BECAUSE EVERY SECOND COUNTS.

Nellcor™ SpO₂ Forehead Sensor
Timing for your patients is critical. You need accurate data quickly — so you can react sooner. That’s why we developed the Nellcor™ SpO₂ forehead sensor.

Some patients represent a monitoring challenge because of:
- Intense vasoconstriction
- Hypovolemia
- Hypothermia
- Therapeutic hypothermia
- Low cardiac index
- Septic shock
- Severe peripheral vascular diseases
- Peripheral access in the OR

Forehead sensors help you succeed when challenges occur.

The Nellcor™ SpO₂ forehead sensor is accurate. It’s:
- 25% more accurate than Masimo™ when it matters most, like in challenging low-saturation patients²,³
- More closely aligned to arterial blood gas (ABG) draws than digit sensors⁴-⁶

It’s also:
- Reliable, able to give readings when conventional finger sensors fail⁷
- Easy to use; the forehead is generally easier to reach and less prone to motion than hands
- Designed to detect changes in SpO₂ earlier than conventional sensors⁸, helping you react sooner to hypoxemic events

It’s versatile. You can use the sensor with:
- Mechanically ventilated patients
- Both pediatric (weighing more than 10 kg) and adult patients

And it’s convenient. It:
- Is designed for single patient use
- Features a long-lasting, four-layer adhesive

THE KEY TO SENSOR PLACEMENT
Optimal placement of the Nellcor™ SpO₂ forehead sensor is based on arterial circulation of the forehead region.

The skin just above the eyebrows is an ideal sensor site because its circulation stems from the internal carotid artery — the same source that supplies blood to the eyes and brain.
Impact of cold-induced vasoconstriction

- **Finger sensors**: 89% decrease, p < 0.001
- **Ear sensors**: 55% decrease, p < 0.01
- **Forehead sensors**: No change, p < 0.01

Warm room 74 °F = 23°C  Cold room 58 °F = 14°C

Because every second counts

When timing is critical, the Nellcor™ SpO₂ forehead sensor can detect changes in SpO₂ faster than with digit sensors. And with an accuracy that correlates closer to arterial blood data.

Forehead SpO₂ measurements are more accurate than finger SpO₂ measurements in critically ill patients.

Response to a hypoxic event with peripheral vasoconstriction

Not all sensor sites are the same

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Response Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Line</td>
<td>10.7</td>
</tr>
<tr>
<td>OxiMax® MAX-FAST Forehead</td>
<td>10.1</td>
</tr>
<tr>
<td>Masimo LNOP®* Ear Sensor</td>
<td>25.6*</td>
</tr>
<tr>
<td>Various Finger Sensors</td>
<td>77.5*</td>
</tr>
</tbody>
</table>

Average and +/-1 SD bars shown (*P<0.001)

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part number</th>
<th>Weight range</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXFAST</td>
<td>&gt;10 kg</td>
<td>Case of 24</td>
</tr>
</tbody>
</table>


3. FDA 510(k): Masimo K101896 – Masimo Sensor Accuracy


10. Bebout DE, Mannheimer PD. Effects of cold-induced peripheral vasoconstriction on pulse amplitude at various pulse oximeter sensor sites. Anesthesiology. 2002;96(Sup 2):A558.


12. A technology overview of the Nellcor OxiMax pulse oximetry system. Internal testing.


*Comparison between the published FDA cleared labeling for Nellcor™ MAXA, MAXAL, MAXN, MAXP, MAXI and MAXFAST sensors and Masimo™* LNCS sensors.