Ground Reference:** Isolated Ground
- **Electrical Isolation:** 1500 Volts
11.4 Environmental Conditions

11.4.1 Operating

Temperature 5 °C to 40 °C (41 °F to 104 °F)
Altitude -304.8 m to 4,572 m (-1,000 ft. to 15,000 ft.)
Atmospheric Pressure 105 kPa to 57.2 kPa (31.0 in. Hg to 16.89 in. Hg)
Relative Humidity 15% to 95% non-condensing

11.4.2 Transport and Storage

<table>
<thead>
<tr>
<th></th>
<th>Not in shipping container</th>
<th>In shipping container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-20 °C to 60 °C</td>
<td>-20 °C to 70 °C</td>
</tr>
<tr>
<td></td>
<td>(-4 °F to 140 °F)</td>
<td>(-4 °F to 158 °F)</td>
</tr>
<tr>
<td>Altitude</td>
<td>-390 m to 5,574 m (-1,254 ft. to 18,288 ft.)</td>
<td></td>
</tr>
<tr>
<td>Atmospheric Pressure</td>
<td>50 kPa to 106 kPa (14.7 in. Hg to 31.3 in. Hg)</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>15% to 95% non-condensing</td>
<td></td>
</tr>
</tbody>
</table>
11.5 Sensor Accuracy and Ranges

This monitoring system has the capability to detect physiological alarm conditions using SpO2 accuracy, pulse rate accuracy and alarm limit conditions.

Table 11-1. Nellcor™ Sensor Accuracy and Ranges

<table>
<thead>
<tr>
<th>Measurement Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2 1% to 100%</td>
<td>±2 digits</td>
</tr>
<tr>
<td>Pulse Rate 20 to 250 bpm</td>
<td>±3 digits</td>
</tr>
<tr>
<td>Perfusion Range 0.03% to 20%</td>
<td>±2 digits</td>
</tr>
</tbody>
</table>

Saturation

<table>
<thead>
<tr>
<th>Saturation Type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult2, 3</td>
<td>70 to 100% ±2 digits</td>
</tr>
<tr>
<td>Adult and Neonate Low Sat2, 3, 4</td>
<td>60 to 80% ±3 digits</td>
</tr>
<tr>
<td>Neonate4, 5</td>
<td>70 to 100% ±2 digits</td>
</tr>
<tr>
<td>Low Perfusion6</td>
<td>70 to 100% ±2 digits</td>
</tr>
<tr>
<td>Adult and Neonate with Motion2, 7</td>
<td>70 to 100% ±3 digits</td>
</tr>
</tbody>
</table>

Pulse Rate

<table>
<thead>
<tr>
<th>Pulse Rate Type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult and Neonate2, 3, 4</td>
<td>20 to 250 bpm ±3 digits</td>
</tr>
<tr>
<td>Low Perfusion6</td>
<td>20 to 250 bpm ±3 digits</td>
</tr>
<tr>
<td>Adult and Neonate with Motion2, 7</td>
<td>48 to 127 bpm ±5 digits</td>
</tr>
</tbody>
</table>

2. Accuracy specifications were validated using measurements of healthy non-smoking adult volunteers during controlled hypoxia studies spanning the specified saturation ranges. Subjects were recruited from the local population and comprised both men and women ranging in age from 18-50 years old, and spanned a range of skin pigmentation. Pulse oximeter SpO2 readings were compared to SaO2 values of drawn blood samples measured by hemoximetry. All accuracies are expressed as ±1 SD. Because pulse oximeter equipment measurements are statistically distributed, about two-thirds of the measurements can be expected to fall in this accuracy (ARMS) range (refer to the Sensor Accuracy Grid for more details).
3. Adult specifications are shown for OXIMAX MAXA and MAXN sensors with the Nellcor™ Bedside Respiratory Patient Monitoring System.
4. Neonate specifications are shown for OXIMAX MAXN sensors with the Nellcor™ Bedside Respiratory Patient Monitoring System.
5. Clinical functionality of the MAXN sensor has been demonstrated on a population of hospitalized neonate patients. The observed SpO2 accuracy was 2.5% in a study of 42 patients with ages of 1 to 23 days, weight from 750 to 4,100 grams, and 63 observations made spanning a range of 85% to 99% SaO2.
6. Specification applies to Nellcor™ Bedside Respiratory Patient Monitoring System oximeter performance. Reading accuracy in the presence of low perfusion (detected IR pulse modulation amplitude 0.03% - 1.5%) was validated using signals supplied by a patient simulator. SpO2 and pulse rate values were varied across the monitoring range over a range of weak signal conditions and compared to the known true saturation and pulse rate of the input signals.
7. Motion performance was validated during a controlled hypoxia blood study. Subjects performed rubbing and tapping movements 1-2 cm in amplitude with aperiodic intervals (randomly changing) with a random variation in frequency between 1-4 Hz. Applicability: OXIMAX MAXA, MAXA4, MAXP, MAXI, and MAXN sensors.
Table 11-2. Nellcor™ Sensor Operating Range and Power Dissipation

<table>
<thead>
<tr>
<th>Operating Range and Dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Light Wavelength</td>
</tr>
<tr>
<td>Infrared Light Wavelength</td>
</tr>
<tr>
<td>Optical Output Power</td>
</tr>
<tr>
<td>Power Dissipation</td>
</tr>
</tbody>
</table>

11.6 Sound Pressure

Table 11-3. Sound Pressure in Decibels

<table>
<thead>
<tr>
<th>Alarm Type</th>
<th>Volume Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>High Priority</td>
<td>88.1 dB</td>
</tr>
<tr>
<td>Medium Priority</td>
<td>78.3 dB</td>
</tr>
<tr>
<td>Low Priority</td>
<td>74.4 dB</td>
</tr>
<tr>
<td>SPD Alarm (Low Priority)</td>
<td>74.4 dB</td>
</tr>
</tbody>
</table>
11.7 Product Compliance

Equipment Classification
- IEC/EN 60601-1:2005
- CAN/CSA C22.2 No. 60601-1:08
- ANSI AAMI ES 60601-1:2005

Protection Type
- Class I (Internally powered)

Degree of Protection
- Type BF - Applied part

Mode of Operation
- Continuous

Electromagnetic Compatibility
- IEC 60601-1-2:2007

Liquid Ingress
- IPX1: Protected against harmful effects of dripping water

Degree of Safety
- Not suitable for use in the presence of flammable anesthetics

11.8 Manufacturer’s Declaration and Guidance

11.8.1 Electromagnetic Compatibility (EMC)

WARNING:
This monitoring system is intended for use by healthcare professionals only. This monitoring system may cause radio interference or may disrupt the operation of nearby equipment, regardless of whether it is CISPR compliant or not. It may be necessary to take mitigation measures, such as re-orienting or relocating the monitoring system or shielding the location.

WARNING:
The use of accessories, sensors, and cables other than those specified may result in inaccurate readings of the monitoring system and increased EMI emissions of the monitoring system.

The monitoring system is suitable for prescription use only in the specified electromagnetic environments, in accordance with the IEC 60601-1-2:2007 standard. The monitoring system requires special precautions during installation and operation for electromagnetic compatibility. In particular, the use of nearby mobile or portable communications equipment may influence monitoring system performance.
Frequency and Bandwidth for Wireless Connection

Table 11-4. Frequency Band, Output Power, and Modulation Type

<table>
<thead>
<tr>
<th>Frequency Band (MHz)</th>
<th>Output Power (Watts)</th>
<th>Modulation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2412 - 2462</td>
<td>0.088</td>
<td>BPSK, CCK, OFDM</td>
</tr>
<tr>
<td>5180 - 5240</td>
<td>0.018</td>
<td>OFDM</td>
</tr>
<tr>
<td>5260 - 5320</td>
<td>0.018</td>
<td>OFDM</td>
</tr>
<tr>
<td>5500 - 5700</td>
<td>0.028</td>
<td>OFDM</td>
</tr>
<tr>
<td>5745 - 5825</td>
<td>0.026</td>
<td>OFDM</td>
</tr>
</tbody>
</table>

Electromagnetic Emissions

Table 11-5. Electromagnetic Emissions Guidelines and Compliance

Guidance and Manufacturer’s Declaration—Electromagnetic Emissions (IEC/EN 60601-1-2:2007, Table 1)

<table>
<thead>
<tr>
<th>Emissions Test</th>
<th>Compliance</th>
<th>Electromagnetic Environment Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF emission</td>
<td>Group 1, Class A</td>
<td>Not intended for use in a residential environment. If used in a domestic environment, may not offer adequate protection to radio-frequency communication services. The user may be required to take mitigation measures, such as relocating or re-orienting the equipment.</td>
</tr>
<tr>
<td>Harmonic emissions</td>
<td>Class A</td>
<td>N/A</td>
</tr>
<tr>
<td>Voltage fluctuation/ flicker emissions</td>
<td>Complies</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Electromagnetic Immunity

Table 11-6. Electromagnetic Immunity Guidelines and Compliance

<table>
<thead>
<tr>
<th>Immunity Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD)</td>
</tr>
<tr>
<td>Electric fast transient/burst</td>
</tr>
<tr>
<td>Surge</td>
</tr>
<tr>
<td>Voltage dips, short interruptions and voltage variations on power supply</td>
</tr>
<tr>
<td>Power frequency (50/60 Hz) magnetic field</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEC/EN 60601-1-2 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 6 kV contact ± 8 kV air</td>
<td>± 6 kV contact ± 8 kV air</td>
<td>Floor should be wood, concrete, or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>± 2 kV for power supply lines ± 1 kV input/ output lines</td>
<td>± 2 kV for power supply lines ± 1 kV input/ output lines</td>
<td>Mains power quality should be that of a typical commercial and/or hospital environment.</td>
</tr>
<tr>
<td>± 1 kV differential mode ± 2 kV common mode</td>
<td>± 1 kV differential mode ± 2 kV common mode</td>
<td>Mains power quality should be that of a typical commercial and/or hospital environment.</td>
</tr>
<tr>
<td><5% UT (>95% dip in UT) for 0.5 cycle</td>
<td><5% UT (>95% dip in UT) for 0.5 cycle</td>
<td>Mains power quality should be that of a typical commercial and/or hospital environment. If the user requires continued operation during power mains interruption, it is recommended that the monitoring system be powered from an uninterruptible power supply or battery.</td>
</tr>
<tr>
<td>40% UT (60% dip in UT) for 5 cycles</td>
<td>40% UT (60% dip in UT) for 5 cycles</td>
<td></td>
</tr>
<tr>
<td>70% UT (30% dip in UT) for 25 cycles</td>
<td>70% UT (30% dip in UT) for 25 cycles</td>
<td></td>
</tr>
<tr>
<td><5% UT (>95% dip in UT) for 5 seconds</td>
<td><5% UT (>95% dip in UT) for 5 seconds</td>
<td></td>
</tr>
<tr>
<td>3 A/m</td>
<td>3 A/m</td>
<td>It may be necessary to position further from the sources of power frequency magnetic fields or to install magnetic shielding.</td>
</tr>
</tbody>
</table>

Note: UT is the AC main’s voltage prior to application of the test level.
Table 11-7. Recommended Separation Distance Calculations

Guidance and Manufacturer’s Declaration—Electromagnetic Immunity
(IEC/EN 60601-1-2:2007, Table 4)

The monitoring system is intended for use in the electromagnetic environment specified below. The customer or the user of the monitoring system should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>IEC/EN 60601-1-2 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted RF</td>
<td>IEC/EN 61000-4-6 150 kHz to 80 MHz</td>
<td>3 Vrms 150 kHz to 80 MHz</td>
<td>Portable and mobile RF communications equipment should be used no closer to any part of the monitoring system, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.</td>
</tr>
<tr>
<td></td>
<td>80 MHz</td>
<td>3 Vrms 80 MHz</td>
<td></td>
</tr>
<tr>
<td>Radiated RF</td>
<td>IEC/EN 61000-4-3 80 MHz to 2.5 GHz</td>
<td>3 V/m 80 MHz to 2.5 GHz</td>
<td>Recommended Separation Distance</td>
</tr>
<tr>
<td></td>
<td>2.5 GHz</td>
<td>3 V/m 2.5 GHz</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Separation Distance

\[
d = 1.2 \sqrt{P}
\]

where \(P \) is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and \(d \) is the recommended separation distance in meters (m).

Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range.

Interference may occur in the vicinity of equipment marked with the following symbol:

![Symbol]

NOTE 1: At 80 MHz and 800 MHz, the higher frequency range applies.

NOTE 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the monitoring system is used exceeds the applicable RF compliance level above, the monitoring system should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating the monitoring system.

Over the frequency range 150 kHz to 80 MHz, field strengths should be less than 3 V/m.
The monitoring system is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the monitoring system can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the monitoring system as recommended below, according to the maximum output power of the communications equipment.

For transmitters rated at a maximum output power not listed above, the recommended separation distance (d) in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

NOTE 1: At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

Table 11-8. Recommended Separation Distances

<table>
<thead>
<tr>
<th>Rated Maximum Output Power (P) of Transmitter in Watts</th>
<th>Separation Distance According to Frequency of Transmitter in Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$d = 1.2 \sqrt{P}$</td>
</tr>
<tr>
<td></td>
<td>150 kHz to 80 MHz</td>
</tr>
<tr>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>0.10</td>
<td>0.38</td>
</tr>
<tr>
<td>1.00</td>
<td>1.20</td>
</tr>
<tr>
<td>10.00</td>
<td>3.80</td>
</tr>
<tr>
<td>100.00</td>
<td>12.00</td>
</tr>
</tbody>
</table>
Sensor and Cable Compliance

WARNING:
The use of accessories, sensors, and cables other than those specified may result in inaccurate readings of the monitoring system and increased emission of the monitoring system.

<table>
<thead>
<tr>
<th>Table 11-9. Sensor and Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>------------------------------------</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Sensor, Reusable (Nonsterile)</td>
</tr>
<tr>
<td>Nellcor™ Adult XL SpO2 Sensor (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Forehead SpO2 Sensor (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Neonatal-Adult SpO2 Sensor (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Infant SpO2 Sensor (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Pediatric SpO2 Sensor (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Sensor (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Nasal Sensor (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Adult-Neonatal SpO2 Sensor with Wraps (Reusable with adhesive)</td>
</tr>
<tr>
<td>Nellcor™ Pediatric-Infant SpO2 Sensor with Wraps (Reusable with adhesive)</td>
</tr>
<tr>
<td>Nellcor™ Pediatric SpO2 Sensor, Two Piece (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Neonatal-Adult SpO2 Sensor, Two Piece (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ Adult SpO2 Sensor, Two Piece (Sterile, single-use only)</td>
</tr>
<tr>
<td>Nellcor™ SpO2 Sensor, Multi-site Reusable (Nonsterile)</td>
</tr>
<tr>
<td>Nellcor™ SpO2 Ear Clip, Reusable (Nonsterile)</td>
</tr>
<tr>
<td>Nellcor™ Pediatric SpO2 Sensor Clip, Reusable (Nonsterile)</td>
</tr>
</tbody>
</table>
11.8.2 Ground Integrity

100 milliohms or less

11.8.3 Safety Tests

The following tables describe the maximum earth and enclosure leakage current allowed, as well as patient leakage.

Table 11-9. Sensor and Cable Length (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>SKU</th>
<th>Maximum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power cord</td>
<td></td>
<td>9.84 ft. (3 m)</td>
</tr>
<tr>
<td>DOC-10 interface cable (only compatible interface cable)</td>
<td></td>
<td>10.0 ft. (3 m)</td>
</tr>
<tr>
<td>Firmware download cable, RS-232 serial, 15 to 9 pin “D”</td>
<td>----</td>
<td>10.0 ft. (3 m)</td>
</tr>
<tr>
<td>Non-terminated cable, RS-232 analog, 15 pin “D”</td>
<td></td>
<td>3.3 ft. (1 m)</td>
</tr>
<tr>
<td>Printer cable, RS-232, 15 to 9 pin “D”</td>
<td></td>
<td>10.0 ft. (3 m)</td>
</tr>
<tr>
<td>Philips interface cable</td>
<td>M1943 NL</td>
<td>3.3 ft. (1 m)</td>
</tr>
<tr>
<td>Oxinet™ III hardwire cable</td>
<td></td>
<td>10.0 ft. (3 m)</td>
</tr>
<tr>
<td>Oxinet™ III data cable</td>
<td></td>
<td>10.0 ft. (3 m)</td>
</tr>
</tbody>
</table>

Table 11-10. Earth and Enclosure Leakage Current Specifications

<table>
<thead>
<tr>
<th>Condition</th>
<th>AC Line Polarity</th>
<th>Line Cord</th>
<th>Neutral Line Cord</th>
<th>IEC 60601-1</th>
<th>ANSI/AAMI 60601-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Closed</td>
<td>Closed</td>
<td>500 μA</td>
<td>300 μA</td>
</tr>
<tr>
<td>Single Fault</td>
<td>Open</td>
<td>Closed</td>
<td>Closed</td>
<td>1000 μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>Reversed</td>
<td>Closed</td>
<td>Closed</td>
<td>500 μA</td>
<td>300 μA</td>
</tr>
<tr>
<td>Single Fault</td>
<td>Open</td>
<td>Closed</td>
<td>Closed</td>
<td>1000 μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11-10. Earth and Enclosure Leakage Current Specifications (Continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>AC Line Polarity</th>
<th>Neutral Line Cord</th>
<th>Power Line Ground</th>
<th>IEC 60601-1 ANSI/AAMI 60601-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Closed</td>
<td>Closed</td>
<td>100 μA</td>
</tr>
<tr>
<td>Single Fault</td>
<td>Open</td>
<td>Closed</td>
<td></td>
<td>500 μA</td>
</tr>
<tr>
<td></td>
<td>Closed</td>
<td></td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>Reversed</td>
<td>Closed</td>
<td>Closed</td>
<td>100 μA</td>
</tr>
<tr>
<td>Single Fault</td>
<td>Open</td>
<td>Closed</td>
<td></td>
<td>500 μA</td>
</tr>
<tr>
<td></td>
<td>Closed</td>
<td></td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

Table 11-11. Patient Applied and Patient Isolation Risk Current

<table>
<thead>
<tr>
<th>Condition</th>
<th>AC Line Polarity</th>
<th>Neutral Line</th>
<th>Power Line Ground Cable</th>
<th>IEC 60601-1 ANSI/AAMI 60601-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Closed</td>
<td>Closed</td>
<td>100 μA</td>
</tr>
<tr>
<td>Single Fault</td>
<td>Open</td>
<td>Closed</td>
<td></td>
<td>500 μA</td>
</tr>
<tr>
<td></td>
<td>Closed</td>
<td></td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>Reversed</td>
<td>Closed</td>
<td>Closed</td>
<td>100 μA</td>
</tr>
<tr>
<td>Single Fault</td>
<td>Open</td>
<td>Closed</td>
<td></td>
<td>500 μA</td>
</tr>
<tr>
<td></td>
<td>Closed</td>
<td></td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

Patient Isolation Risk Current

<table>
<thead>
<tr>
<th>Condition</th>
<th>AC Line Polarity</th>
<th>Neutral Line</th>
<th>Power Line Ground Cable</th>
<th>IEC 60601-1 UL 60601-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Fault</td>
<td>Normal</td>
<td>Closed</td>
<td>Closed</td>
<td>5000 μA</td>
</tr>
<tr>
<td></td>
<td>Reversed</td>
<td>Closed</td>
<td>Closed</td>
<td></td>
</tr>
</tbody>
</table>
11.9 Essential Performance

Per IEC 60601-1-2:2007 and ISO 80601-2-61:2011, the monitoring system’s essential performance attributes include:

- **SpO2 and pulse rate accuracy** — Reference *Sensor Accuracy and Ranges*, p. 11-4.

- **Audible indicators** — Reference *Audible Alarms and Indicators*, p. 2-13.

- **Physiological alarms and priorities** — Reference *Audible Alarms and Indicators*, p. 2-13 and *Alarm Prioritization*, p. 8-5.

- **Backup power source** — Reference *Battery Power*, p. 4-2, *Product Setup*, p. 3-3, and *Indications for Use*, p. 2-1.

- **Sensor disconnect/off notification** — Reference *Alarms and Error Conditions*, p. 8-4.

- **Motion, interference, or signal degradation indicator** — Reference *Monitoring Screen*, p. 2-4.
A.1 Overview

This appendix presents data from clinical studies conducted with the Nellcor™ Bedside Respiratory Patient Monitoring System equipped with the following parameter module:

Prospective clinical studies were conducted in accordance to EN ISO80601-2-61:2011 to demonstrate accuracy of pulse oximetry for Nellcor™ OxiMax sensors used with the Nellcor™ Bedside Respiratory Patient Monitoring System during both motion and non-motion conditions.

A.2 Methodology

A.2.1 Hypoxia Methodology (Accuracy, Low Saturation, and Motion Studies)

The general purpose of invasive controlled desaturation study is to validate the SpO₂ and pulse rate accuracy in comparison to reference-standard measurements of blood SaO₂ by a CO-oximeter and ECG heart rate. This is achieved through paired observations of SpO₂ and SaO₂ values over the SaO₂ accuracy range of 70% to 100% on a group of healthy adult volunteers. The fraction of inspired oxygen (FiO₂) delivered to test subjects is varied to achieve a series of targeted steady-state saturation periods. Arterial blood samples are periodically taken from an indwelling arterial catheter for use in the comparison.

In accordance to EN ISO80601-2-61:2011, desaturation to 70% is conducted in a gradual continuous process targeting multiple saturation plateaus (e.g. 98, 90, 80 and 72%). In these studies, six arterial samples were taken, 20 seconds apart at each plateau, resulting in a total of approximately 24 samples per subject. Each sample was drawn while SpO₂ data were simultaneously collected.
and marked for direct comparison to CO-oximetry. Similarly, pulse rate from SpO₂ was compared to ECG heart rate.

End tidal CO₂, respiratory rate, respiratory pattern and electrocardiogram were continuously monitored throughout the study.

A.2.2 Low Saturation Methodology (Low Saturation Study Only)

The methodology and purpose of the Low Saturation study is the same as the hypoxia methodology. Reference Hypoxia Methodology (Accuracy, Low Saturation, and Motion Studies), p. A-1. However, the desaturation is to 60% instead of 70%. This lower saturation is obtained by the addition of a new plateau at 60% SaO₂, increasing the range from 70 to 100% to 60 to 100%. This results in approximately 30 arterial samples instead of 24 for this study.

A.2.3 Motion Methodology (Motion Study Only)

Standard motions include tapping and/or rubbing at aperiodic intervals with amplitudes of 1-2 cm and 1-4 Hz with a random variation in frequency to simulate physiological motion. In this study, the subject was instructed to tap with finger tips to maintain consistency of area of effect on the pressure pad and to prevent resting hand on pressure pad between motions so that only qualified taps are recorded by the pressure pad system.

Each plateau (70 to 100%) has both an interval of tapping and rubbing. In this study, the order of tapping and rubbing was alternated between subjects.

Two video cameras were used to capture motion of the subjects. These videos were then reviewed to determine if any data points should be removed if the appropriate amplitudes were not being reached during the blood samples.
A.3 Results

A.3.1 Accuracy Results (No Motion)

The following summary describes the demographic information of the subjects enrolled into the MAXA, MAXN, and MAXFAST Accuracy and Low Saturation study: A total of 11 subjects were analyzed, 5 (45%) males and 6 (55%) females. The mean age of the subjects was 31.8 ± 5.2 years, with a range of 25 to 42 years of age. Two subjects had dark pigmentation (dark olive to extremely dark). Weight ranged from 49 kg to 103.6 kg, and height ranged from 143.5 cm to 192 cm.

The following summary describes the demographic information of the subjects enrolled into the SC-A Sensor study: A total of 16 subjects were analyzed. There were 6 (37.5%) males and 10 (62.5%) female subjects enrolled into the study. The mean age of study participants was 31.44 ± 6.7 years, with a range of 24 to 42 years of age. Three subjects had dark pigmentation (dark olive to extremely dark). Weight ranged from 48.7 kg to 96.9 kg, and height ranged from 143.5 cm to 188 cm.

The following summary describes the demographic information of the subjects enrolled into the study for all other sensors (listed in Table A-1): A total of 11 subjects were analyzed. There were 4 (36.4%) males and 7 (63.6%) female subjects enrolled into the study. The mean age of study participants was 30.36 ± 7.85 years, with a range of 22 to 46 years of age. Three subjects had dark pigmentation (dark olive to extremely dark). Weight ranged from 58.4 kg to 114.4 kg, and height ranged from 159 cm to 187 cm.

Accuracy results for both SpO$_2$ and pulse rate can be found in Table A-1 and Table A-2. A_{RMS} (Accuracy root mean square) is used to describe the accuracy of pulse oximetry, which is affected by both bias and precision. As shown in the tables, both SpO$_2$ and pulse rate meet the acceptance criteria for all of the listed sensors during non-motion conditions.
Table A-1. SpO2 Accuracy Results (No Motion)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Motion</th>
<th># of Data Points</th>
<th>ARMS (%)</th>
<th>SpO2 Acceptance Criteria 70%-100% (%)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXA</td>
<td>No</td>
<td>976</td>
<td>1.54</td>
<td>≤ 2.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXN</td>
<td>No</td>
<td>723</td>
<td>1.41</td>
<td>≤ 2.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXFAST</td>
<td>No</td>
<td>235</td>
<td>1.42</td>
<td>≤ 2.0</td>
<td>Pass</td>
</tr>
<tr>
<td>SC-A</td>
<td>No</td>
<td>659</td>
<td>1.86</td>
<td>≤ 2.0</td>
<td>Pass</td>
</tr>
<tr>
<td>DS100A</td>
<td>No</td>
<td>411</td>
<td>2.16</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>OxiCliq-A</td>
<td>No</td>
<td>480</td>
<td>1.58</td>
<td>≤ 2.5</td>
<td>Pass</td>
</tr>
<tr>
<td>D-YSE</td>
<td>No</td>
<td>458</td>
<td>1.96</td>
<td>≤ 3.5</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Table A-2. Pulse Rate Accuracy Results (No Motion)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Motion</th>
<th># of Data Points</th>
<th>ARMS (BPM)</th>
<th>Pulse Rate Acceptance Criteria (BPM)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXA</td>
<td>No</td>
<td>1154</td>
<td>0.76</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXN</td>
<td>No</td>
<td>874</td>
<td>0.74</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXFAST</td>
<td>No</td>
<td>281</td>
<td>0.81</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>SC-A</td>
<td>No</td>
<td>636</td>
<td>2.20</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>DS100A</td>
<td>No</td>
<td>444</td>
<td>0.77</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>OxiCliq-A</td>
<td>No</td>
<td>499</td>
<td>0.79</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>D-YSE</td>
<td>No</td>
<td>473</td>
<td>0.98</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Modified Bland-Altman plots for all the data are presented in Figure A-1 and Figure A-2 for SpO₂ and pulse rate respectively.

Note:
Each individual subject is represented by a unique color on the plots. Subject identification numbers are indicated in the legend to the left of each plot.

Figure A-1. Modified Bland-Altman for SpO₂ (All Data - No Motion): SaO₂ vs. (SpO₂ - SaO₂)
Figure A-2. Modified Bland-Altman for Pulse Rate (All Data - No Motion): ECG HR vs. (Pulse Rate - ECG HR)

1. Pulse Rate - ECG HR (BPM)
2. ECG HR (BPM)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Modified Bland-Altman plots for the SpO2 data by sensor type are presented in Figure A-3 through Figure A-9.

Figure A-3. Modified Bland-Altman for SpO2 - MAXA Sensor (No Motion): SaO2 vs. (SpO2 - SaO2)

1. SpO2 - SaO2 (%)
2. SaO2 (%)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Figure A-4. Modified Bland-Altman for SpO2 - MAXN Sensor (No Motion): SaO2 vs. (SpO2 - SaO2)

1 SpO2 - SaO2 (%)
2 SaO2 (%)
3 Upper 95% LoA
4 Mean Bias
5 Lower 95% LoA
Figure A-5. Modified Bland-Altman for SpO2 - MAXFAST Sensor (No Motion): SaO2 vs. (SpO2 - SaO2)

1 SpO2 - SaO2 (%) 3 Upper 95% LoA
2 SaO2 (%) 4 Mean Bias
 5 Lower 95% LoA
Figure A-6. Modified Bland-Altman for SpO2 - SC-A Sensor (No Motion): SaO2 vs. (SpO2 - SaO2)

1 SpO2 - SaO2 (%) 3 Upper 95% LoA
2 SaO2 (%) 4 Mean Bias
 5 Lower 95% LoA
Figure A-7. Modified Bland-Altman for SpO2 - DS100A Sensor (No Motion): SaO2 vs. (SpO2 - SaO2)

1. SpO2 - SaO2 (%)
2. SaO2 (%)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Figure A-8. Modified Bland-Altman for SpO2 - OxiClq-A Sensor (No Motion): SaO2 vs. (SpO2 - SaO2)

1 SpO2 - SaO2 (%)
2 SaO2 (%)
3 Upper 95% LoA
4 Mean Bias
5 Lower 95% LoA
Figure A-9. Modified Bland-Altman for SpO2 - D-YSE Sensor (No Motion): SaO2 vs. (SpO2 - SaO2)

1. SpO2 - SaO2 (%)
2. SaO2 (%)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Modified Bland-Altman plots for the pulse rate data by sensor type are presented in Figure A-10 through Figure A-16.

Figure A-10. Modified Bland-Altman for Pulse Rate - MAXA Sensor (No Motion): ECG HR vs. (Pulse Rate - ECG HR)

1 Pulse Rate - ECG HR (BPM) 3 Upper 95% LoA
2 ECG HR (BPM) 4 Mean Bias
5 Lower 95% LoA
Figure A-11. Modified Bland-Altman for Pulse Rate - MAXN Sensor (No Motion):
ECG HR vs. (Pulse Rate - ECG HR)

1. Pulse Rate - ECG HR (BPM)
2. ECG HR (BPM)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Figure A-12. Modified Bland-Altman for Pulse Rate - MAXFAST Sensor (No Motion):
ECG HR vs. (Pulse Rate - ECG HR)

1 Pulse Rate - ECG HR (BPM) 3 Upper 95% LoA
2 ECG HR (BPM) 4 Mean Bias
5 Lower 95% LoA
Figure A-13. Modified Bland-Altman for Pulse Rate - SC-A Sensor (No Motion): ECG HR vs. (Pulse Rate - ECG HR)

1 Pulse Rate - ECG HR (BPM) 3 Upper 95% LoA
2 ECG HR (BPM) 4 Mean Bias
5 Lower 95% LoA
Figure A-14. Modified Bland-Altman for Pulse Rate - DS100A Sensor (No Motion):
ECG HR vs. (Pulse Rate - ECG HR)

1. Pulse Rate - ECG HR (BPM)
2. ECG HR (BPM)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Figure A-15. Modified Bland-Altman for Pulse Rate - OxiClic-A Sensor (No Motion):
ECG HR vs. (Pulse Rate - ECG HR)

1 Pulse Rate - ECG HR (BPM) 3 Upper 95% LoA
2 ECG HR (BPM) 4 Mean Bias
5 Lower 95% LoA
Figure A-16. Modified Bland-Altman for Pulse Rate - D-YSE Sensor (No Motion):
ECG HR vs. (Pulse Rate - ECG HR)

1. Pulse Rate - ECG HR (BPM)
2. ECG HR (BPM)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Correlation plots for all the data are presented in Figure A-17 and Figure A-18 for SpO$_2$ and pulse rate respectively.

Figure A-17. Correlation Plot for SpO$_2$ (All Data - No Motion): SaO$_2$ vs. SpO$_2$
Figure A-18. Correlation Plot for Pulse Rate (All Data - No Motion): ECG HR vs. Pulse Rate

1 Pulse Rate (BPM) 2 ECG HR (BPM)
Pulse oximeters have been known to perform better at the higher saturation levels compared to the lower end. Though, when presenting the A_{RMS}, the common methodology is to provide the data across the whole range (70% to 100%). The data below is presented to show each decade, which includes the RMSD (root mean square difference) and N values. RMSD and A_{RMS} are the same. A_{RMS} is used for pooled data across the whole study to represent accuracy of the system, whereas RMSD is used as the general term. There is no acceptance criteria associated with decade levels of hypoxia, thus represented as RMSD. In Table A-3, SpO2 RMSD is presented per decade.

The plateaus that were used during the study were 70 - 76, 76.01 - 85, 85.01 - 94 and >94%, as presented in Table A-4.

Table A-3. RMSD of SpO2 per Decade (No Motion)

<table>
<thead>
<tr>
<th>SpO2 Range</th>
<th>100%-90%</th>
<th>89%-80%</th>
<th>79%-70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1693</td>
<td>1037</td>
<td>1212</td>
</tr>
<tr>
<td>RMSD (%)</td>
<td>1.46</td>
<td>1.66</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Table A-4. RMSD of SpO2 per Plateau (No Motion)

<table>
<thead>
<tr>
<th>SpO2 Range</th>
<th>Room Air Plateau</th>
<th>90% Plateau</th>
<th>80% Plateau</th>
<th>70% Plateau</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>978</td>
<td>1102</td>
<td>1034</td>
<td>828</td>
</tr>
<tr>
<td>RMSD (%)</td>
<td>1.27</td>
<td>1.65</td>
<td>1.69</td>
<td>2.15</td>
</tr>
</tbody>
</table>
A.3.2 **Accuracy Results (Low Saturation)**

The accuracy results for both SpO₂ and pulse rate can be found in Table A-5 and Table A-6 across a SaO₂ range of 60 to 80%. (Reference *Accuracy Results (No Motion)*, p. A-3, for results for SaO₂ range 70 to 100%.) As shown in the tables, both SpO₂ and pulse rate meet the acceptance criteria for the MAXA, MAXN, and MAXFAST sensors during non-motion conditions.

Table A-5. SpO₂ Accuracy Results (60 to 80% SaO₂)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Motion</th>
<th># of Data Points</th>
<th>A_{RMS} (%)</th>
<th>SpO₂ Acceptance Criteria 60%-80% (%)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXA</td>
<td>No</td>
<td>610</td>
<td>2.40</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXN</td>
<td>No</td>
<td>453</td>
<td>1.92</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXFAST</td>
<td>No</td>
<td>143</td>
<td>2.41</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>ALL</td>
<td>No</td>
<td>1206</td>
<td>2.24</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Table A-6. Pulse Rate Accuracy Results (60 to 80% SaO₂)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Motion</th>
<th># of Data Points</th>
<th>A_{RMS} (BPM)</th>
<th>Pulse Rate Acceptance Criteria (BPM)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXA</td>
<td>No</td>
<td>1154</td>
<td>0.76</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXN</td>
<td>No</td>
<td>874</td>
<td>0.74</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXFAST</td>
<td>No</td>
<td>281</td>
<td>0.81</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>ALL</td>
<td>No</td>
<td>2309</td>
<td>0.76</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Modified Bland-Altman plots for all the data are presented in Figure A-19 and Figure A-20 for SpO₂ and pulse rate respectively.

Note:
Each individual subject is represented by a unique color on the plots. Subject identification numbers are indicated in the legend to the left of each plot.

Figure A-19. Modified Bland-Altman for SpO₂ (All Data - Low Saturation): SaO₂ vs. (SpO₂ - SaO₂)
Figure A-20. Modified Bland-Altman for Pulse Rate (All Data - Low Saturation): ECG HR vs. (Pulse Rate - ECG HR)

1. Pulse Rate - ECG HR (BPM)
2. ECG HR (BPM)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Results

Correlation plots for all the data are presented in Figure A-21 and Figure A-22 for SpO₂ and pulse rate respectively.

Figure A-21. Correlation Plot for SpO₂ (All Data - Low Saturation): SaO₂ vs. SpO₂
Figure A-22. Correlation Plot for Pulse Rate (All Data - Low Saturation): ECG HR vs. Pulse Rate

Table A-7. RMSD of SpO2 per Decade (Low Saturation)

<table>
<thead>
<tr>
<th>SpO2 Range</th>
<th>80%-70%</th>
<th>69%-60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>637</td>
<td>569</td>
</tr>
<tr>
<td>RMSD (%)</td>
<td>1.73</td>
<td>2.69</td>
</tr>
</tbody>
</table>

Table A-8. RMSD of SpO2 per Plateau (Low Saturation)

<table>
<thead>
<tr>
<th>SpO2 Range</th>
<th>70% Plateau</th>
<th>60% Plateau</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>506</td>
<td>483</td>
</tr>
<tr>
<td>RMSD (%)</td>
<td>1.93</td>
<td>2.79</td>
</tr>
</tbody>
</table>
A.3.3 **Accuracy Results (Motion)**

The following describes the demographic information of the subjects enrolled into the study: A total of 14 subjects were analyzed, 5 (35.7%) males and 9 (64.3%) female subjects. The mean age was 31.57 ± 6.8 years, with a range of 24 to 42 years of age. Three subjects had dark pigmentation (dark olive to extremely dark). Weight ranged from 48.7 kg to 88.6 kg, and height ranged from 143.5 cm to 185 cm.

The accuracy results for both SpO₂ and pulse rate during motion are presented in Table A-9 and Table A-10. As shown in the tables, both SpO₂ and pulse rate meet the acceptance criteria for both the MAXA and MAXN sensor during motion.

Table A-9. SpO₂ Accuracy Results During Motion

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Motion</th>
<th># of Data Points</th>
<th>A<sub>RMS</sub> (%)</th>
<th>SpO₂ Acceptance Criteria 70%-100% (%)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXA</td>
<td>Yes</td>
<td>637</td>
<td>1.70</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXN</td>
<td>Yes</td>
<td>618</td>
<td>2.76</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
<tr>
<td>ALL</td>
<td>Yes</td>
<td>1255</td>
<td>2.28</td>
<td>≤ 3.0</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Table A-10. Pulse Rate Accuracy Results During Motion

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Motion</th>
<th># of Data Points</th>
<th>A<sub>RMS</sub> (BPM)</th>
<th>Pulse Rate Acceptance Criteria (BPM)</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXA</td>
<td>Yes</td>
<td>555</td>
<td>2.58</td>
<td>≤ 5.0</td>
<td>Pass</td>
</tr>
<tr>
<td>MAXN</td>
<td>Yes</td>
<td>532</td>
<td>2.88</td>
<td>≤ 5.0</td>
<td>Pass</td>
</tr>
<tr>
<td>ALL</td>
<td>Yes</td>
<td>1087</td>
<td>2.73</td>
<td>≤ 5.0</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Modified Bland-Altman plots for all the data are presented in Figure A-23 and Figure A-24 for SpO2 and pulse rate respectively.

Note:
Each individual subject is represented by a unique color on the plots. Subject identification numbers are indicated in the legend to the left of each plot.

Figure A-23. Modified Bland-Altman for SpO2 (All Data - Motion): SaO2 vs. (SpO2 - SaO2)
Figure A-24. Modified Bland-Altman for Pulse Rate (All Data - Motion): ECG HR vs. (Pulse Rate - ECG HR)

1. Pulse Rate - ECG HR (BPM)
2. ECG HR (BPM)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Modified Bland-Altman plots for the SpO2 data by sensor type are presented in Figure A-25 and Figure A-26.

Figure A-25. Modified Bland-Altman for SpO2 - MAXA Sensor (Motion): SaO2 vs. (SpO2 - SaO2)
Figure A-26. Modified Bland-Altman for SpO2 - MAXN Sensor (Motion): SaO2 vs. (SpO2 - SaO2)

1 SpO2 - SaO2 (%)
2 SaO2 (%)
3 Upper 95% LoA
4 Mean Bias
5 Lower 95% LoA
Modified Bland-Altman plots for the pulse rate data by sensor type are presented in Figure A-27 and Figure A-28.

Figure A-27. Modified Bland-Altman for Pulse Rate - MAXA Sensor (Motion): ECG HR vs. (Pulse Rate - ECG HR)

1. Pulse Rate - ECG HR (BPM)
2. ECG HR (BPM)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Figure A-28. Modified Bland-Altman for Pulse Rate - MAXN Sensor (Motion):
ECG HR vs. (Pulse Rate - ECG HR)

1. Pulse Rate - ECG HR (BPM)
2. ECG HR (BPM)
3. Upper 95% LoA
4. Mean Bias
5. Lower 95% LoA
Correlation plots for all the data are presented in Figure A-29 and Figure A-30 for SpO₂ and pulse rate respectively.

Figure A-29. Correlation Plot for SpO₂ (All Data - Motion): SaO₂ vs. SpO₂

1 SpO₂ (%) 2 SaO₂ (%)
The results are presented in Table A-11, showing an increase in percent modulation greater than 2.5-fold during motion.

Table A-11. Percent Modulation During Motion

<table>
<thead>
<tr>
<th></th>
<th>Quiescent Periods</th>
<th>Motion Periods</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Modulation (%)</td>
<td>1.63</td>
<td>4.14</td>
<td>2.54</td>
</tr>
</tbody>
</table>
Pulse oximeters have been known to perform better at the higher saturation levels compared to the lower end. Though, when presenting the ARMS, the common methodology is to provide the data across the whole range (70% to 100%). The data below is presented to show each decade, which includes the RMSD and N values. There is no acceptance criteria associated with decade levels of hypoxia. In Table A-12, SpO2 RMSD is presented per decade.

Table A-12. RMSD of SpO2 per Decade (Motion)

<table>
<thead>
<tr>
<th>SpO2 Range</th>
<th>100%-90%</th>
<th>89%-80%</th>
<th>79%-70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>589</td>
<td>322</td>
<td>344</td>
</tr>
<tr>
<td>RMSD (%)</td>
<td>2.36</td>
<td>1.97</td>
<td>2.41</td>
</tr>
</tbody>
</table>

RMSD for each decade are well within the acceptance criteria of 3%. The plateaus that were used during the study were 70 - 76, 76.01 - 85, 85.01 - 94 and >94%, as presented in Table A-13.

Table A-13. RMSD of SpO2 per Plateau (Motion)

<table>
<thead>
<tr>
<th>SpO2 Range</th>
<th>Room Air Plateau</th>
<th>90% Plateau</th>
<th>80% Plateau</th>
<th>70% Plateau</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>318</td>
<td>330</td>
<td>318</td>
<td>289</td>
</tr>
<tr>
<td>RMSD (%)</td>
<td>2.61</td>
<td>1.96</td>
<td>2.19</td>
<td>2.33</td>
</tr>
</tbody>
</table>
A.4 Conclusion

A.4.1 No Motion

The pooled results indicate that the observed SpO₂ A_{RMS} values met the system’s specification dependent on the sensor used with the Nellcor™ Bedside Respiratory Patient Monitoring System for SpO₂ during non-motion conditions across the SaO₂ saturation range of 70 to 100%.

The pooled results indicate that for a saturation range of 60-80% for SpO₂, the acceptance criterion was met for the monitoring system when tested with MAXA, MAXN, and MAXFAST sensors.

The pooled results indicate that the observed pulse rate A_{RMS} values met the system's specification of 3 BPM when tested with the Nellcor™ Bedside Respiratory Patient Monitoring System for SpO₂ during non-motion conditions across the SaO₂ saturation range of 60 to 100%.

A.4.2 Motion

The pooled results indicate that the observed SpO₂ A_{RMS} values met the system’s specification of 3% when tested with MAXA, MAXN sensors and the Nellcor™ Bedside Respiratory Patient Monitoring System for SpO₂ during motion conditions across the SaO₂ saturation range of 70 to 100%.

The pooled results indicate that the observed pulse rate A_{RMS} values met the system's specification of 5 BPM when tested with MAXA, MAXN sensors and the Nellcor™ Bedside Respiratory Patient Monitoring System for SpO₂ during motion conditions across the SaO₂ saturation range of 70 to 100%.
B Clinical Studies (REF GR101777)

B.1 Overview

This appendix presents data from clinical studies conducted with the Nellcor™ Bedside Respiratory Patient Monitoring System equipped with the following parameter module:

One (1) prospective, controlled hypoxia clinical study was conducted to demonstrate the accuracy of Nellcor™ sensors when used in conjunction with the Nellcor™ Bedside Respiratory Patient Monitoring System. The study was performed with healthy volunteers at a single clinical laboratory. Accuracy was established by comparison to CO-oximetry.

B.2 Methods

Data from 11 healthy volunteers were included in the analysis. Sensors were rotated on digits and brow to provide a balanced study design. SpO2 values were continuously recorded from each instrument while inspired oxygen was controlled to produce five steady state plateaus at target saturations of approximately 98, 90, 80, 70 and 60%. Six arterial samples were taken 20 seconds apart at each plateau resulting in a total of approximately 30 samples per subject. Each arterial sample was drawn over two (2) respiratory cycles (approximately 10 seconds) while SpO2 data were simultaneously collected and marked for direct comparison to CO2. Each arterial sample was analyzed by at least two of the three IL CO-oximeters and a mean SaO2 was calculated for each sample. End tidal CO2, respiratory rate, and respiratory pattern were continuously monitored throughout the study.
B.3 Study Population

Table B-1. Demographic Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Class</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>6</td>
</tr>
<tr>
<td>Race</td>
<td>Caucasian</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>African American</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Asian</td>
<td>0</td>
</tr>
<tr>
<td>Age</td>
<td>--</td>
<td>19-48</td>
</tr>
<tr>
<td>Weight</td>
<td>--</td>
<td>108-250</td>
</tr>
<tr>
<td>Skin pigment</td>
<td>Very light</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Olive</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Dark olive/Medium black</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Extremely dark/Blue black</td>
<td>1</td>
</tr>
</tbody>
</table>

B.4 Study Results

Accuracy was calculated using the root mean square difference (RMSD).

Table B-2. SpO2 Accuracy for Nellcor™ Sensors vs. CO-oximeters

<table>
<thead>
<tr>
<th>SpO2 Decade</th>
<th>MAXA</th>
<th>MAXN</th>
<th>MAXFAST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Points</td>
<td>Arms</td>
<td>Data Points</td>
</tr>
<tr>
<td>60-70</td>
<td>71</td>
<td>3.05</td>
<td>71</td>
</tr>
<tr>
<td>70-80</td>
<td>55</td>
<td>2.35</td>
<td>55</td>
</tr>
<tr>
<td>80-90</td>
<td>48</td>
<td>1.84</td>
<td>48</td>
</tr>
<tr>
<td>90-100</td>
<td>117</td>
<td>1.23</td>
<td>117</td>
</tr>
</tbody>
</table>
Figure B-1. Modified Bland-Altman Plot

1 Test Sensor;
 Avg CO-oximeter value 70-100% SpO2
2 Avg CO-oximeter value 70-100% SpO2

- Oximetry board with MAXA sensor
- Oximetry board with MAXN sensor
- Oximetry board with MAXFAST sensor
B.5 **Adverse Events or Deviations**

The study was conducted as expected with no adverse events and no deviations from the protocol.

B.6 **Conclusion**

The pooled results indicate that for a saturation range of 60-80% for SpO₂, the acceptance criterion was met for the monitoring system when tested with MAXA, MAXN and MAXFAST sensors. The pooled results indicate that for a saturation range of 70-100% for SpO₂, the acceptance criterion was met.
Panel
Front ...2-3
Rear ..2-6
Parameter
OxiMax SPD™ Alert 2-15, 10-10
Pulse Rate Delay 2-15, 10-12
SatSeconds™ 2-14, 10-6
Patient Trend Data 4-44
Performance Considerations
EMI ...6-5
Patient Conditions 6-4
Sensor ..6-1
Performance Verification 6-1
Physical Characteristics 11-5
Pleth Display 4-41
Pleth View2-9
Power-On Self-Test 4-6
Product
Description2-1
Intended Use2-1
Pulse Rate High (PR) Status 5-6
Pulse Rate Low (PL) Status 5-6
Pulse Search5-6
Pulse Search (PS) Status 5-6
Real-Time Data5-4
Response Mode, Fast or Normal ...5-5
Safety Checks7-1
SatSeconds alarms 2-14, 10-6
Saturation
Calculated 10-4
Fractional 10-3
Functional 10-3
Measured 10-4
Saturation High Limit Alarm 5-6
Saturation Lower (SL) Status 5-6
Saturation Pattern Detection 4-21
Saturation Upper (SH) Status 5-6
Scroll, Trend Data 5-2
Searching for a Valid Pulse 4-8
Sensor
Accuracy and Ranges11-4
Alarm Priorities 4-14, 8-6
Performance Considerations ...6-1
Selection9-2
Service, Returning for 8-17
Setting Institutional Defaults ... 4-16, 4-53
Setting SatSeconds Limits 4-20
Setting SPD Sensitivity 4-22
SH 5-6
Signal Artifact, MO5-6
SPD (Saturation Pattern Detection) ... 4-21
Specifications 11-4
Electrical 11-5
Performance 11-4
Physical 11-1, 8-1
Status Code
AO, Alarm Off5-6
AS, Alarm Silence5-6
BU, Battery in Use 5-6
LB, Low Battery 5-6
LM, Loss of Pulse Signal Artifact 5-6
LP, Loss of Pulse 5-6
MO, Signal Artifact 5-6
PH, PR Upper Limit 5-6
PL, PR Lower Limit 5-6
PS, Pulse Search 5-6
SH, Sat Upper Limit 5-6
SL, Sat Lower Limit 5-6
Storage
Relative Humidity 11-3
Temperature 11-3
Symbols2-6
Technical Assistance1-5
Tone
Alarm Silence Reminder 2-14
High Priority Alarm 2-14
Low Priority Alarm 2-14
Medium Priority Alarm 2-14
Power-On Self-Test Pass 2-14
Pulse Beep 2-14
Transport
Altitude 11-3
Relative Humidity 11-3
Temperature 11-3
Trend Data
Operation 5-1
Reading 5-2
Trend View 2-10, 4-43
Troubleshooting
Displays Dashes 5-19
Help 8-10, 8-11, 8-12, 8-13
On-Screen Help 1-5
Primary Speaker Failure 8-8
Technical Assistance1-5
Turning On 4-4, 4-6
View
Pleth4-41
Pleth and Trend 4-47
Trend 4-43
Warning

Broken monitoring screen1-4
Entanglement1-3
Explosion hazard1-2

Exposure to moisture1-4
Lifting1-3, 9-2
Liquid ingress1-3
Silencing1-3
Supplemental oxygen1-3, 10-10