Información de copyright

COVIDIEN, COVIDIEN con logotipo y el logotipo de Covidien y Positive Results for Life son marcas registradas de Covidien AG en EE. UU. e internacionalmente. ™* son marcas comerciales de sus respectivos propietarios. Otras marcas son marcas comerciales de una empresa Covidien.

©2013, 2015, 2018 COVIDIEN.

La información contenida en este manual es propiedad exclusiva de Covidien y no puede duplicarse sin permiso. Covidien podrá revisar o sustituir este manual en cualquier momento y sin previo aviso. Compruebe que esta es la versión más actualizada del manual. En caso de dudas, póngase en contacto con el departamento del servicio técnico de Covidien.

Aun considerando que la información aquí contenida es fidedigna, esta no constituye un sustituto del ejercicio del criterio profesional.

El respirador solo debe ser puesto en funcionamiento y reparado por profesionales debidamente formados. La única responsabilidad de Covidien con respecto al respirador y el software, y su uso, es lo que se indica en la garantía limitada proporcionada.

Nada de lo contenido en el presente documento limitará ni restringirá en modo alguno el derecho de Covidien a revisar, cambiar o modificar el equipo (incluido el software) descrito en este documento, sin previo aviso. Salvo acuerdo expreso por escrito en sentido contrario, Covidien no estarán obligado en modo alguno a facilitar las revisiones, cambios o modificaciones al propietario o usuario del equipo (incluido el software) descrito en este documento.
Tabla de contenidos

1 Introducción

1.1 Descripción general .. 1-1
 1.1.1 Documentos relacionados 1-1

1.2 Definiciones de símbolos globales 1-2

1.3 Información sobre seguridad 1-3
 1.3.1 Definiciones de los símbolos de seguridad 1-3
 1.3.2 Advertencias sobre riesgo de incendios 1-4
 1.3.3 Advertencias generales 1-5
 1.3.4 Advertencias relativas al entorno de uso 1-7
 1.3.5 Advertencias antes del uso del equipo 1-8
 1.3.6 Advertencias relativas a la alimentación eléctrica 1-9
 1.3.7 Advertencias relativas a los parámetros del respirador 1-9
 1.3.8 Advertencias relativas a cables, tubos y accesorios 1-10
 1.3.9 Advertencias relativas a las fuentes de gas 1-11
 1.3.10 Advertencias relativas al control de infecciones ... 1-12
 1.3.11 Advertencias relativas al mantenimiento del respirador 1-13
 1.3.12 Precauciones ... 1-13
 1.3.13 Notas ... 1-14

1.4 Obtención de asistencia técnica 1-15
 1.4.1 Servicios técnicos .. 1-15
 1.4.2 Ayuda en pantalla ... 1-18

1.5 Información sobre garantía 1-19

1.6 Fecha de fabricación .. 1-19

1.7 Fabricante ... 1-20

1.8 Compatibilidad electromagnética 1-20

2 Descripción del producto

2.1 Generalidades ... 2-1

2.2 Descripción del respirador 2-2

2.3 Indicaciones de modo de empleo 2-4

2.4 Contraindicaciones ... 2-4

2.5 Lista de componentes .. 2-5

2.6 Vistas del producto ... 2-6
 2.6.1 Vista frontal de la GUI 2-6
 2.6.2 Vista frontal de la BDU 2-7
 2.6.3 Vista trasera de la BDU 2-8
 2.6.4 Vista trasera de la BDU 2-10
 2.6.5 Vistas laterales del respirador 2-14
2.7 Configuraciones de montaje ... 2-15
2.8 Batería de reserva .. 2-15
2.9 Interfaz gráfica del usuario ... 2-16
 2.9.1 Pantalla principal .. 2-16
2.10 Controles e indicadores de la GUI 2-16
 2.10.1 Teclas de control .. 2-16
 2.10.2 Restablecer la pantalla táctil de la GUI 2-18
 2.10.3 Indicadores visuales .. 2-18
 2.10.4 Símbolos y abreviaturas en la pantalla 2-22
 2.10.5 Indicadores sonoros .. 2-25
2.11 Unidad neumática .. 2-26
 2.11.1 Controles e indicadores de la BDU 2-27
 2.11.2 Conectores ... 2-37
2.12 Equipos adicionales .. 2-38
2.13 Características especiales ... 2-38
2.14 Definiciones de colores ... 2-39
2.15 Diagramas neumáticos .. 2-39

3 Installation

3.1 Generalidades .. 3-1
3.2 Avisos de seguridad .. 3-1
3.3 Montaje del producto .. 3-2
 3.3.1 Cómo montar los componentes del respirador 3-2
 3.3.2 Fuentes de alimentación del equipo 3-2
3.4 Colocación del producto .. 3-5
3.5 Conectividad del producto .. 3-6
 3.5.1 Conexión del respirador a la alimentación de CA 3-6
 3.5.2 Conexión de los suministros de gas 3-7
 3.5.3 Instalación del filtro ... 3-10
 3.5.4 Conexión del circuito del paciente 3-15
3.6 Cómo instalar los accesorios .. 3-18
 3.6.1 Baterías .. 3-18
 3.6.2 Comprobación de las baterías 3-23
 3.6.3 Vida útil de la batería .. 3-23
 3.6.4 Eliminación de la batería ... 3-24
 3.6.5 Brazo flexible ... 3-24
 3.6.6 Humidificador ... 3-25
3.7 Modos de funcionamiento del respirador 3-28
 3.7.1 Modo Normal ... 3-28
 3.7.2 Inicio rápido .. 3-29
 3.7.3 Estado en espera ... 3-29
3.7.4 Modo Servicio ..3-31
3.8 Configuración del equipo 3-33
 3.8.1 Preparación del respirador para su uso3-34
 3.8.2 Configuración de la GUI3-35
3.9 Comprobación de la instalación 3-44
 3.9.1 ATC (autotest corto)3-44
 3.9.2 ATG (Autotest largo)3-51
 3.9.3 Secuencia de la prueba del ATG3-53
 3.9.4 Resultados de prueba del ATG3-57
3.10 Verificación del funcionamiento 3-58

4 Funcionamiento

 4.1 Descripción general ..4-1
 4.2 Función del respirador ..4-1
 4.3 Configuración del respirador4-2
 4.4 Manejo de la interfaz de usuario4-2
 4.4.1 Uso de la GUI ...4-3
 4.4.2 Ajuste de las propiedades de visualización de la GUI4-5
 4.4.3 Uso de acciones al manejar la GUI4-6
 4.5 Funcionamiento del respirador4-8
 4.5.1 Configuración del respirador4-10
 4.5.2 Parámetros de apnea4-15
 4.5.3 Parámetros de alarma4-16
 4.5.4 Pantalla de alarma durante el funcionamiento4-18
 4.5.5 Implementación de los cambios en la configuración del respirador ...4-19
 4.5.6 Variables de constante de tiempo durante los cambios en la frecuencia ..4-20
 4.6 Cálculo del peso corporal previsto (PBW)4-21
 4.7 Ventilación no invasiva (NIV)4-22
 4.7.1 Indicaciones de uso de la NIV4-22
 4.7.2 Interfaces de respiración NIV4-23
 4.7.3 Configuración de NIV4-23
 4.7.4 Conversión de tipo de ventilación INVASIVE a ventilación NIV ...4-24
 4.7.5 Conversión de tipo de ventilación NIV a INVASIVE4-25
 4.7.6 Parámetro de límite de tiempo inspiratorio espontáneo máximo ...4-26
 4.7.7 Configuración de apnea NIV4-27
 4.7.8 Parámetros de alarma en NIV4-27
4.8 Inspiración manual .. 4-28
4.9 Maniobras mecánicas respiratorias 4-28
 4.9.1 Maniobra de pausa inspiratoria 4-30
 4.9.2 Maniobra de pausa espiratoria 4-31
 4.9.3 Otras maniobras respiratorias 4-32
4.10 Función del sensor de oxígeno 4-32
 4.10.1 Vida útil del sensor de oxígeno 4-33
 4.10.2 Calibración del sensor de oxígeno 4-34
 4.10.3 Comprobación de la calibración del sensor de oxígeno ... 4-34
4.11 Estrategias de protección del respirador 4-35
 4.11.1 Autotest de encendido (POST) 4-35
 4.11.2 Fallo técnico ... 4-35
 4.11.3 SST ... 4-35
 4.11.4 Error de procedimiento 4-36
 4.11.5 Garantía de ventilación 4-36
 4.11.6 Válvula de seguridad abierta (SVO) 4-36
 4.11.7 Respirador no operativo (Vent. Inop.) 4-37
4.12 Apagado del respirador 4-37

5 Información sobre los datos del producto

 5.1 Descripción general .. 5-1
 5.2 Idioma .. 5-1
 5.3 Pantalla de datos ... 5-1
 5.4 Transmisión de datos 5-1
 5.4.1 Captura de pantalla de la GUI 5-2
 5.4.2 Configuración de comunicaciones 5-4
 5.4.3 Configuración del puerto Com 5-4
 5.4.4 Comandos en serie 5-5
 5.4.5 Comando RSET .. 5-6
 5.4.6 Comando SNDA 5-6
 5.4.7 Comando SNDF 5-10
 5.5 Puertos de comunicación 5-17
 5.5.1 Uso de los puertos 5-18
 5.6 Recuperación de datos almacenados 5-20
 5.7 Configuración de las pantallas 5-20
 5.8 Impresión de datos o capturas de pantalla 5-20
 5.9 Conectividad a sistemas externos 5-21
6 Rendimiento

6.1 Descripción general ... 6-1
6.2 Opciones del sistema .. 6-1
6.3 Consideraciones medioambientales 6-1
6.4 Configuración del respirador 6-2
 6.4.1 Tipo de ventilación .. 6-2
 6.4.2 Modo .. 6-2
 6.4.3 Tipo de respiración .. 6-3
6.5 Alarmas ... 6-4
 6.5.1 Mensajes de alarma ... 6-5
 6.5.2 Tecla de restablecimiento de la alarma 6-8
 6.5.3 Tecla de sonido en pausa ... 6-9
 6.5.4 Tecla de volumen de la alarma 6-9
 6.5.5 Prueba de las alarmas ... 6-10
 6.5.6 Visualización de las alarmas 6-16
 6.5.7 Retraso de la alarma .. 6-16
 6.5.8 Gestión de las alarmas .. 6-16
 6.5.9 Alarma de PÉRDIDA ALIM. CA 6-40
 6.5.10 Alarma de APNEA ... 6-40
 6.5.11 Alarma de DESCONEXIÓN DEL CIRCUITO 6-41
 6.5.12 Alarma de PÉRDIDA DE ALIMENTACIÓN 6-41
 6.5.13 Alarma de ALERTA DEL DISPOSITIVO 6-42
 6.5.14 Alarma de Presión máxima del circuito (P_PEP) 6-42
 6.5.15 Alarma de Porcentaje máximo de O₂ administrado (O₂%) ... 6-43
 6.5.16 Alarma de Volumen espirado máximo por minuto (V_ETOT) .. 6-43
 6.5.17 Alarma de Volumen corriente espirado máximo (V_TET) 6-43
 6.5.18 Alarma de Volumen corriente inspirado máximo (TIET) 6-43
 6.5.19 Alarma de Frecuencia respiratoria máxima (f_TOT) 6-44
 6.5.20 Alarma de INSPIRACIÓN DEMASIADO LARGA 6-45
 6.5.21 Alarma de Presión del circuito baja (P_PEP) 6-45
 6.5.22 Alarma de Porcentaje mínimo de O₂ administrado (O₂%) ... 6-45
 6.5.23 Alarma de volumen corriente espirado mandatorio bajo (V_TEMAND) .. 6-47
 6.5.24 Alarma de volumen corriente espirado espontáneo bajo (V_TEREP) .. 6-47
 6.5.25 Alarma de Volumen total espirado bajo por minuto (V_ETOT) .. 6-47
 6.5.26 Alarma de ERROR DE PROCEDIMIENTO 6-48
 6.5.27 Alarma de Oclusión severa 6-48
6.6 Datos del paciente monitorizados 6-49
 6.6.1 Volumen total espirado por minuto (V_ETOT) 6-49
 6.6.2 Volumen espirado espontáneo por minuto (V_ESPONT) 6-50
 6.6.3 Volumen corriente espirado (V_TET) 6-50
6.6.4 Volumen proximal espirado por minuto ($V_{E\, \text{TOTY}}$)6-50
6.6.5 Volumen corriente espirado proximal ($V_{E\, \text{TEY}}$)6-50
6.6.6 Volumen corriente espirado espontáneo ($V_{E\, \text{SPONT}}$)6-50
6.6.7 Volumen corriente espirado mandatorio ($V_{E\, \text{MAND}}$)6-50
6.6.8 Volumen espirado en mL/kg ..6-51
6.6.9 Volumen corriente inspirado ($V_{I\, \text{TI}}$)6-51
6.6.10 Volumen corriente inspirado proximal ($V_{I\, \text{TIY}}$)6-51
6.6.11 Volumen administrado en mL/kg6-51
6.6.12 Relación I:E ...6-51
6.6.13 Presión media del circuito (P_{MEAN})6-51
6.6.14 Presión máxima del circuito (P_{PEAK})6-52
6.6.15 Presión inspiratoria final ($P_{I\, \text{END}}$)6-52
6.6.16 Presión espiratoria final (PEEP)6-52
6.6.17 PEEP intrínseca (PEEP) ..6-52
6.6.18 PEEP intrínseca basada en PAV (PEEP$_{\text{PAV}}$)6-52
6.6.19 PEEP total (PEEP$_{\text{TOT}}$) ..6-52
6.6.20 Presión de meseta (P_{PL}) ..6-52
6.6.21 Frecuencia respiratoria total (f_{TOT})6-52
6.6.22 Compliancia pulmonar basada en PAV (C$_{\text{PAV}}$)6-53
6.6.23 Resistencia del paciente basada en PAV (R$_{\text{PAV}}$)6-53
6.6.24 Elastancia pulmonar basada en PAV (E$_{\text{PAV}}$)6-53
6.6.25 Índice de taquipnea espontánea (f/ V_{T})6-53
6.6.26 Relación de tiempo inspiratorio espontáneo (T_{I}/T_{TOT})6-53
6.6.27 Tiempo inspiratorio espontáneo ($T_{I\, \text{SPONT}}$)6-53
6.6.28 Resistencia de las vías aéreas total basada en PAV (R$_{\text{TOT}}$)6-54
6.6.29 Compliancia estática (C$_{\text{STAT}}$) y Resistencia estática (R$_{\text{STAT}}$) ..6-54
6.6.30 Compliancia dinámica (C$_{\text{DYN}}$)6-56
6.6.31 Resistencia dinámica (R$_{\text{DYN}}$)6-56
6.6.32 C_{20}/C ..6-56
6.6.33 Flujo espiratorio final (EEF) ...6-56
6.6.34 Flujo espontáneo máximo (PSF)6-56
6.6.35 Porcentaje de O$_2$ mostrado ..6-56

7 Mantenimiento preventivo

7.1 Generalidades ...7-1
7.2 Tiempo de funcionamiento del respirador7-1
7.3 Intervalos de mantenimiento preventivo7-1
7.4 Limpieza de las superficies exteriores7-5
7.5 Limpieza y desinfección de los componentes7-7

7.5.1 Desinfección del conjunto del sensor de flujo espiratorio (EVQ) ..7-10
7.5.2 Reensamblaje del EVQ ...7-17
7.5.3 Sustitución del EVQ .. 7-19
7.5.4 Almacenamiento .. 7-20
7.6 Esterilización de componentes 7-20
7.7 Mantenimiento preventivo realizado por el personal de servicio ... 7-21
7.8 Comprobaciones de seguridad 7-23
7.9 Inspección y calibración ... 7-24
7.10 Documentación ... 7-24
7.11 Almacenamiento durante períodos prolongados 7-24

8 Resolución de problemas
8.1 Descripción general .. 8-1
8.2 Categorías de los problemas 8-1
8.3 Cómo obtener mantenimiento para el respirador 8-1
8.4 Eliminación de piezas usadas 8-1
8.5 Registros del respirador ... 8-2
8.6 Códigos de diagnóstico .. 8-5

9 Accesorios
9.1 Generalidades ... 9-1
9.2 Información general sobre accesorios 9-2

10 Teoría del funcionamiento
10.1 Descripción general .. 10-1
10.2 Principios teóricos ... 10-3
10.3 Tecnología aplicable .. 10-3
10.4 Inspiración: detección e inicio 10-5
 10.4.1 Trigger por presión .. 10-5
 10.4.2 Trigger de flujo .. 10-6
 10.4.3 Triggers de tiempo ... 10-8
 10.4.4 Triggers iniciados por el operador 10-9
10.5 Espiración: detección e inicio 10-9
 10.5.1 Método de presión de las vías aéreas 10-9
 10.5.2 Método de porcentaje de flujo máximo 10-10
 10.5.3 Método de ciclado por tiempo 10-11
 10.5.4 Métodos de reserva 10-12
10.6 Compliancia y compensación de BTPS 10-13
 10.6.1 Compensación de la compliancia en respiraciones controladas por volumen 10-13
10.6.2 Compensación de BTPS en respiraciones basadas en volumen .. 10-16
10.7 Administración de respiraciones mandatorias 10-16
 10.7.1 Control de volumen (VC) .. 10-17
 10.7.2 Control de presión (PC) .. 10-19
 10.7.3 VC+ ... 10-19
 10.7.4 % de tiempo de rampa ... 10-21
 10.7.5 Inspiración manual .. 10-21
10.8 Administración de respiraciones espontáneas 10-22
 10.8.1 Presión de soporte (PS) .. 10-24
 10.8.2 Volumen de soporte (VS) 10-24
 10.8.3 Compensación del tubo ... 10-26
 10.8.4 Ventilación proporcional asistida (PAV™+) 10-30
10.9 Modo A/C .. 10-31
 10.9.1 Cambio al modo A/C ... 10-33
10.10 Modo SIMV ... 10-33
 10.10.1 Cambio al modo SIMV ... 10-36
10.11 Modo espontáneo (SPONT) .. 10-38
 10.11.1 Cambio al modo SPONT .. 10-40
10.12 Ventilación de apnea .. 10-40
 10.12.1 Detección de la apnea .. 10-40
 10.12.2 Transición a la ventilación de apnea 10-42
 10.12.3 Cambios en los parámetros durante la ventilación de apnea ... 10-42
 10.12.4 Restablecimiento de la ventilación de apnea 10-43
 10.12.5 Ventilación de apnea en SIMV 10-43
 10.12.6 Implementación de nuevos intervalos de apnea 10-44
10.13 Detección de la oclusión y la desconexión 10-45
 10.13.1 Oclusión .. 10-45
 10.13.2 Desconexión ... 10-47
 10.13.3 Anuncio de las alarmas de oclusión y desconexión 10-49
10.14 Mecánica respiratoria ... 10-49
 10.14.1 Pausa inspiratoria .. 10-50
 10.14.2 Pausa espiratoria .. 10-53
 10.14.3 Maniobra de fuerza inspiratoria negativa (NIF) 10-54
 10.14.4 Maniobra de P_{0.1} (presión de oclusión) 10-55
 10.14.5 Maniobra de capacidad vital (VC) 10-55
10.15 Configuración del respirador 10-56
 10.15.1 Ventilación de apnea ... 10-56
 10.15.2 Tipo de circuito y peso corporal previsto (PBW) 10-58
 10.15.3 Tipo de ventilación ... 10-59
 10.15.4 Modo y tipo de respiración 10-59
11.3 Características físicas ... 11-2
11.4 Especificaciones eléctricas ... 11-6
11.5 Requisitos de la interfaz .. 11-7
11.6 Especificaciones ambientales 11-8
11.7 Especificaciones de funcionamiento 11-8
11.7.1 Intervalo y resolución ... 11-8
11.8 Cumplimiento normativo ... 11-28
11.9 Declaración del fabricante .. 11-30
11.10 Pruebas de seguridad ... 11-38
11.11 Requisitos básicos de funcionamiento 11-38

A BiLevel 2.0

A.1 Descripción general .. A-1
A.2 Uso previsto ... A-2
A.3 Definiciones de los símbolos de seguridad A-2
A.4 Configuración de BiLevel ... A-3
A.5 Uso del mantenimiento de la presión con BiLevel A-4
A.6 Inspiraciones manuales en el modo BiLevel A-6
A.7 Maniobras de mecánica respiratoria en BiLevel A-6
A.8 Especificaciones ... A-6
A.9 Descripción técnica ... A-6
 A.9.1 Sincronía en BiLevel .. A-7
 A.9.2 Monitorización del paciente en BiLevel A-9
 A.9.3 Estrategia APRV en BiLevel A-9
 A.9.4 Estructura técnica de BiLevel A-10
A.10 Cambios de modo .. A-10

B Leak Sync

B.1 Descripción general .. B-1
B.2 Uso previsto ... B-1
B.3 Definiciones de los símbolos de seguridad B-1
B.4 Leak Sync ... B-2
B.5 Configuración de Leak Sync ... B-3
B.6 Cuando Leak Sync está habilitado B-4
 B.6.1 Ajuste de la sensibilidad de desconexión (DSENS) B-5
 B.6.2 Datos del paciente monitorizados B-6
B.7 Debate técnico ... B-8
 B.7.1 Precisión del volumen corriente inspirado (VTL) durante Leak Sync .. B-8
 B.7.2 Precisión del volumen corriente espirado (VTE) durante Leak Sync .. B-9
B.7.3 Cálculo del %LEAK .. B-9
B.7.4 Alarma de desconexión del circuito durante Leak Sync B-9

C PAV™+

C.1 Descripción general .. C-1
C.2 Uso previsto ... C-2
C.3 Definiciones de los símbolos de seguridad C-2
C.4 PAV+ ... C-3
 C.4.1 Configuración de PAV+ C-5
 C.4.2 PBW e ID del tubo C-6
 C.4.3 Ajuste de los parámetros de apnea C-8
 C.4.4 Ajuste de los parámetros de alarma C-8
 C.4.5 Parámetros de respirador PAV+ C-8
 C.4.6 Parámetros de alarma de PAV+ C-9
 C.4.7 Datos monitorizados C-9
 C.4.8 Alarams PAV+ .. C-10
C.5 Parámetros/Guía del respirador C-10
 C.5.1 Rendimiento especificado C-11
 C.5.2 Representaciones gráficas en PAV+ C-11
 C.5.3 Términos y definiciones WOB C-12
 C.5.4 Descripción técnica C-13
 C.5.5 Protección contra peligros C-18

D NeoMode 2.0

E Flujo proximal

E.1 Descripción general E-1
E.2 Uso previsto .. E-1
E.3 Descripción de la opción de flujo proximal E-1
 E.3.1 Componentes de la opción de flujo proximal E-2
E.4 Definiciones de los símbolos de seguridad E-3
E.5 Requisitos de software/hardware E-3
E.6 Información sobre seguridad E-3
E.7 Símbolos en pantalla E-6
E.8 Calibración del sensor y purga de la vía del sensor E-8
E.9 Requisitos del SST ... E-9
 E.9.1 Conexión del sensor de flujo proximal para el SST .. E-10
E.10 Activar/Desactivar la opción de flujo proximal E-11
E.11 Uso del sensor de flujo proximal E-12
 E.11.1 Cómo realizar una purga manual E-14
E.12 Alarmas ..E-15
E.13 Intervalos, resoluciones y precisionesE-15
 E.13.1 Especificaciones del sensor de flujo proximalE-16
E.14 Números de pieza ..E-16

Glosario
Lista de tablas

Tabla 1-1. Símbolos y descripciones de las cajas de envío .. 1-2
Tabla 1-2. Definiciones de los símbolos de seguridad .. 1-3
Tabla 2-1. Lista de embalaje típica ... 2-5
Tabla 2-2. Símbolos y descripciones de la etiqueta frontal de la BDU 2-9
Tabla 2-3. Símbolos y descripciones del panel o la etiqueta trasera de la BDU ... 2-11
Tabla 2-4. Símbolos comunes indicados en las etiquetas de la GUI o BDU ... 2-13
Tabla 2-5. Teclas de control de la GUI ... 2-16
Tabla 2-6. Indicadores visuales de la GUI ... 2-19
Tabla 2-7. Símbolos y abreviaturas ... 2-22
Tabla 2-8. Funciones de los indicadores sonoros de la GUI 2-26
Tabla 2-9. Indicadores y descripciones de la pantalla de estado 2-31
Tabla 2-10. Funciones de los indicadores sonoros de la BDU 2-37
Tabla 2-11. Leyenda de color .. 2-39
Tabla 3-1. Tipos de paciente y valores de PBW ... 3-15
Tabla 3-2. Configuración del respirador .. 3-33
Tabla 3-3. Secuencia de la prueba del ATC ... 3-47
Tabla 3-4. Volúmenes del humidificador para pacientes adultos y pediátricos .. 3-48
Tabla 3-5. Volúmenes de humidificador para pacientes neonatos 3-48
Tabla 3-6. Resultados individuales del ATC ... 3-49
Tabla 3-7. Resultados generales del ATC ... 3-50
Tabla 3-8. Secuencia de la prueba del ATG ... 3-54
Tabla 3-9. Resultados individuales del ATG .. 3-57
Tabla 3-10. Resultados generales del ATG ... 3-57
Tabla 4-1. Acciones y su significado ... 4-6
Tabla 4-2. Configuración de un paciente para NIV ... 4-23
Tabla 4-3. De INVASIVE a NIV en el mismo paciente .. 4-24
Tabla 4-4. De NIV a INVASIVE en el mismo paciente ... 4-25
Tabla 5-1. Respuesta MISCA .. 5-7
Tabla 5-2. Respuesta MISCF .. 5-11
Tabla 6-1. Descripciones y símbología de las alarmas ... 6-7
Tabla 6-2. Priorización de las alarmas .. 6-17
Tabla 6-3. Categorías de las alarmas técnicas .. 6-19
Tabla 6-4. Alarmas técnicas .. 6-20
Tabla 6-5. Resumen de las alarmas no técnicas ... 6-20
Tabla 6-6. Alarmas no técnicas y sugerencias .. 6-34
Tabla 7-1. Frecuencia de mantenimiento preventivo por parte del operador 7-2
Tabla 7-2. Agentes de limpieza de superficies .. 7-6
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-3</td>
<td>Agentes de limpieza de componentes y procedimientos de desinfección</td>
<td>7-7</td>
</tr>
<tr>
<td>7-4</td>
<td>Parámetros de esterilización</td>
<td>7-20</td>
</tr>
<tr>
<td>7-5</td>
<td>Procedimientos de esterilización de componentes</td>
<td>7-21</td>
</tr>
<tr>
<td>7-6</td>
<td>Frecuencia del mantenimiento preventivo de servicio</td>
<td>7-22</td>
</tr>
<tr>
<td>9-1</td>
<td>Accesorios y opciones</td>
<td>9-3</td>
</tr>
<tr>
<td>10-1</td>
<td>Factores de volumen de compliancia</td>
<td>10-16</td>
</tr>
<tr>
<td>10-2</td>
<td>Ajustes de presión máxima</td>
<td>10-20</td>
</tr>
<tr>
<td>10-3</td>
<td>Características de la administración de respiraciones espontáneas</td>
<td>10-23</td>
</tr>
<tr>
<td>10-4</td>
<td>Ajustes de presión máxima</td>
<td>10-26</td>
</tr>
<tr>
<td>10-5</td>
<td>Eventos de pausa inspiratoria y espiratoria</td>
<td>10-51</td>
</tr>
<tr>
<td>10-6</td>
<td>Valores para (V_I) en función del tipo de circuito</td>
<td>10-58</td>
</tr>
<tr>
<td>10-7</td>
<td>Flujo máximo y tipo de circuito (Leak Sync deshabilitado)</td>
<td>10-58</td>
</tr>
<tr>
<td>10-8</td>
<td>Modos y tipos de respiración</td>
<td>10-59</td>
</tr>
<tr>
<td>10-9</td>
<td>Parámetros de la PCV de seguridad</td>
<td>10-73</td>
</tr>
<tr>
<td>10-10</td>
<td>Parámetros de la ventilación inspiratoria de reserva</td>
<td>10-76</td>
</tr>
<tr>
<td>11-1</td>
<td>Incertidumbre del equipo de verificación del rendimiento</td>
<td>11-1</td>
</tr>
<tr>
<td>11-2</td>
<td>Características físicas</td>
<td>11-2</td>
</tr>
<tr>
<td>11-3</td>
<td>Especificaciones neumáticas</td>
<td>11-3</td>
</tr>
<tr>
<td>11-4</td>
<td>Especificaciones técnicas</td>
<td>11-3</td>
</tr>
<tr>
<td>11-5</td>
<td>Especificaciones eléctricas</td>
<td>11-6</td>
</tr>
<tr>
<td>11-6</td>
<td>Designación de clavijas de la interfaz</td>
<td>11-7</td>
</tr>
<tr>
<td>11-7</td>
<td>Designación de clavijas de llamada a enfermera</td>
<td>11-7</td>
</tr>
<tr>
<td>11-8</td>
<td>Especificaciones ambientales</td>
<td>11-8</td>
</tr>
<tr>
<td>11-9</td>
<td>Intervalo y resolución de la configuración del respirador</td>
<td>11-8</td>
</tr>
<tr>
<td>11-10</td>
<td>Intervalo y resolución de la configuración de las alarmas</td>
<td>11-16</td>
</tr>
<tr>
<td>11-11</td>
<td>Intervalo, resolución y precisión de los datos del paciente</td>
<td>11-19</td>
</tr>
<tr>
<td>11-12</td>
<td>Precisión de la administración</td>
<td>11-25</td>
</tr>
<tr>
<td>11-13</td>
<td>Precisión de supervisión (datos del paciente)</td>
<td>11-26</td>
</tr>
<tr>
<td>11-14</td>
<td>Precisión del valor calculado</td>
<td>11-27</td>
</tr>
<tr>
<td>11-15</td>
<td>Emisiones electromagnéticas</td>
<td>11-31</td>
</tr>
<tr>
<td>11-16</td>
<td>Inmunidad electromagnética</td>
<td>11-32</td>
</tr>
<tr>
<td>11-17</td>
<td>Inmunidad a campos deproximidadde equipos de comunicaciones inalámbricas por RF</td>
<td>11-35</td>
</tr>
<tr>
<td>11-18</td>
<td>Niveles de prueba estándar AIM</td>
<td>11-36</td>
</tr>
<tr>
<td>11-19</td>
<td>Distancias de separación recomendadas para RF</td>
<td>11-36</td>
</tr>
<tr>
<td>11-20</td>
<td>Cables recomendados</td>
<td>11-38</td>
</tr>
<tr>
<td>A-1</td>
<td>Definiciones de los símbolos de seguridad</td>
<td>A-3</td>
</tr>
<tr>
<td>B-1</td>
<td>Definiciones de los símbolos de seguridad</td>
<td>B-1</td>
</tr>
</tbody>
</table>
Tabla B-2. Volúmenes de compensación de fugas basados en el tipo de paciente ...B-2
Tabla B-3. Parámetros D_{SENS} ..B-6
Tabla C-1. Definiciones de los símbolos de seguridad..............................C-2
Tabla C-2. Límites absolutos para los datos monitorizados PAV+..................C-9
Tabla C-3. Términos de trabajo respiratorio de PAV+..............................C-12
Tabla C-4. Valores de resistencia basados en PBW predeterminadosC-22
Tabla E-1. Definiciones de los símbolos de seguridad..............................E-3
Tabla E-2. Símbolos de los datos de la opción de flujo proximalE-7
Tabla E-3. Secuencia de las pruebas del SST de la opción de flujo proximal ..E-9
Tabla E-4. Precisión del volumen del sensor de flujo proximalE-16
Tabla E-5. Especificaciones del sensor de flujo proximalE-16
Tabla E-6. Opción de flujo proximal y referencias de los componentes........E-16
Tabla Glosario-1. Glosario de términos de ventilación.........................Glosario-1
Tabla Glosario-2. Unidades de medida...Glosario-9
Tabla Glosario-3. Abreviaturas técnicas ..Glosario-10
Página dejada en blanco intencionadamente
Lista de figuras

Figura 2-1. Vista frontal de la GUI ... 2-6
Figura 2-2. Vista trasera de la GUI ... 2-7
Figura 2-3. Vista frontal de la BDU .. 2-8
Figura 2-4. Vista trasera de la BDU .. 2-10
Figura 2-5. Opciones de software instaladas 2-11
Figura 2-6. Vistas laterales derecha del respirador 2-14
Figura 2-7. Vistas laterales izquierda del respirador 2-15
Figura 2-8. Interruptor de alimentación del respirador e indicador de CA 2-27
Figura 2-9. Botón de modo Servicio (TEST) 2-28
Figura 2-10. Pantalla de estado de ejemplo durante la respiración normal 2-30
Figura 2-11. Diagrama neumático (se muestra el compresor) 2-40
Figura 2-12. Diagrama neumático - Compresor y sistemas de flujo proximal 2-42
Figura 3-1. Ejemplo de colocación del respirador de forma independiente ... 3-5
Figura 3-2. Retenedor del cable de alimentación en la BDU 3-7
Figura 3-3. Conexión del respirador a los suministros de gas 3-9
Figura 3-4. Instalación del filtro para adultos o uso pediátrico 3-12
Figura 3-5. Instalación del filtro neonatal 3-13
Figura 3-6. Bolsa de drenaje ... 3-14
Figura 3-7. Conexión del circuito del paciente adulto o pediátrico 3-16
Figura 3-8. Conexión del circuito del paciente neonatal 3-17
Figura 3-9. Batería del respirador .. 3-19
Figura 3-10. Orientación correcta de la batería 3-21
Figura 3-11. Ubicaciones del compartimento de la batería 3-22
Figura 3-12. Instalación del brazo flexible 3-24
Figura 3-13. Instalación del soporte en el rail 3-26
Figura 3-14. Instalación del humidificador en el respirador 3-27
Figura 3-15. Botón de modo Servicio (TEST) 3-32
Figura 4-1. Áreas de la GUI ... 4-3
Figura 4-2. Icono del marcador .. 4-5
Figura 4-3. Parámetros de nuevo paciente 4-10
Figura 4-4. Abra la pestaña Menú ... 4-12
Figura 4-5. Pantalla de configuración para un nuevo paciente 4-12
Figura 4-6. Pantalla de configuración de apnea 4-16
Figura 4-7. Pantalla de parámetros de alarma 4-17
Figura 4-8. Pantalla de alarma durante el funcionamiento 4-19
Figura 4-9. Botón de configuración del respirador en “NIV” indicando tipo de ventilación NIV 4-25
Figura 4-10. Indicador T_{SPONT} ... 4-26
Figura 4-11. Configuración de alarmas NIV predeterminada 4-27
Figura 4-12. RM en la pestaña Menú ... 4-29
Figura 4-13. Pestañas de maniobras respiratorias .. 4-29
Figura 4-14. Pantalla Más parámetros con el sensor de O₂ habilitado 4-33
Figura 5-1. Mensaje de dispositivo USB incompatible 5-3
Figura 5-2. Pantalla Config. comunic. ... 5-4
Figura 5-3. Ubicaciones de los puertos ... 5-18
Figura 6-1. Formato de los mensajes de alarma .. 6-6
Figura 7-1. EVQ .. 7-11
Figura 7-2. Componentes del EVQ .. 7-12
Figura 7-3. Extracción del EVQ ... 7-13
Figura 7-4. Extracción del diafragma de la válvula espiratoria 7-13
Figura 7-5. Extracción del precinto del filtro espiratorio 7-13
Figura 7-6. Extracción del filtro del sensor de presión 7-14
Figura 7-7. Método de inmersión .. 7-15
Figura 7-8. Kit de reprocesamiento del EVQ .. 7-17
Figura 7-9. Instalación del filtro del sensor de presión .. 7-17
Figura 7-10. Instalación del precinto del filtro espiratorio 7-18
Figura 7-11. Instalación del diafragma ... 7-18
Figura 7-12. Instalación del EVQ .. 7-19
Figura 8-1. Pantalla de registro ... 8-4
Figura 9-1. Respirador con accesorios ... 9-2
Figura 9-2. Accesorios adicionales ... 9-3
Figura 10-1. Inspiración utilizando sensibilidad por presión 10-6
Figura 10-2. Inspiración utilizando la sensibilidad por flujo 10-8
Figura 10-3. Actividad respiratoria durante inspiración accionada por tiempo 10-8
Figura 10-4. Espiración mediante el método de presión de las vías aéreas 10-10
Figura 10-5. Espiración mediante el método de porcentaje de flujo máximo 10-11
Figura 10-6. Patrón de flujo cuadrado ... 10-13
Figura 10-7. Patrón de flujo de rampa descendente ... 10-14
Figura 10-8. Forma de onda ideal utilizando un patrón de flujo cuadrado 10-18
Figura 10-9. Forma de onda ideal utilizando un patrón de flujo de rampa descendente ... 10-18
Figura 10-10. Onda de forma ideal utilizando ventilación de control de presión ... 10-19
Figura 10-11. Presión objetivo tubo ET frente a flujo .. 10-29
Figura 10-12. Presión objetivo tubo de traqueostomía frente a flujo 10-30
Figura 10-13. No se detecta ningún esfuerzo inspiratorio del paciente 10-31
Figura 10-14. Se detecta esfuerzo inspiratorio del paciente 10-32
Figura 10-15. Respiraciones CONT y ASIST combinadas 10-32
Figura 10-16. Intervalos mandatorios y espontáneos 10-33
Figura 10-17. ASIST administrada dentro del intervalo mandatorio 10-34
Figura 10-18. ASIST no administrada dentro del intervalo mandatorio 10-34
Figura 10-19. Intervalo de apnea igual al periodo respiratorio 10-41
Figura 10-20. Intervalo de apnea mayor que el periodo respiratorio 10-41
Figura 10-21. Intervalo de apnea menor que el periodo respiratorio 10-42
Figura 10-22. Ventilación de apnea en SIMV 10-44
Figura A-1. Respiración espontánea a PL A-1
Figura A-3. Pantalla de configuración BiLevel A-4
Figura A-4. BiLevel con mantenimiento de la presión A-5
Figura A-5. Intervalos espontáneos y síncronos A-8
Figura A-6. APRV con respiración espontánea a P_H A-9
Figura B-1. Habilitar Leak Sync ... B-3
Figura B-2. La pantalla de la GUI cuando Leak Sync está habilitado .. B-5
Figura B-3. Datos del paciente monitorizados con Leak Sync B-7
Figura B-4. Desconexión del circuito durante VC B-9
Figura C-1. Pantalla de configuración del respirador C-6
Figura C-2. Representaciones gráficas en PAV+ C-13
Figura C-3. Uso de la resistencia pulmonar predeterminada C-21
Figura E-1. Sensor de flujo proximal E-2
Figura E-2. Pantalla de muestra de la GUI con datos de flujo proximal ... E-6
Figura E-3. Mensaje que aparece durante los procesos de purga y puesta a cero automática ... E-8
Figura E-4. Conexión del sensor de flujo proximal al respirador E-10
Figura E-5. Habilitar/deshabilitar el sensor de flujo proximal E-12
Figura E-6. Conexión del sensor de flujo proximal E-13
Figura E-7. Purga manual .. E-14
Figura E-8. Mensaje de alarma: prox. no operativo E-15
Página dejada en blanco intencionadamente
1 Introducción

1.1 Descripción general

Este capítulo contiene información para el uso del respirador serie 980 de Puritan Bennett™. Antes de utilizar el sistema de ventilación, lea atentamente este manual.

Para solicitar una copia adicional de este manual, póngase en contacto con el Servicio de atención al cliente de Covidien o con su representante local.

1.1.1 Documentos relacionados

Covidien pone a su disposición toda la información necesaria para el correcto uso y mantenimiento del respirador. Si necesita más ayuda, póngase en contacto con el representante de Covidien.

- **Manual del operador del respirador serie 980 de Puritan Bennett™**, proporciona la información básica sobre el funcionamiento del respirador y la resolución de problemas de los errores y los fallos. Antes de utilizar el respirador, lea atentamente este manual.

- **Manual de mantenimiento del respirador serie 980 de Puritan Bennett™**, proporciona información al personal del servicio técnico formado por Covidien sobre cómo probar, solucionar problemas, reparar y actualizar el respirador.

Este capítulo contiene lo siguiente:

- Definiciones de símbolos
- Información de seguridad, incluyendo avisos, precauciones y notas
- Información de asistencia técnica
- Cómo acceder a la ayuda en pantalla
- Cómo acceder a la información de la garantía
- Interpretación del número de serie
- Información relativa a la susceptibilidad electromagnética
1.2 **Definiciones de símbolos globales**

La tabla siguiente describe los símbolos mostrados en las cajas de envío del respirador. El resto de símbolos que aparecen en las diversas etiquetas se muestran en el *Capítulo 2*.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td> 0123</td>
<td>Marca CE 0123: indica el cumplimiento de la Directiva sobre dispositivos médicos 93/42/CEE</td>
</tr>
<tr>
<td>![image2]</td>
<td>Número de serie</td>
</tr>
<tr>
<td>![image3]</td>
<td>Número de pieza</td>
</tr>
<tr>
<td>![image4]</td>
<td>Representante autorizado</td>
</tr>
<tr>
<td>![image5]</td>
<td>Fabricante</td>
</tr>
<tr>
<td>![image6]</td>
<td>Este lado hacia arriba</td>
</tr>
<tr>
<td>![image7]</td>
<td>Frágil</td>
</tr>
<tr>
<td>![image8]</td>
<td>Limitaciones de humedad: Entre un 10 % y un 95 % de humedad relativa, sin condensación (uso y almacenamiento)</td>
</tr>
<tr>
<td>![image9]</td>
<td>Limitaciones de temperatura: Entre 10 °C y 40 °C (entre 50 °F y 104 °F) (uso) Entre -20 °C y 70 °C (entre -68 °F y 158 °F) (almacenamiento)</td>
</tr>
<tr>
<td>![image10]</td>
<td>Limitaciones de presión atmosférica: de 70 kPa a 106 kPa (de 10,2 psi a 15,4 psi)</td>
</tr>
</tbody>
</table>
1.3 Información sobre seguridad

1.3.1 Definiciones de los símbolos de seguridad

Esta sección contiene información sobre seguridad para los usuarios, que deben actuar siempre con la precaución adecuada cuando utilicen el respirador.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantener en lugar seco</td>
<td></td>
</tr>
<tr>
<td>La marca de certificación CSA significa que el producto ha sido evaluado según las normas ANSI/Underwriters Laboratories Inc. (UL) y CSA aplicables para su uso en EE. UU. y Canadá.</td>
<td></td>
</tr>
<tr>
<td>La venta de este dispositivo está restringida a médicos o por orden facultativa.</td>
<td></td>
</tr>
<tr>
<td>Consulte el manual de instrucciones.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 1-2. Definiciones de los símbolos de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Símbolo</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>ADVERTENCIA</td>
</tr>
<tr>
<td>Precaución</td>
</tr>
<tr>
<td>Nota</td>
</tr>
</tbody>
</table>
1.3.2 Advertencias sobre riesgo de incendios

ADVERTENCIA:
Riesgo de explosión: no lo utilice en presencia de gases inflamables. Un ambiente rico en oxígeno acelera la combustibilidad.

ADVERTENCIA:
Para evitar los riesgos de incendio, mantenga todos los componentes del sistema alejados de todas las fuentes de ignición (como cerillas, cigarrillos encendidos, gases médicos inflamables o calentadores). Los ambientes ricos en oxígeno aceleran la combustibilidad.

ADVERTENCIA:
En caso de incendio u olor a quemado, lleve a cabo de inmediato las siguientes acciones si resulta seguro hacerlo: desconecte al paciente del respirador y desconecte el respirador del suministro de oxígeno, la alimentación de la instalación y todas las baterías. Proporcione un método alternativo de soporte ventilatorio al paciente, en caso necesario.

ADVERTENCIA:
La sustitución de las baterías del respirador por personal carente de la formación adecuada puede tener como consecuencia un riesgo grave, como un exceso de temperatura, incendio o explosión.

ADVERTENCIA:
Para minimizar el riesgo de incendios, inspeccione y limpie o sustituya, según sea necesario, cualquier pieza dañada del respirador que entre en contacto con el oxígeno.

ADVERTENCIA:
Para evitar descargas electrostáticas y posibles riesgos de incendio, no utilice tubos ni mangueras antiestáticos o conductores de electricidad en el respirador ni en sus inmediaciones.
1.3.3 Advertencias generales

ADVERTENCIA:
Para garantizar el correcto funcionamiento y evitar la posibilidad de lesiones físicas, solo personal médico cualificado debe tratar de configurar y administrar tratamiento con el respirador.

ADVERTENCIA:
En caso de fallo del respirador, la falta de acceso inmediato a medios de ventilación alternativos apropiados puede ocasionar la muerte del paciente. Cuando se utilice el respirador debe estar siempre disponible una fuente alternativa de ventilación, como un resucitador manual, (según se especifca en la norma ISO 10651-4 con máscara).

ADVERTENCIA:
Los pacientes que reciban ventilación mecánica deben contar con supervisión médica para asegurar la correcta ventilación del paciente.

ADVERTENCIA:
El sistema de ventilación no está diseñado para ser un dispositivo de monitorización integral y no activa alarmas para todos los tipos de situaciones. Para un conocimiento detallado del funcionamiento del respirador, asegúrese de leer detenidamente este manual antes de intentar utilizar el sistema de ventilación.

ADVERTENCIA:
Para evitar lesiones al paciente, no utilice el respirador si presenta un fallo conocido. No ignore nunca los fallos graves. Sustituya el respirador y solicite que el personal de mantenimiento cualificado repare la unidad afectada.

ADVERTENCIA:
Para evitar lesiones al paciente, no realice modificaciones no autorizadas en el respirador.

ADVERTENCIA:
Para prevenir lesiones y evitar interferir con el funcionamiento del respirador, no introduzca herramientas ni otros objetos en ninguna abertura del respirador.
ADVERTENCIA:
El nivel del volumen de audio de la alarma se puede ajustar. El operador debe configurar el volumen a un nivel adecuado que le permita diferenciar el sonido de la alarma de cualquier otro ruido de fondo. Consulte Para ajustar el volumen de alarma, p. 3-39, para obtener instrucciones para ajustar el volumen de la alarma.

ADVERTENCIA:
No silencie, des habilite ni reduzca el volumen de la alarma audible del respirador si ello puede poner en peligro la seguridad del paciente.

ADVERTENCIA:
Un aumento de las presiones durante la ventilación puede indicar un problema con el respirador. Compruebe la existencia de bloqueos en las vías aéreas, oclusión en el circuito, o realice una prueba SST.

ADVERTENCIA:
El panel LCD contiene productos químicos tóxicos. No toque los paneles LCD rotos. El contacto físico con un panel LCD roto puede causar la transmisión o ingestión de sustancias tóxicas.

ADVERTENCIA:
Si la pantalla de interfaz gráfica del usuario (GUI) o el panel LCD aparece en blanco o experimenta interferencias y no puede leerse, compruebe el estado del paciente y, después, verifique a través de la pantalla de estado que la ventilación prosigue tal y como se ha definido. Gracias a que la administración de la respiración se controla de modo independiente desde la GUI, los problemas con la pantalla no afectan por sí mismos a la ventilación. No obstante, el respirador se debe sustituir tan pronto como sea posible y ser reparado por el personal de mantenimiento cualificado.

ADVERTENCIA:
El respirador serie 980 de Puritan Bennett™ contiene ftalatos. Si se usa como se indica, puede producirse una exposición muy limitada a cantidades traza de ftalatos. No existen datos clínicos claros de que este grado de exposición aumente los riesgos clínicos. Sin embargo, a fin de minimizar el riesgo de exposición a ftalatos en niños y mujeres embarazadas o en periodo de lactancia, este producto debe emplearse únicamente como se indica.
Información sobre seguridad

ADVERTENCIA:
Si bien el respirador Puritan Bennett serie 980 cumple con las normas citadas en el Capítulo 11, la batería de iones de litio interna del dispositivo se considera Mercancía peligrosa (MP) Clase 9 - Varias, cuando se transporta con fines comerciales. Como tal, el respirador serie 980 o la batería de iones de litio asociada están sujetos a estrictas condiciones de transporte bajo el Reglamento relativo al transporte aéreo de mercancías peligrosas (IATA: Asociación Internacional de Transporte Aéreo), del Código internacional de transporte marítimo de mercancías peligrosas por mar y del Acuerdo europeo referente al Transporte internacional de mercancías peligrosas por carretera (ADR) para Europa. Los particulares que transporten el dispositivo quedan excluidos de dichas regulaciones, aunque en el caso del transporte aéreo se aplican algunos requisitos.

1.3.4 **Advertencias relativas al entorno de uso**

ADVERTENCIA:
No coloque el respirador junto a ningún objeto que bloquee o restrinja la entrada de gas o las aperturas de circulación del aire de refrigeración, el puerto de escape del gas, la entrada del respirador o el altavoz de alarma, ya que esto puede:
- limitar la circulación del aire en torno del respirador, lo que podría causar un sobrecalentamiento;
- limitar la capacidad del respirador de expulsar el gas espirado por el paciente y causar posibles daños;
- limitar la capacidad del médico para oír las alarmas del respirador.

ADVERTENCIA:
Para evitar lesiones, no coloque el respirador de manera que dificulte su desconexión del paciente.

ADVERTENCIA:
Para garantizar el correcto funcionamiento, no coloque el respirador de manera que dificulte el acceso al cable de alimentación de CA.

ADVERTENCIA:
No utilice el respirador en una cámara hiperbárica. No ha sido validado para su uso en este ambiente.
ADVERTENCIA:
No use el respirador en presencia de fuertes campos magnéticos. Hacerlo podría causar fallos en el respirador.

ADVERTENCIA:
No utilice el respirador durante la radioterapia (es decir, tratamiento contra el cáncer con radiación ionizante), ya que podría causar un fallo en el respirador.

ADVERTENCIA:
Para evitar el riesgo de fallos del respirador, utilícelo en un ambiente que cumpla las especificaciones. Consulte Especificaciones ambientales, p. 11-8.

ADVERTENCIA:
No utilice el respirador para el transporte en un sistema médico de urgencia. No ha sido aprobado ni validado para este uso.

1.3.5 Advertencias antes del uso del equipo

ADVERTENCIA:
Antes de activar cualquier parte del respirador, asegúrese de comprobar el correcto funcionamiento del equipo y, en caso apropiado, realice una prueba SST como se describe en este manual. Consulte Para ejecutar el ATC, p. 3-46.

ADVERTENCIA:
Compruebe la presencia de fugas en el sistema respiratorio del respirador realizando un SST antes de ventilar al paciente.

ADVERTENCIA:
Bloquee las ruedas del respirador durante su uso para impedir la posibilidad de extubación debido a un movimiento inadvertido del mismo.

ADVERTENCIA:
Las precisiones del respirador enumeradas en los parámetros de ventilación, parámetros de alarma y las tablas de datos del paciente en el Capítulo 11 son aplicables bajo las condiciones de funcionamiento especificadas. Consulte Especificaciones ambientales, p. 11-8. Si el respirador se utiliza fuera de los intervalos especificados, puede facilitar una información incorrecta y no se aplicarán las precisiones enumeradas en las tablas anteriormente mencionadas. Un técnico en biomedicina del hospital deberá verificar que el respirador se utilice en las condiciones ambientales especificadas.
1.3.6 Advertencias relativas a la alimentación eléctrica

ADVERTENCIA:
Para evitar el riesgo de descarga eléctrica:
- Utilice únicamente baterías, adaptadores y cables de la marca Covidien.
- No utilice baterías, adaptadores o cables con signos visibles de daño.
- No toque los componentes internos.

1.3.7 Advertencias relativas a los parámetros del respirador

ADVERTENCIA:
El respirador ofrece diversas opciones de ventilación. Durante el tratamiento del paciente, el médico debe seleccionar cuidadosamente el modo de ventilación y los parámetros que se usarán con dicho paciente, basándose en su criterio clínico, la situación y las necesidades de cada paciente, y los beneficios, las limitaciones y las características de cada opción de administración respiratoria. Dado que la situación del paciente cambia con el tiempo, evalúe periódicamente los modos y parámetros elegidos a fin de determinar si estos son o no los mejores para las necesidades actuales del paciente.

ADVERTENCIA:
Evite alarmas molestas aplicando los parámetros de alarma apropiados.

ADVERTENCIA:
Para evitar una ventilación inadecuada, seleccione el tipo de tubo (ET o traqueostomía) y el diámetro interno del tubo (ID) correctos para las necesidades ventilatorias del paciente. Si se introduce un parámetro de tubo de traqueostomía o tubo ET mayor o menor que el valor real, se podría generar un soporte ventilatorio inapropiado que podría causar un exceso o un defecto de ventilación.

ADVERTENCIA:
Configurar las alarmas de volumen espiratorio como DESC aumenta el riesgo de no detectar un volumen de retorno bajo.

ADVERTENCIA:
Configurar los límites de alarma como DESC o con valores extremadamente altos o bajos puede hacer que la alarma asociada no se active durante la ventilación, lo que reduce su eficacia de supervisión del paciente y de alertar al médico de situaciones que pueden requerir su intervención.
1.3.8 Advertencias relativas a cables, tubos y accesorios

ADVERTENCIA:
Para evitar descargas electrostáticas y posibles riesgos de incendio, no utilice tubos ni mangueras antiestáticos o conductores de electricidad en el respirador ni en sus inmediaciones.

ADVERTENCIA:
La adición de accesorios al respirador puede cambiar el gradiente de presión en el sistema de respiración por ventilación (VBS) y afectar al rendimiento del respirador. Asegúrese de que cualquier cambio en las configuraciones del circuito respiratorio no supere los valores especificados para la compliancia del circuito y la resistencia total del ramal inspiratorio y espiratorio. Consulte Especificaciones técnicas, p. 11-3. Si se añaden accesorios al circuito del paciente, procese siempre una prueba SST para determinar la compliancia y resistencia del circuito antes de ventilar al paciente.

ADVERTENCIA:
El uso de un nebulizador o humidificador puede causar un aumento de la resistencia de los filtros inspiratorio y espiratorio. Supervise los filtros frecuentemente para detectar el aumento de la resistencia o el bloqueo.

ADVERTENCIA:
Durante el transporte, el uso de tubos de respiración sin los conectores apropiados podría hacer que el circuito se desconectara del respirador.

ADVERTENCIA:
El gas añadido desde un nebulizador neumático externo puede afectar negativamente a la espirometría, el % de O₂ administrado, los volúmenes corrientes administrados y el trigger de la respiración. Además, las partículas aerosolizadas en el circuito respiratorio pueden causar un aumento de la resistencia del filtro espiratorio.

ADVERTENCIA:
Oriente cuidadosamente los tubos y cables del paciente para reducir la posibilidad de enredos o de estrangulación del paciente.

ADVERTENCIA:
Utilice siempre filtros diseñados para su uso con el respirador serie 980 de Puritan Bennett™. No utilice filtros diseñados para su uso con otros respiradores. Consulte Accesorios y opciones, p. 9-3, para ver los números de las piezas de los filtros pertinentes.
Información sobre seguridad

ADVERTENCIA:
Para evitar que penetren líquidos en el respirador, vacíe el vial de condensado espiratorio antes de que el líquido llegue a la línea de llenado máximo.

ADVERTENCIA:
El equipo accesorio conectado a las interfaces analógicas y digitales debe estar certificado conforme a la IEC 60601-1. Además, todas las configuraciones deberán cumplir con la norma de sistema IEC 60601-1-1. Cualquier persona que conecte un equipo adicional a la pieza de entrada de señal o a la pieza de salida de señal del sistema del respirador configura un sistema médico y por tanto, es responsable de garantizar que el sistema cumpla los requisitos del estándar de sistema IEC 60601-1-1. En caso de duda, consulte con el servicio técnico de Covidien en el teléfono 1.800.255.6774 o con el representante local.

ADVERTENCIA:
No utilice conjuntamente HME (intercambiadores de calor y humedad) y humidificadores térmicos conjuntamente. Esto puede producir que el HME absorba agua y se obstruya, con un aumento de la presión en las vías respiratorias.

1.3.9 Advertencias relativas a las fuentes de gas

ADVERTENCIA:
No utilice óxido nítrico, helio o mezclas que contengan helio con el respirador. El dispositivo no ha sido validado para su uso con estas mezclas de gas.

ADVERTENCIA:
Para evitar el riesgo de fallo del respirador, no lo utilice con gases anestésicos.

ADVERTENCIA:
Para el correcto funcionamiento del respirador, utilice solo gases de calidad médica, secos y limpios para ventilar a un paciente.

ADVERTENCIA:
El uso de una única fuente de gas puede provocar la pérdida de ventilación o hipoxemia si dicha fuente de gas falla y no está disponible. Por ello, tenga siempre conectadas al menos dos fuentes de gas al respirador para garantizar que, en el caso de que una de las fuentes de gas falle, el paciente siempre tiene suministro permanente de gas. El respirador tiene dos conexiones para las fuentes de gas: entrada de aire y entrada de oxígeno.
ADVERTENCIA:
El uso del respirador en altitudes superiores o presiones barométricas inferiores a las especificadas podría afectar a su funcionamiento. Consulte Especificaciones ambientales, p. 11-8, para obtener un listado completo de las especificaciones medioambientales.

ADVERTENCIA:
El respirador debe conectarse a un sistema de conducción de gas que cumpla la norma ISO 7396-1:2007 porque:
- La instalación del respirador en un sistema de conducción de gas que no cumpla la norma ISO 7396-1:2007 puede superar la capacidad de flujo del sistema de conducción.
- El respirador es un dispositivo de flujo elevado y puede interferir con el funcionamiento de otros equipos que utilicen la misma fuente de gas si el sistema de conducción de gas no cumple la norma ISO 7396-1:2007.

1.3.10 Advertencias relativas al control de infecciones

ADVERTENCIA:
Los pacientes que reciben ventilación mecánica pueden experimentar un aumento de la vulnerabilidad ante el riesgo de infecciones. Un equipo sucio o contaminado es una posible fuente de infección. Se reconoce que las prácticas de limpieza, esterilización, saneamiento y desinfección varían enormemente entre instituciones de asistencia sanitaria. Siga siempre las directrices de control de infecciones de su hospital para la manipulación de material infeccioso. Siga las instrucciones de este manual y el protocolo de su institución para la limpieza y esterilización del respirador y sus componentes. Utilice todas las soluciones y productos de limpieza con precaución. Siga las instrucciones del fabricante para obtener información sobre las soluciones de limpieza. Consulte el Capítulo 7 de este manual.

ADVERTENCIA:
Para evitar infecciones y contaminación, asegúrese siempre de que estén instalados los filtros inspiratorios y espiratorios antibacterianos antes de ventilar al paciente.

ADVERTENCIA:
No reutilice los accesorios o componentes para un solo paciente. De lo contrario, aumenta el riesgo de contaminación cruzada. Además, el reprocesamiento de accesorios o componentes para un solo paciente puede poner en peligro la funcionalidad del dispositivo y provocar una posible pérdida de ventilación.
1.3.11 Advertencias relativas al mantenimiento del respirador

ADVERTENCIA:
Para garantizar el correcto funcionamiento y evitar la posibilidad de lesiones físicas, el respirador solo debe ser reparado por técnicos cualificados que hayan recibido la formación apropiada por Covidien para el mantenimiento de este respirador.

ADVERTENCIA:

1.3.12 Precauciones

Precaución:
Para evitar posibles daños al equipo, asegúrese de que las ruedas están bloqueadas para impedir el movimiento involuntario del respirador durante el mantenimiento de rutina o cuando está en una pendiente.

Precaución:
No utilice objetos afilados para realizar las selecciones en la pantalla o en el teclado.

Precaución:
Para garantizar un rendimiento óptimo, mantenga la pantalla táctil de la GUI y el teclado limpios y sin sustancias extrañas. Consulte Limpieza de las superficies exteriores, p. 7-5.

Precaución:
Para impedir que la humedad penetre en el respirador y posiblemente cause una avería, Covidien recomienda el uso de un colector mural de agua para el aire cuando se utilice aire médico canalizado desde un compresor de aire de la instalación.

Precaución:
Utilice solo los agentes de limpieza especificados. Consulte Agentes de limpieza de superficies, p. 7-6, para ver los agentes de limpieza aprobados.

Precaución:
Limpie el filtro de entrada del compresor según el intervalo que se indica en Capítulo 7. Consulte Frecuencia de mantenimiento preventivo por parte del operador, p. 7-2.
Precaución:
No bloquee los orificios de ventilación de la refrigeración.

Precaución:
Garantice la conexión y el ensamblaje correctos de los filtros espiratorios e inspiratorios.

Precaución:
Siga las instrucciones para el correcto montaje de la GUI y la BDU (unidad de administración respiratoria) como se describe en las instrucciones de instalación del respirador serie 980 de Puritan Bennett™.

Precaución:
Siga las instrucciones adecuadas de instalación de la batería descritas en este manual.

Precaución:
Al transferir el respirador desde las condiciones de almacenamiento, deje que su temperatura se establezca hasta las condiciones ambientales antes de utilizarlo.

Precaución:
Extraiga las baterías principal y de duración prolongada del respirador antes de transportarlo en un vehículo. De no hacerlo así, se pueden causar daños al respirador.

1.3.13 Notas

Nota:
Al utilizar la ventilación no invasiva (NIV), el volumen espirado real del paciente puede diferir del volumen espirado notificado por el respirador debido a fugas en torno a la máscara.

Nota:
Al utilizar un sistema de catéter de succión cerrada, el procedimiento de succión puede ejecutarse con los modos, tipos de respiración y parámetros existentes. Para reducir la posibilidad de sufrir hipoxemia durante el procedimiento, habilite el suministro de oxígeno elevado con el control de O2 elevado. Consulte Para ajustar la cantidad de O2 elevado suministrado durante dos minutos, p. 3-38.
1.4 Obtención de asistencia técnica

1.4.1 Servicios técnicos

Para obtener información y asistencia técnica, encargue piezas o solicite el Manual del usuario o de mantenimiento, póngase en contacto con los servicios técnicos de Covidien en el teléfono 1.800.255.6774 o con un representante local de Covidien. Consulte la siguiente tabla para ver los centros de servicio en EE. UU. y otros países. El Manual de mantenimiento del respirador serie 980 de Puritan Bennett™ incluye información necesaria para revisar y reparar el respirador si se utiliza por personal cualificado y formado en fábrica.

Si no puede corregir un problema durante el uso del respirador, póngase en contacto con los servicios técnicos de Covidien en el 1.800.255.6774 o con un representante local de Covidien. El Manual de mantenimiento, usado por personal de mantenimiento cualificado y formado en la fábrica, ofrece información adicional para la resolución de problemas.

Cuando llame al Servicio técnico de Covidien o a un representante local de Covidien, tenga a mano los números de serie de la BDU y la GUI, así como el número de la versión de firmware del sistema de ventilación.

La configuración del respirador está disponible tocando el icono de la llave inglesa en la pantalla de la GUI. Tenga esta información a mano siempre que solicite asistencia técnica.
La tabla siguiente recoge los centros de servicio de Covidien, las direcciones y números de teléfono y fax:

<table>
<thead>
<tr>
<th>Covidien Argentina</th>
<th>Covidien Asia</th>
<th>Covidien Australia</th>
<th>Covidien Austria GmbH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguero 351 Capital Federal - 1171 ABC, Argentina</td>
<td>Singapore Regional Service Centre 15 Pioneer Hub, #06-04 Singapore 627753</td>
<td>52A Huntingwood Drive Huntingwood, NSW 2148 Australia</td>
<td>Campus21 Europaring F09402 Brunn am Gebirge A-2345 Österreich</td>
</tr>
<tr>
<td>Tel: (5411) 4863-5300 Fax: (5411) 4863-4142</td>
<td>Tel: (65) 6578 5288 Fax: (65) 6515 5260</td>
<td>Tel: (+61) 1800 - 350702 Fax: (+61) 2967 - 18118</td>
<td>Tel: (+43) 2236 - 3788 39 Fax: (+43) 2236 - 3788 3940</td>
</tr>
<tr>
<td>Covidien Australia</td>
<td>Covidien Canada</td>
<td>Covidien Costa Rica</td>
<td>Covidien Chile</td>
</tr>
<tr>
<td>Covidien Asia</td>
<td>19600 Clark Graham Baie d’Urfé, QC, H9X 3R8 Canada</td>
<td>Global Park, Parkway 50 La Aurora de Heredia Costa Rica</td>
<td>Camino la Boza (Ex 8395) Pudéhuel Santiago Chile</td>
</tr>
<tr>
<td>Tel: (+61) 1800 - 350702</td>
<td>Tel: 1-514-695-1220, Select Option 2 Fax: 1-514-695-4965</td>
<td>Tel: (506) 2239 - 5319</td>
<td>Tel: (562) 739 - 3000 Fax: (562) 783 - 3149</td>
</tr>
<tr>
<td>Covidien China</td>
<td>Covidien Deutschland GmbH</td>
<td>Covidien Costa Rica</td>
<td>Covidien ECE</td>
</tr>
<tr>
<td>2F, Tyco Plaza 99 Tian Zhou Rd Shang Hai 200233 P.R. China</td>
<td>Gewerbepark 1r D-93333 Neustadt/Donau Germany</td>
<td>Covidien ECE Galvahiho 7 / A 832104 Bratislava Slovakia</td>
<td>Prosecká ECE 851/64 190 00 Prague Czech Republic</td>
</tr>
<tr>
<td>Tel: (+86) 4008 1886 86 Fax: (+86) 2154 4511 18</td>
<td>Tel: + 49 (0) 9445 95 9 0 Fax: + 49 (0) 9445 95 9 155</td>
<td>Tel: +420 2 41.095.735 Fax: +420 2 39 000 437</td>
<td>Tel: +42 024 109 57 35 Fax: +42 02 3900 0437</td>
</tr>
<tr>
<td>Covidien Costa Rica</td>
<td>Covidien ECE</td>
<td>Covidien Finland Oy</td>
<td>Covidien ECE</td>
</tr>
<tr>
<td>Edificio Prados de la Morea Carretera Central Del Norte (Cra 7a) Kilómetro 18, Chía-Cundinamarca Bogotá, Colombia</td>
<td>Galvahiho 7 / A 832104 Bratislava Slovakia</td>
<td>Pursimiehenkatu 26-39C PL407 FIN-00151 Helsinki Finland</td>
<td>Mariássy u.7. 1095 Budapest Hungary</td>
</tr>
<tr>
<td>Tel: (571) 619-5469 Fax: (571) 619-5425</td>
<td>Tel: +420 2 41.095.735 Fax: +420 2 39 000 437</td>
<td>Tel: +358 9725 192 88 Fax: +358 9725 192 89</td>
<td>Tel: + 36 1880 7975 Fax: +36 1777 4932</td>
</tr>
<tr>
<td>Covidien China</td>
<td>Covidien Deutschland GmbH</td>
<td>Covidien ECE</td>
<td>Covidien ECE</td>
</tr>
<tr>
<td>Covidien Deutschland GmbH</td>
<td>Gewerbepark 1r D-93333 Neustadt/Donau Germany</td>
<td>Galvahiho 7 / A 832104 Bratislava Slovakia</td>
<td>Mariássy u.7. 1095 Budapest Hungary</td>
</tr>
<tr>
<td>Langebrogade 6E, 4. th DK-1411 København K Danmark</td>
<td>Tel: + 49 (0) 9445 95 9 0 Fax: + 49 (0) 9445 95 9 155</td>
<td>Tel: +420 2 41.095.735 Fax: +420 2 39 000 437</td>
<td>Tel: + 36 1880 7975 Fax: +36 1777 4932</td>
</tr>
<tr>
<td>Covidien France SAS</td>
<td>Covidien Hong Kong</td>
<td>Covidien India</td>
<td>Covidien India</td>
</tr>
<tr>
<td>2 Rue Denis Diderot 78990 Elancourt France</td>
<td>Unit 12 - 16, 18/F BEA Tower Millennium City 5 4187 Kwun Tong Road Kwun Tong, Kowloon, Hong Kong</td>
<td>10th Floor Building No 98 DLF Cyber City Phase III Gurgaon</td>
<td>10th Floor Building No 98 DLF Cyber City Phase III Gurgaon</td>
</tr>
<tr>
<td>Tel: +33(0)13079 80 00 Fax: +33 (0) 13079 80 30</td>
<td>Tel: + 852 3157 7299 Fax: + 852 2838 0749</td>
<td>Tel: + 91 1244 709800 Fax: + 91 1244 206850</td>
<td>Tel: + 91 1244 709800 Fax: + 91 1244 206850</td>
</tr>
<tr>
<td>Country</td>
<td>Address</td>
<td>Telephone</td>
<td>Fax</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Covidien Ireland</td>
<td>Block G, Ground Floor, Cherrywood Business Park, Loughlinstown County Dublin, Ireland Tel: +353 (0) 1 4073173 Fax: +353(0) 1 4073174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Israel</td>
<td>5, Shasham St. North Industrial Park POB3069 Caesarea, 38900 Tel: +972 4,627 73 88 Fax:+972 4,627 76 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Italia S.p.A</td>
<td>Via Rivoltana 2/D I-20090 Segrate (Mi) Italy Tel: +39 02 703 173 1 Fax:+39 02 71740584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Japan Inc.</td>
<td>Technical Support Center 83-1, Takashimadaira 1-Chome Itabashi-ku, Tokyo 175-0082 Japan Tel: +81 (0) 3 6859 0120 Fax:+81 (0) 3 6859 0142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Korea</td>
<td>5F, Hibrand Living Gwan, #215, Yangjae-Dong, Seocho-Gu Seoul, Korea Tel: +822 570 5459 Fax:+822 570 5499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Mexico</td>
<td>Insurgentes Sur # 863, Piso 16 Col. Nápoles Del. Benito Juarez México, D.F. 03810 México Tel: (5255) 5804-1524 Fax: (5255) 5536-1326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Nederland BV</td>
<td>Hogeweeg 105 NL-5301 LL Zaltbommel/Nederland Tel: 0418 57 66 00 Fax: 0418 57 67 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien New Zealand</td>
<td>Cnr Manu Tapu Dr & Joseph Hammond Pl. Auckland Airport New Zealand Tel: +64 508 489 264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Norge AS</td>
<td>Bankveinen 1, Postboks 343 N-1372 Askerr Norway Tel: +47 2415 98 87 Fax:+47 2415 15 98 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Panama</td>
<td>Parque Industrial Costa del Esta Calle Primera, Edificio # 109 Panama City, Panama Tel: (507) 264-7337 Fax: (507) 236-7408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Polska</td>
<td>Al. Jeruzolimskie 162 02-342 Warszawa. Polska Tel: +48 22.312 20 00 Fax:+48 22.312 20 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Puerto Rico</td>
<td>Palmas Industrial Park Road 869 Km 2.0 Bldg. #1 Cataño, PR 00962 Tel: 787-993-7250 Ext. 7222 & 7221 Fax: 787-993-7234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Russia</td>
<td>ul. Sokolnicheskaya 11, 119055 Moscow Russia Tel: +70.495.933 64 69 Fax:+70.495.933 64 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Saglik A.S.</td>
<td>Maslak Mahallesi Bilim Sokak No: 5, Sun Plaza Kat: 2-3 Sisli, Istanbul 34398 Turkey Tel: +90 212 366 20 00 Fax:+90 212 276 35 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Spain S.L.</td>
<td>c/Fructuós Gelabert 6, 8ª Planta 08970 Sant JoanDespí Barcelona, Spain Tel: +34 93 475 86 10 Fax:+34 93 477 10 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Sverige AB</td>
<td>Hemsvarsgatan 9, Box 54 SE-171 74 Solna Sweden Tel: +46(0)8517 615 73 Fax: +46 (0)8 517 615 79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Switzerland</td>
<td>Roosstrasse 53 CH-8832 Wollerau Switzerland Tel: +41(0)44 786 50 50 Fax:+41 (0) 44 78650 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien South Africa</td>
<td>Corporate Park North 379 Roan Crescent RandjesparkMidrand, South Africa Tel: +27.115.429.500 Fax:+27.115.429.624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien Thailand</td>
<td>319 Charnchuri Square 17th Floor, Unit 1-8, Phayathai Road Pathumwan, Bangkok 10330, Thailand Tel: +66 -2.207 -3 100 Fax:+66-2 207 - 3101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien UK</td>
<td>4500 Parkway Whiteley, Fareham Hampshire PO157NY, United Kingdom Tel: +44(0)1329 2240002 Fax:+44(0)1329 220213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covidien USA</td>
<td>2101 Faraday Ave Carlsbad, CA 92008 Teléfono: 1-800-255-6774 (option 4) Email: VentTechSupport@ covidien.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Para recibir soporte técnico en línea, visite la base de conocimientos del centro SolvITSM en www.covidien.com. El centro SolvIT da respuesta a las preguntas frecuentes sobre el sistema de ventilación y otros productos de Puritan Bennett las 24 horas del día, los siete días de la semana.

1.4.2 Ayuda en pantalla

El respirador está equipado con un sistema de ayuda en pantalla que permite a los usuarios seleccionar un elemento de la pantalla y mostrar una descripción del mismo. Siga el procedimiento que aparece a continuación para acceder y utilizar la ayuda en pantalla.

Acceso a los temas de ayuda en pantalla

Los temas de ayuda sobre el respirador se denominan información sobre herramientas. Si se dispone de información sobre una herramienta, un contorno azul brillante rodea al elemento en cuestión.

Para acceder a la información sobre herramientas

1. Toque el elemento en cuestión durante al menos 0,5 s, o arrastre el icono de ayuda (el icono del interrogante que aparece en la parte inferior derecha de la pantalla de la GUI) hasta el elemento en cuestión. Aparece una información sobre la herramienta con una breve descripción del elemento. La mayoría de elementos de la pantalla tienen información sobre herramientas asociada con ellos, lo que proporciona al operador acceso a multitud de temas de ayuda.

2. Toque “cerrar” para cerrar el cuadro de diálogo, o déjelo desaparecer lentamente tras cinco (5) s.

3. Toque “más” en el cuadro de diálogo para mostrar una descripción ampliada.

Nota:

- Si se arrastra el icono de ayuda, la información sobre herramientas se muestra sin expandir.

- Si se arrastra el icono de ayuda y se detiene, aparece la información sobre herramientas. Siga arrastrando hasta otro elemento para descartar la última información sobre herramientas y mostrar otra.
Otros recursos

Se pueden encontrar recursos adicionales sobre el respirador en el Manual de mantenimiento del respirador serie 980 de Puritan Bennett™ y los apéndices de dicho manual sobre BiLevel 2.0, Leak Sync, PAV+, NeoMode 2.0 y el sensor de flujo proximal.

1.5 Información sobre garantía

Para obtener información sobre la garantía de un producto cubierto, póngase en contacto con los Servicios técnicos de Covidien en el teléfono 1.800.255.6774 o llame a un representante local de Covidien.

1.6 Fecha de fabricación

La interfaz gráfica de usuario (GUI) y la unidad de administración respiratoria (BDU) poseen cada una un año específico de fabricación aplicable únicamente a dicha unidad. Dichas fechas se encuentran en el número de serie de cada unidad u opción. Los números de serie de las unidades del respirador 980 están constituidos de diez dígitos, en el formato siguiente:

35ZYYXXXXX

donde

• 35 significa que la unidad se fabricó en Galway, Irlanda

• Z representa el código de producto (B = unidad de administración respiratoria, G = GUI, C = compresor, P = opción de monitorización del flujo proximal. Los códigos de producto que se muestran aquí suelen ser los más comunes. Puede haber otros códigos de producto que se muestran en el número de serie dependiendo de las opciones particulares compradas.

• YY es el código anual de dos dígitos que cambia cada año

• XXXXX es un número secuencial que se reinicia al comienzo de cada nuevo año

Los números de serie están situados en las etiquetas de los paneles traseros de la GUI y la BDU, y en diversas ubicaciones de las opciones de producto.
1.7 Fabricante

Covidien LLC, 15 Hampshire Street, Mansfield, MA 02048 EE. UU.
Covidien Ireland Limited, IDA Business & Technology Park, Tullamore, Irlanda.

1.8 Compatibilidad electromagnética

El sistema respirador cumple con los requisitos de la norma IEC 60601-1-2:2007, IEC 60601-1-2: 2014 (norma colateral de CEM) y la norma AIM 7351731 Rev. 2.00.2017. Algunos dispositivos de transmisión (teléfonos móviles, walkie-talkies, teléfonos inalámbricos, buscapersonas, dispositivos RFID, etc.) emiten radiofrecuencias que pueden interrumpir el funcionamiento del respirador si se utilizan demasiado cerca de este. Los médicos deben ser conscientes de la posible interferencia de radiofrecuencia si se utilizan dispositivos portátiles muy cerca del respirador.

El respirador Puritan Bennett™ 980 requiere que se tomen precauciones especiales en cuanto a la compatibilidad electromagnética (EMC) y se debe instalar y poner en marcha de acuerdo a la información de EMC proporcionada en el Capítulo 11 de este manual.
2 Descripción del producto

2.1 Generalidades

Este capítulo contiene información introductoria sobre el respirador Serie 980 de Puritan Bennett™.

Nota:
Los elementos mostrados en negrita y cursiva aparecen como entradas en el glosario.

La comunicación entre la interfaz gráfica del usuario (GUI) y la unidad neumática (BDU) se produce de forma continua a través de unidades centrales de procesamiento (CPU) independientes.

Consulte Diagrama neumático (se muestra el compresor), p. 2-40 y sus indicadores de referencia asociados al leer los siguientes párrafos.

La administración del gas comienza con el respirador conectado al aire y al oxígeno mural (o embotellado). El gas se desplaza hasta el módulo de mezcla donde se regulan las presiones del gas gracias a las respectivas válvulas solenoides proporcionales (PSOL). Las PSOL miden los gases de acuerdo con los parámetros introducidos en el respirador, después los gases fluyen a través de los sensores de flujo de aire y oxígeno individuales hasta el colector y el acumulador de mezcla para su mezcla. Las presiones de cada gas se supervisan continuamente, tanto antes como después de que se mezclen en el colector y el acumulador de mezcla. El gas mezclado se desplaza a continuación hacia el sistema neumático inspiratorio desde donde fluye, a través del sensor de administración de respiración y, a continuación, de la PSOL inspiratoria, hasta su administración al paciente.

Antes de que el gas llegue al paciente, atraviesa un filtro antibacteriano inspiratorio interno y después un filtro antibacteriano inspiratorio externo conectado a la salida del gas del respirador (el puerto Hacia el paciente) a la que está conectado el circuito respiratorio para la administración del gas al paciente. Cuando el gas regresa desde el paciente, fluye a través del ramal espiratorio del circuito respiratorio, hacia el puerto Desde el paciente por el filtro antibacteriano espiratorio (que incluye un vial de condensado) antes de atravesar el sensor de flujo de la válvula de espiración y la válvula de espiración (EV) Un puerto de escape de gas permite que el gas espirado salga del respirador y fluya hasta la habitación.
El respirador reconoce el esfuerzo respiratorio del paciente utilizando el trigger de presión (P_{TRIG}) o disparo de flujo (V_{TRIG}). Durante el trigger de presión, cuando el paciente inspira, la presión de las vías respiratorias desciende y el transductor de presión inspiratoria (PI) supervisa dicho descenso. Cuando la presión cae como mínimo hasta el valor del parámetro de sensibilidad por presión (P_{SENS}), el respirador administra una respiración. Durante el trigger de flujo, se supervisa la diferencia entre el flujo inspiratorio y espiratorio. Cuando la diferencia entre ambas mediciones equivale, como mínimo, al valor de la sensibilidad por flujo establecido por el operador (V_{SENS}), el respirador administra una respiración. Si el paciente no inspira, cualquier diferencia entre el flujo administrado y el flujo espiratorio debe a la imprecisión del sensor de flujo o a fugas en el circuito respiratorio del respirador. Para compensar las fugas, que pueden causar un autotriggering, el profesional sanitario puede aumentar el parámetro V_{SENS} o habilitar Leak Sync, si está disponible.

Nota:

Leak Sync es una opción de software. Los detalles sobre su funcionamiento se facilitan en el apéndice Leak Sync de este manual.

También está en activo un umbral de trigger de presión de reserva de 2 cmH₂O. Esto proporciona suficiente sensibilidad por presión para evitar el autotriggering, pero sigue permitiendo que el respirador se accione con un esfuerzo aceptable del paciente.

La válvula de espiración controla la presión positiva espiratoria final ($PEEP$) mediante la retroalimentación del transductor de presión espiratoria (PE). El control de la válvula también cicla el respirador en la fase espiratoria, si la medición de PE iguala o supera el límite de presión máxima del circuito establecido por el operador. La medición del PE también controla cuándo se abre la válvula de seguridad (SV). Si se detecta un valor de PE de 110 cmH₂O o más en el circuito respiratorio del respirador, se abre la válvula de seguridad, lo que permite al paciente respirar el aire ambiental a través de la válvula.

2.2 Descripción del respirador

El sistema del respirador está disponible en tres modelos. Todos los respiradores proporcionan ventilación continua a los pacientes que requieren soporte respiratorio.

- **Respirador pediátrico–adulto Serie 980 de Puritan Bennett™** — El modelo pediátrico–adulto ventila a pacientes pediátricos o adultos con un peso previsto de 3,5 kg a 150 kg y con volúmenes corrientes de 25 mL a 2500 mL.
• **Respirador neonatal Serie 980 de Puritan Bennett™** — El modelo neonatal ventila a pacientes neonatales con pesos corporales previstos de entre 0,3 kg a 7,0 kg y con volúmenes corrientes para respiraciones obligatorias controladas por el volumen de 2 mL a 320 mL.

• **Respirador universal Serie 980 de Puritan Bennett™** — El modelo universal ventila a pacientes adultos, pediátricos y neonatales con pesos corporales previstos de entre 0,3 kg y 150 kg, y con volúmenes corrientes para respiraciones obligatorias controladas por el volumen de 2 mL a 2500 mL.

Para la ventilación de pacientes neonatales en los modelos pediátrico–adulto o universal, se necesita la opción de software NeoMode 2.0. Para obtener detalles sobre la opción de software NeoMode 2.0, consulte el apéndice de NeoMode 2.0 de este manual.

El respirador tiene una vida útil de aproximadamente 10 años, siempre que se siga el calendario de mantenimiento preventivo indicado en el *Manual de mantenimiento del respirador Serie 980 de Puritan Bennett™*.

La clasificación IEC 60601-1/EN 60601-1 del respirador es la siguiente:

- Clase de protección I
- Tipo BF
- Portátil
- Alimentación interna
- Equipo IP 21
- Funcionamiento continuo
- No adecuado para uso con gases médicos inflamables (no AP o APG)

Consulte *Símbolos y descripciones del panel o la etiqueta trasera de la BDU*, p. 2-11 para ver una descripción del significado de la clasificación IP.

El sistema del respirador utiliza una **interfaz gráfica del usuario (GUI)** y una **unidad neumática (BDU)** para introducir los parámetros del paciente y administrarle las respiraciones. La GUI contiene un sistema electrónico capaz de transferir los datos introducidos por el profesional sanitario (tocando la pantalla) a la BDU donde los sistemas neumáticos y electrónicos generan los parámetros de respiración.
2.3 **Indicaciones de modo de empleo**

El respirador Serie 980 de Puritan Bennett™ está diseñado para su uso en pacientes de todos los tamaños, desde unidades de cuidados intensivos neonatales hasta pacientes adultos que requieran soporte respiratorio o ventilación mecánica y pesen como mínimo 0,3 kg (0,66 lb). Es adecuado para su uso en hospitales (instituciones) y para el traslado intrahospitalario a fin de proporcionar respiración asistida por presión positiva continua mediante el suministro de oxígeno y de aire comprimido de uso médico procedente de un compresor de aire interno o de fuentes de aire externas para suministrar concentraciones de oxígeno del 21 % al 100 %. La respiración asistida puede suministrarse de forma invasiva o no invasiva a pacientes que requieren los siguientes tipos de soporte respiratorio:

- Ventilación de presión positiva, suministrada de forma invasiva (a través de una cánula endotraqueal o cánula traqueal) o de forma no invasiva (a través de máscara o gafas nasales)

- Modos de respiración asistida/controlada, SIMV o espontánea

Nota:

El uso previsto típico puede definirse para incluir lo siguiente en el sistema de respiración

Uso hospitalario — Normalmente cubre áreas como plantas de cuidados generales (GCF), quirófanos, áreas de procedimientos especiales, zonas de cuidados intensivos y críticos en el hospital y en instalaciones de tipo hospitalario. Las instalaciones de tipo hospitalario incluyen instalaciones de despachos médicos, laboratorios de sueño, centros de enfermería especializados, centros de cirugía y centros para pacientes subagudos.

Transporte intrahospitalario — Incluye el transporte de un paciente en el hospital o en una instalación de tipo hospitalario. Se excluye todo el transporte hospitalario externo (es decir, ambulancia o helicóptero).

2.4 **Contraindicaciones**

No utilice el respirador en un entorno de resonancia magnética (MRI).
2.5 Lista de componentes

Nota:
Ninguna pieza del sistema del respirador contiene látex.

Nota:
Los componentes en la vía de gas pueden contaminarse con fluidos corporales o gases espirados en condiciones normales de uso o en condiciones de un solo fallo.
- Filtro inspiratorio externo
- Filtro inspiratorio interno
- Filtro espiratorio y vial de condensado
- Conjunto de válvula espiratoria

El respirador típico se envía con la siguiente lista de componentes. Dependiendo del respirador adquirido, la lista puede variar.

Tabla 2-1. Lista de embalaje típica

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Elemento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interfaz gráfica del usuario</td>
</tr>
<tr>
<td>1</td>
<td>Unidad neumática</td>
</tr>
<tr>
<td>1</td>
<td>Filtro inspiratorio</td>
</tr>
<tr>
<td>1</td>
<td>Filtro espiratorio</td>
</tr>
<tr>
<td>1</td>
<td>Vial de condensado</td>
</tr>
<tr>
<td>2</td>
<td>Mangueras de suministro de gas (aire y oxígeno)</td>
</tr>
<tr>
<td>1</td>
<td>Base con ruedecillas estándar</td>
</tr>
<tr>
<td>1</td>
<td>Cable de alimentación</td>
</tr>
<tr>
<td>1</td>
<td>CD del manual del usuario</td>
</tr>
<tr>
<td>1</td>
<td>Instrucciones de instalación del respirador Serie 980 de Puritan Bennett™</td>
</tr>
<tr>
<td>1</td>
<td>Brazo flexible</td>
</tr>
<tr>
<td>1</td>
<td>Bolsa de drenaje</td>
</tr>
<tr>
<td>1</td>
<td>Circuito estándar de primera calidad (para procesar el ATG)</td>
</tr>
</tbody>
</table>
2.6 **Vistas del producto**

2.6.1 **Vista frontal de la GUI**

Figura 2-1. Vista frontal de la GUI

1. Tecla de brillo de la pantalla
2. Tecla de bloqueo de la pantalla
3. Tecla de volumen de alarma
4. Tecla de inspiración manual
5. Codificador giratorio (control)
6. Tecla de pausa inspiratoria
7. Tecla de pausa espiratoria
8. Tecla de restablecimiento de la alarma
9. Tecla de **sonido en pausa**
10. LED omnidireccional

1. Los términos "sonido en pausa" y "silencio de alarma" son intercambiables.
2.6.2 Vista frontal de la GUI

Consulta *Símbolos comunes indicados en las etiquetas de la GUI o BDU*, p. 2-13, para ver los símbolos de la GUI o la BDU. En esta tabla se muestra el símbolo “No presionar” que solo aparece en la GUI.
2.6.3 Vista frontal de la BDU

Figura 2-3. Vista frontal de la BDU

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vial de condensado</td>
<td>5</td>
<td>Interruptor de encendido y apagado</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Filtro espiratorio</td>
<td>6</td>
<td>Pantalla de estado</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fijación del filtro espiratorio</td>
<td>7</td>
<td>Filtro inspiratorio interno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Indicador de alimentación de CA</td>
<td>8</td>
<td>Puerta del panel del conector opcional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 2-2. Símbolos y descripciones de la etiqueta frontal de la BDU

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Puerto Hacia el paciente</td>
</tr>
<tr>
<td></td>
<td>Puerto Desde el paciente</td>
</tr>
<tr>
<td></td>
<td>Fijación del filtro espiratorio bloqueado (abajo)/desbloqueado (arriba)</td>
</tr>
</tbody>
</table>
2.6.4 Vista trasera de la BDU

Figura 2-4. Vista trasera de la BDU

Las etiquetas de opciones de software se colocan en la cuadrícula situada en la parte posterior del respirador, como se muestra a continuación y en la imagen anterior (elemento 4).
La siguiente tabla recoge los símbolos y descripciones de la BDU o las etiquetas de la base.

Tabla 2-3. Símbolos y descripciones del panel o la etiqueta trasera de la BDU

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>La venta de este dispositivo está restringida a médicos o por orden facultativa.</td>
</tr>
<tr>
<td></td>
<td>El usuario debe consultar las instrucciones de uso. Este símbolo también se encuentra en las etiquetas “No obstruir” de los laterales derecho e izquierdo del respirador, y en la indicación de las etiquetas de las conexiones de suministro de gas.</td>
</tr>
<tr>
<td></td>
<td>Mantener alejado del fuego o de las llamas. Los entornos ricos en oxígeno aceleran la combustibilidad.</td>
</tr>
<tr>
<td></td>
<td>Limitaciones de presión atmosférica – El intervalo de presión atmosférica operativo va de 70 kPa a 106 kPa (de 10,2 psi a 15,4 psi).</td>
</tr>
<tr>
<td></td>
<td>Limitaciones de humedad – El intervalo de límites de humedad operativo es de entre el 10 % y el 95 %.</td>
</tr>
<tr>
<td></td>
<td>Limitaciones de temperatura – El intervalo del límite de temperatura operativo va de 50 °F a 104 °F (de 10 °C a 40 °C).</td>
</tr>
</tbody>
</table>
Descripción del producto

Tabla 2-3. Símbolos y descripciones del panel o la etiqueta trasera de la BDU (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pieza aplicada de tipo BF.</td>
</tr>
<tr>
<td>IP21</td>
<td>Clasificación IEC de protección de acceso – Protegido contra la introducción de dedos u objetos similares y contra la condensación.</td>
</tr>
<tr>
<td></td>
<td>Riesgo de explosión. No lo utilice el producto en presencia de gases inflamables.</td>
</tr>
<tr>
<td></td>
<td>La autorización para llevar la marca de certificación CSA significa que el producto ha sido evaluado según las normas ANSI/Underwriters Laboratories Inc. (UL) y CSA aplicables para su uso en EE. UU. y Canadá.</td>
</tr>
<tr>
<td></td>
<td>El respirador contiene componentes fabricados con ftalatos.</td>
</tr>
<tr>
<td></td>
<td>Posible punto de ecualización (conexión a tierra) (en el panel de CA).</td>
</tr>
<tr>
<td>CB1</td>
<td>Disyuntor de la BDU (en el panel de CA).</td>
</tr>
<tr>
<td>CB2</td>
<td>Disyuntor del compresor (en el panel de CA).</td>
</tr>
<tr>
<td></td>
<td>Puerto USB (en la parte trasera del respirador).</td>
</tr>
<tr>
<td></td>
<td>Puerto HDMI (en la parte trasera del respirador).</td>
</tr>
<tr>
<td></td>
<td>Puerto de servicio (en la parte trasera del respirador).</td>
</tr>
<tr>
<td></td>
<td>Botón de modo Servicio (en la parte trasera del respirador).</td>
</tr>
</tbody>
</table>
Tabla 2-3. Símbolos y descripciones del panel o la etiqueta trasera de la BDU (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>📡</td>
<td>Puerto de alarma remota (en la parte trasera del respirador).</td>
</tr>
<tr>
<td>🌐</td>
<td>Conector Ethernet (en la parte trasera del respirador).</td>
</tr>
<tr>
<td>🍀</td>
<td>Puerto serie (en la parte trasera del respirador).</td>
</tr>
</tbody>
</table>

Tabla 2-4. Símbolos comunes indicados en las etiquetas de la GUI o BDU

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>Marca CE – Indica el cumplimiento de la directiva sobre dispositivos médicos 93/42/CEE.</td>
</tr>
<tr>
<td>🚫</td>
<td>No presionar – No presionar sobre la GUI.</td>
</tr>
<tr>
<td>🛠️</td>
<td>Fabricante – Nombre del fabricante del respirador.</td>
</tr>
<tr>
<td>📑</td>
<td>Representante autorizado.</td>
</tr>
<tr>
<td>🛡️</td>
<td>Número de serie.</td>
</tr>
<tr>
<td>📑</td>
<td>Fecha de fabricación – La fecha de fabricación aparece en el número de serie. Consulte Fecha de fabricación, p. 1-19 para obtener detalles sobre la interpretación del número de serie.</td>
</tr>
<tr>
<td>☑️</td>
<td>RAEE – Eliminación correcta de residuos. Siga las ordenanzas locales vigentes relativas a la eliminación de los residuos etiquetados con el símbolo RAEE.</td>
</tr>
</tbody>
</table>
2.6.5 Vistas laterales del respirador

Figura 2-6. Vistas laterales derecha del respirador

2.7 Configuraciones de montaje

El sistema del respirador se puede montar como una unidad autónoma junto a la cabecera de la cama del paciente; la BDU con la GUI se instala sobre una base con ruedecillas e incluye un asa para facilitar su movimiento.

2.8 Batería de reserva

El respirador utiliza una batería para proporcionar alimentación de reserva en caso de que se pierda la alimentación de CA. Cuando esté funcionando con batería, la pantalla de estado muestra la imagen “Funcionando con batería” y la GUI muestra una representación de los niveles de carga de la batería. Consulte Indicadores y mensajes típicos de la pantalla de estado, p. 2-31 para obtener una descripción de las imágenes de la pantalla de estado y los mensajes. Existe una batería de duración prolongada opcional para alargar la cantidad de tiempo que el respirador puede funcionar con la alimentación de la batería. Consulte Uso de alimentación por batería, p. 3-2.
2.9 Interfaz gráfica del usuario

Hay dos pantallas en el respirador: la pantalla principal (GUI) y la pantalla de estado.

2.9.1 Pantalla principal

La GUI incorpora una pantalla de 15” que gira 170° sobre un eje vertical en cualquier dirección. La GUI también puede inclinarse 45° hacia arriba respecto a la vertical.

El profesional sanitario introduce los parámetros de ventilación a través de la pantalla táctil de la GUI, también denominada pantalla principal del respirador. Las teclas de la GUI activan otras funciones del respirador como el brillo o el bloqueo de la pantalla, el volumen de la alarma, la inspiración manual, la pausa inspiratoria, la pausa espiratoria, el restablecimiento de la alarma y el sonido en pausa.

La GUI muestra la siguiente información en función del estado del respirador:
- Configuración del respirador, apnea y alarma
- Datos del paciente
- Formas de onda
- Titulares de las alarmas actuales

2.10 Controles e indicadores de la GUI

2.10.1 Teclas de control

El marco de la GUI tiene ocho teclas de control fuera de la pantalla como se muestra a continuación.

<table>
<thead>
<tr>
<th>Símbolo de tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌞</td>
<td>Tecla de control del brillo - Ajusta el brillo de la pantalla de la GUI. Pulse la tecla y gire el control para ajustar el brillo.</td>
</tr>
<tr>
<td>📦</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 2-5. Teclas de control de la GUI (continuación)

<table>
<thead>
<tr>
<th>Símbolo de tecla</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tecla de bloqueo de la pantalla - Acciona un bloqueo para prevenir cambios involuntarios de los parámetros del respirador (incluida la función del botón giratorio) mientras la pantalla está bloqueada. El bloqueo de pantalla es útil para limpiar la pantalla táctil. Pulse de nuevo la tecla para desbloquear la pantalla. Utilice también la tecla de bloqueo de la pantalla para restablecer la pantalla táctil de la GUI, tal como se describe en Restablecer la pantalla táctil de la GUI (2.10.2).</td>
</tr>
<tr>
<td></td>
<td>Tecla de volumen de alarma - Ajusta el volumen de la alarma. El volumen de la alarma no se puede DESACTIVAR.</td>
</tr>
<tr>
<td></td>
<td>Tecla de inspiración manual - En los modos A/C, SIMV y SPONT, administra una respiración manual al paciente de acuerdo con los parámetros de respiración obligatorios actuales. En el modo BiLevel, se pasa de baja presión (P<sub>L</sub>) a alta presión (P<sub>H</sub>) (o viceversa). A fin de evitar una acumulación de respiraciones, no se administra la inspiración manual durante la inspiración o durante la fase restringida de espiración. Consulte Inspiración manual, p. 10-21 para obtener información sobre la fase restringida de espiración. La tecla de inspiración manual se puede utilizar para administrar respiraciones obligatorias al paciente o para ejecutar una maniobra de pausa inspiratoria en modo SPONT. La tecla de inspiración manual no se puede utilizar para ejecutar una maniobra de pausa espiratoria en modo SPONT.</td>
</tr>
<tr>
<td></td>
<td>Tecla de pausa inspiratoria - Inicia una pausa inspiratoria que cierra las válvulas inspiratoria y espiratoria y prolonga la fase inspiratoria de una respiración obligatoria con la finalidad de medir la presión inspiratoria final (P<sub>1ENG</sub>) para el cálculo de la presión estable (P<sub>P</sub>), la distensibilidad estática (C<sub>STAT</sub>) y la resistencia estática (R<sub>STAT</sub>).</td>
</tr>
<tr>
<td></td>
<td>Tecla de pausa espiratoria - Inicia una pausa espiratoria que prolonga la fase espiratoria de la respiración actual a fin de medir la PEEP total (PEEP<sub>TOT</sub>).</td>
</tr>
<tr>
<td></td>
<td>Tecla de restablecimiento de alarmas - Elimina las alarmas activas o restablece las alarmas de prioridad alta y cancela una condición activa de audio en pausa. Si hay una alarma activa, se registra un restablecimiento de alarma en el registro de alarmas. Las alarmas ALERTA DISPOSITIVO no se pueden restablecer.</td>
</tr>
<tr>
<td></td>
<td>Tecla de sonido en pausa - Detiene las alarmas durante 2 minutos. Cancele la función de sonido en pausa tocando el botón Cancelar de la pantalla.</td>
</tr>
</tbody>
</table>
2.10.2 Restablecer la pantalla táctil de la GUI

En ocasiones muy poco frecuentes, es posible que la pantalla táctil de la GUI no responda. Si la GUI no responde o hay una respuesta inexacta o no intencionada de esta, restablezca la pantalla táctil para restaurar su funcionalidad correcta.

Para restablecer la pantalla táctil:

1. Toque la tecla de bloqueo de la pantalla en el marco de la GUI para bloquear la pantalla. El icono de candado cerrado aparece en la pantalla y la tecla de bloqueo de la pantalla se enciende.

2. Toque de nuevo la tecla de bloqueo de la pantalla. Al hacerlo, se mostrará una barra de progreso debajo del icono de candado cerrado. Cuando se haya completado la barra de progreso, el icono bloqueado aparecerá “desbloqueado”, lo que indicará un restablecimiento correcto de la pantalla táctil de la GUI.

Asegúrese de que el paciente no esté conectado al respirador; a continuación, apague y encienda el respirador.

Nota:

No toque la pantalla durante el período de desbloqueo.

Nota:

El restablecimiento manual de la pantalla táctil de la GUI descrito en esta sección es diferente al restablecimiento automático temporal de 30 segundos de la GUI que se describe en la Tabla 2-9.

2.10.3 Indicadores visuales

La siguiente tabla muestra los indicadores visuales de la GUI. Consulte Áreas de la GUI, p. 4-3 para los nombres de las áreas.

La función de sonido enpause tiene dos indicadores visuales (la tecla de sonido en pausa del marco de la GUI se ilumina en amarillo durante el intervalo de sonido en pausa y aparece un cronómetro de cuenta atrás visual, que muestra la cantidad de tiempo que resta del intervalo de sonido en pausa).
<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Botón de configuración del respirador (Config. resp.). Situado en la esquina inferior izquierda de la GUI. Toque este botón para abrir la pantalla de configuración del respirador.</td>
</tr>
<tr>
<td></td>
<td>Indicador del circuito del paciente adulto. Indica el tipo de circuito para adultos probado durante el ATC y en uso. Aparece encima del botón Config. Resp.</td>
</tr>
<tr>
<td></td>
<td>Indicador del circuito del paciente pediátrico. Indica el tipo de circuito pediátrico probado durante el ATC y en uso. Aparece encima del botón Config. Resp.</td>
</tr>
<tr>
<td></td>
<td>Indicador del circuito del paciente neonatal. Indica el tipo de circuito neonatal probado durante el ATC y en uso. Aparece encima del botón Config. Resp.</td>
</tr>
<tr>
<td></td>
<td>Icono de inicio. Icono de acceso permanente. Consulte Áreas de la GUI, p. 4-3. Toque este icono para cerrar todos los cuadros de diálogo abiertos en la pantalla de la GUI. La pantalla se reinicia y muestra las formas de onda del respirador.</td>
</tr>
<tr>
<td></td>
<td>Al tocar este texto aparece la pantalla de evento manual, donde se pueden registrar eventos para su visualización en el diseño Tendencia. Consulte el anexo de tendencias para obtener más información acerca de los eventos</td>
</tr>
<tr>
<td></td>
<td>Icono de alarmas. Icono de acceso permanente. Consulte Áreas de la GUI, p. 4-3. Toque este icono para mostrar la pantalla de parámetros de alarma, que permite modificar los límites de alarma.</td>
</tr>
<tr>
<td></td>
<td>Icono de registros. Icono de acceso permanente. Consulte Áreas de la GUI, p. 4-3. Toque este icono para mostrar la pantalla de registros, que contiene pestañas para registros de Alarmas, Parámetros, Datos del paciente, Diagnósticos, Estado ATG/ATC, Eventos generales y Servicios.</td>
</tr>
</tbody>
</table>
Tabla 2-6. Indicadores visuales de la GUI (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control Elevar O₂. Icono de acceso permanente. Consulte Áreas de la GUI, p. 4-3. Toque este icono para aumentar la concentración de oxígeno establecida hasta la configuración de O₂ predeterminada por la institución sanitaria (si se ha configurado) durante dos minutos, o para permitir al operador determinar el porcentaje adicional de oxígeno que se desea aumentar. El incremento de la concentración de O₂ durante los dos minutos se puede establecer en cualquier valor entre un 1 % y un 100 % de O₂. Si la función Elevar O₂ está activa, el intervalo de dos minutos se reinicia tocando el botón Prolongar. Puede ponerse fin a la función Elevar O₂ antes de que concluya el intervalo de dos minutos tocando el botón Detener. Siempre que se activa el control Elevar O₂, se realiza una entrada en el registro de datos del paciente.</td>
</tr>
<tr>
<td></td>
<td>Icono de captura de pantalla. Icono de acceso permanente. Consulte Áreas de la GUI, p. 4-3. Toque este icono para capturar la imagen mostrada en la pantalla de la GUI. Consulte Áreas de la GUI, p. 4-3 para leer el procedimiento completo para capturar las imágenes de la pantalla.</td>
</tr>
<tr>
<td></td>
<td>Icono de ayuda. Icono de acceso permanente. Consulte Áreas de la GUI, p. 4-3. Arrastre este icono hasta el elemento en cuestión y suéltelo. Aparecerá una información sobre herramientas que describe la función del elemento.</td>
</tr>
<tr>
<td></td>
<td>Icono de elementos sin leer. Cuando este icono aparece solapando a otro icono o a una pestaña (el icono de registros, por ejemplo), indica que hay elementos sin leer en esta ubicación.</td>
</tr>
<tr>
<td></td>
<td>Icono de configuración. Icono de acceso permanente. Consulte Áreas de la GUI, p. 4-3. Toque este icono para mostrar la pantalla de configuración. En esta pantalla, realice todas las pruebas ATC o una sola prueba ATC. Si realiza una sola prueba, se deben realizar y superar todas las pruebas de ATC subsiguientes a fin de ventilar al paciente.</td>
</tr>
<tr>
<td></td>
<td>Icono de pausa. Situado sobre los iconos de acceso permanente. Toque este icono para pausar la gráfica.</td>
</tr>
</tbody>
</table>
Tabla 2-6. Indicadores visuales de la GUI (continuación)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Icono de diseño de gráfica. Situado encima del área de los iconos de acceso permanente. Toque este icono para abrir el cuadro de diálogo de diseño de forma de onda.</td>
</tr>
<tr>
<td></td>
<td>Icono de líneas de cuadricula. Situado sobre el área de iconos de acceso permanente. Toque este icono para ACTIVAR o DESACTIVAR las líneas de la cuadrícula de la gráfica.</td>
</tr>
<tr>
<td></td>
<td>Icono de maximización de la gráfica. Situado en la parte superior derecha de cada gráfica. Toque este icono para ampliar la gráfica hasta su tamaño máximo.</td>
</tr>
<tr>
<td></td>
<td>Icono de recuperación de la gráfica. Devuelve la gráfica a su tamaño original. Situado en la parte superior derecha de la gráfica maximizada.</td>
</tr>
<tr>
<td></td>
<td>Icono de chincheta (estado de anclado). En el estado de anclado, el cuadro de diálogo no se cierra (en determinadas condiciones). Está localizado en la esquina superior derecha de la GUI en la pantalla que se usa para configurar el respirador. Consulte Icono del marcador, p. 4-5.</td>
</tr>
<tr>
<td></td>
<td>Icono de chincheta (estado no anclado). Al tocar el icono no anclado, se activa el estado de anclado. Está localizado en la esquina superior derecha de la GUI en la pantalla que se usa para configurar el respirador. Consulte Icono del marcador, p. 4-5.</td>
</tr>
<tr>
<td></td>
<td>Icono de alarma de prioridad baja (aparece en el banner de alarma).</td>
</tr>
<tr>
<td></td>
<td>Icono de alarma de prioridad media (aparece en el banner de alarma).</td>
</tr>
<tr>
<td></td>
<td>Icono de alarma de prioridad alta (aparece en el banner de alarma).</td>
</tr>
</tbody>
</table>
2.10.4 Símbolos y abreviaturas en la pantalla

Toque brevemente (0,5 s) un símbolo de la pantalla para mostrar la información sobre una herramienta en la pantalla de la GUI. La información sobre una herramienta contiene una definición del símbolo y otro texto descriptivo, disponible con descripciones cortas o largas. La descripción corta se despliega para mostrar más información tocando “más” en el cuadro de diálogo de la información sobre herramientas o se contrae tocando menos. La información sobre herramientas se cierra tocando cerrar o desaparece en cinco (5) segundos si no se toca. Si se despliega el cuadro de diálogo de la información sobre herramientas, no desaparecerá. Si se toca cualquier punto de la pantalla fuera de la información sobre herramientas, se cierra el cuadro de diálogo.

La tabla que aparece a continuación resume los símbolos y abreviaturas del respirador.

<table>
<thead>
<tr>
<th>Símbolo o abreviatura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>Intervalo de apnea</td>
</tr>
<tr>
<td>DSENS</td>
<td>Sensibilidad de desconexión.</td>
</tr>
<tr>
<td>CDYN</td>
<td>Distensibilidad dinámica</td>
</tr>
<tr>
<td>RDYN</td>
<td>Resistencia dinámica</td>
</tr>
<tr>
<td>EEF</td>
<td>Flujo espiratorio final</td>
</tr>
<tr>
<td>PI END</td>
<td>Presión inspiratoria final</td>
</tr>
<tr>
<td>LEAK</td>
<td>Fuga en espiración</td>
</tr>
<tr>
<td>PCIRC</td>
<td>Presión del circuito total monitorizada</td>
</tr>
<tr>
<td>LEAK_y</td>
<td>Fuga de espiración en PEEP (opción Leak Sync activada) medida por el sensor del flujo proximal.</td>
</tr>
<tr>
<td>V^{TE MAND}</td>
<td>Volumen corriente espirado obligatorio</td>
</tr>
<tr>
<td>V^{E TOT}</td>
<td>Volumen respiratorio por minuto espirado</td>
</tr>
<tr>
<td>V^{E SPONT}</td>
<td>Volumen respiratorio por espontáneo espirado</td>
</tr>
<tr>
<td>V^{TE SPONT}</td>
<td>Volumen corriente espirado espontáneo</td>
</tr>
<tr>
<td>V^{TE}</td>
<td>Volumen corriente espirado</td>
</tr>
<tr>
<td>ESENS</td>
<td>Sensibilidad espiratoria</td>
</tr>
<tr>
<td>Símbolo o abreviatura</td>
<td>Definición</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>T<sub>E</sub></td>
<td>Tiempo espiratorio</td>
</tr>
<tr>
<td>▾</td>
<td>Patrón de flujo (rampa)</td>
</tr>
<tr>
<td>▿</td>
<td>Patrón de flujo (cuadrado)</td>
</tr>
<tr>
<td>V<sub>CIRC</sub></td>
<td>Flujo inspiratorio y espiratorio total monitorizado</td>
</tr>
<tr>
<td>V<sub>CIRC_Y</sub></td>
<td>Flujo inspiratorio y espiratorio monitorizado medido en la vía respiratoria proximal</td>
</tr>
<tr>
<td>V<sub>SENS</sub></td>
<td>Sensibilidad por flujo</td>
</tr>
<tr>
<td>V<sub>TRIG</sub></td>
<td>Trigger de flujo</td>
</tr>
<tr>
<td>V<sub>Y</sub></td>
<td>Flujo inspiratorio y espiratorio del paciente</td>
</tr>
<tr>
<td>P<sub>H</sub></td>
<td>Ajuste de alta presión (en BiLevel)</td>
</tr>
<tr>
<td>P<sub>Y</sub></td>
<td>Presión del circuito monitorizada durante todo el ciclo de respiración medido en la vía respiratoria proximal</td>
</tr>
<tr>
<td>T<sub>H</sub></td>
<td>Tiempo de alta presión (en BiLevel)</td>
</tr>
<tr>
<td>T<sub>H/T<sub>L</sub></sub></td>
<td>Relación entre el tiempo de alta presión y el tiempo de baja presión (en BiLevel)</td>
</tr>
<tr>
<td>I:E</td>
<td>Relación entre el tiempo inspiratorio y el tiempo espiratorio (I:E)</td>
</tr>
<tr>
<td>C<sub>ZV/C</sub></td>
<td>Relación de distensibilidad de inspiración</td>
</tr>
<tr>
<td>V<sub>LEAK</sub></td>
<td>Fuga inspiratoria</td>
</tr>
<tr>
<td>T<sub>I</sub></td>
<td>Tiempo inspiratorio</td>
</tr>
<tr>
<td>P<sub>I</sub></td>
<td>Presión inspiratoria</td>
</tr>
<tr>
<td>V<sub>I</sub></td>
<td>Volumen corriente inspirado</td>
</tr>
<tr>
<td>V<sub>TL</sub></td>
<td>Volumen corriente inspirado (cuando la opción Leak Sync está activada)</td>
</tr>
<tr>
<td>PEEP<sub>I</sub></td>
<td>PEEP intrínseca + Auto-PEEP</td>
</tr>
<tr>
<td>PEEP<sub>I</sub>:PAV</td>
<td>PEEP intrínseca basada en PAV</td>
</tr>
<tr>
<td>P<sub>L</sub></td>
<td>Ajuste de baja presión (en BiLevel)</td>
</tr>
<tr>
<td>T<sub>L</sub></td>
<td>Tiempo de baja presión (en BiLevel)</td>
</tr>
<tr>
<td>Símbolo o abreviatura</td>
<td>Definición</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>P<sub>MEAN</sub></td>
<td>Presión media del circuito</td>
</tr>
<tr>
<td>NIF</td>
<td>Fuerza inspiratoria negativa</td>
</tr>
<tr>
<td>O<sub>2</sub>%</td>
<td>Porcentaje de oxígeno</td>
</tr>
<tr>
<td>P<sub>0.1</sub></td>
<td>Presión de oclusión de las vías respiratorias a 100 ms</td>
</tr>
<tr>
<td>C<sub>PAV</sub></td>
<td>Distensibilidad pulmonar basada en PAV</td>
</tr>
<tr>
<td>E<sub>PAV</sub></td>
<td>Elasticidad pulmonar basada en PAV</td>
</tr>
<tr>
<td>% Supp</td>
<td>Ajuste del soporte en porcentaje de la compensación del tubo y PAV+</td>
</tr>
<tr>
<td>R<sub>PAV</sub></td>
<td>Resistencia del paciente basada en PAV</td>
</tr>
<tr>
<td>R<sub>TOT</sub></td>
<td>Resistencia total de las vías respiratorias basada en PAV</td>
</tr>
<tr>
<td>WOB<sub>TOT</sub></td>
<td>Trabajo respiratorio del paciente y respirador basado en PAV durante la inspiración</td>
</tr>
<tr>
<td>P<sub>PEAK</sub></td>
<td>Presión del circuito máxima</td>
</tr>
<tr>
<td>PEF</td>
<td>Flujo espiratorio máximo</td>
</tr>
<tr>
<td>V<sub>MAX</sub></td>
<td>Flujo inspiratorio máximo</td>
</tr>
<tr>
<td>PSF</td>
<td>Flujo espontáneo máximo</td>
</tr>
<tr>
<td>PEEP</td>
<td>Presión espiratoria final positiva ajustada o monitorizada</td>
</tr>
<tr>
<td>%Leak</td>
<td>Porcentaje de fuga</td>
</tr>
<tr>
<td>P<sub>PL</sub></td>
<td>Presión meseta</td>
</tr>
<tr>
<td>T<sub>PL</sub></td>
<td>Tiempo de meseta</td>
</tr>
<tr>
<td>P<sub>COMP</sub></td>
<td>Presión de compensación</td>
</tr>
<tr>
<td>P<sub>SENS</sub></td>
<td>Sensibilidad por presión</td>
</tr>
<tr>
<td>P<sub>SUPP</sub></td>
<td>Nivel de soporte de presión</td>
</tr>
<tr>
<td>P<sub>TRIG</sub></td>
<td>Disparo de presión</td>
</tr>
<tr>
<td>V<sub>INV</sub></td>
<td>Volumen corriente inspirado proximal</td>
</tr>
<tr>
<td>V<sub>TEY</sub></td>
<td>Volumen corriente espirado proximal</td>
</tr>
<tr>
<td>V<sub>11,MANDY</sub></td>
<td>Volumen corriente inspirado obligatorio proximal</td>
</tr>
</tbody>
</table>
2.10.5 Indicadores sonoros

Suena un tono cuando se toca un botón de la GUI y cuando se aceptan los parámetros. Los indicadores audibles incluyen tonos y pítidos agudos, y sonidos de las teclas. Los sonidos de las teclas suenan cada vez que se pulsa una tecla de la GUI. Existen varios tonos para anunciar las alarmas del paciente.

Nota:
Al pulsar la tecla de sonido en pausa se silencian las alarmas durante el período de sonido en pausa de 2 minutos.

<table>
<thead>
<tr>
<th>Símbolo o abreviatura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT SPONTY</td>
<td>Volumen corriente inspirado espontáneo proximal</td>
</tr>
<tr>
<td>VTLY</td>
<td>Volumen corriente inspirado proximal con la opción Leak Sync activada</td>
</tr>
<tr>
<td>f</td>
<td>Frecuencia respiratoria o frecuencia respiratoria en apnea</td>
</tr>
<tr>
<td>P</td>
<td>Porcentaje de tiempo de subida</td>
</tr>
<tr>
<td>f/VT</td>
<td>Índice de respiración rápida/superficial espontánea</td>
</tr>
<tr>
<td>TISPONT</td>
<td>Tiempo inspiratorio espontáneo</td>
</tr>
<tr>
<td>TITTOT</td>
<td>Relación de tiempo inspiratorio espontáneo</td>
</tr>
<tr>
<td>CSTAT</td>
<td>Distensibilidad estática</td>
</tr>
<tr>
<td>RSTAT</td>
<td>Resistencia estática</td>
</tr>
<tr>
<td>VT</td>
<td>Volumen corriente</td>
</tr>
<tr>
<td>VT CRC</td>
<td>Volumenes inspiratorios y espiratorios totales monitorizados</td>
</tr>
<tr>
<td>VT Y</td>
<td>Volumenes inspiratorios y espiratorios monitorizados del paciente medidos en todo el ciclo de respiración en la vía respiratoria proximal</td>
</tr>
<tr>
<td>PEEP TOT</td>
<td>PEEP total</td>
</tr>
<tr>
<td>fTOT</td>
<td>Frecuencia respiratoria total (monitorizada)</td>
</tr>
<tr>
<td>VC</td>
<td>Capacidad vital</td>
</tr>
<tr>
<td>VS</td>
<td>Soporte de volumen</td>
</tr>
</tbody>
</table>
Los cuidadores pueden optar por desactivar las alarmas pulsando la tecla de sonido en pausa. Durante el intervalo de sonido en pausa aparece un cronómetro de cuenta atrás de dos minutos en la GUI. Cancele la función de sonido en pausa tocando el botón Cancelar.

Tabla 2-8. Funciones de los indicadores sonoros de la GUI

<table>
<thead>
<tr>
<th>Función</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tono de alarma de prioridad baja</td>
<td>Serie de dos tonos Suena cuando se produce una alarma de prioridad baja.</td>
</tr>
<tr>
<td>Tono de alarma de prioridad media</td>
<td>Serie repetitiva de tres tonos. Suena cuando se produce una alarma de prioridad media.</td>
</tr>
<tr>
<td>Tono de alarma de prioridad alta</td>
<td>Serie repetitiva de cinco tonos. Suena cuando se produce una alarma de prioridad alta.</td>
</tr>
<tr>
<td>Tono de límite inferior</td>
<td>Un tono. Suena cuando se alcanza un límite inferior al establecer cambios en los parámetros del respirador. Un límite flexible es un valor seleccionado que supera su límite por encima y por debajo y requiere reconocimiento para continuar.</td>
</tr>
<tr>
<td>Tono de límite superior (entrada no válida)</td>
<td>La entrada no válida suena cuando se alcanza un límite superior al establecer cambios en los parámetros del respirador. Un límite superior define un límite superior o inferior del parámetro, cuando este no se puede ajustar por arriba ni por debajo.</td>
</tr>
</tbody>
</table>

2.11 Unidad neumática

La unidad neumática contiene el hardware y el software para permitir que el respirador proporcione soporte al paciente.
2.11.1 Controles e indicadores de la BDU

Controles de la BDU

- Interruptor de ENCENDIDO/APAGADO - Levante la cubierta del interruptor y ENCIENDA o APAGUE el respirador.

Figura 2-8. Interruptor de alimentación del respirador e indicador de CA

1 Indicador de alimentación de CA
2 Interruptor de ENCENDIDO/APAGADO
• Botón de modo Servicio - Presione y suelte este botón cuando aparece la pantalla de presentación de Covidien en la visualización de estado tras encender el respirador para entrar en el modo Servicio.

Figura 2-9. Botón de modo Servicio (TEST)

1 Botón de modo Servicio

Nota:
La pantalla de presentación de Covidien muestra el logotipo de Covidien y aparece momentáneamente como un banner en la visualización de estado.

Indicador de CA de la BDU

La pantalla de estado y el indicador de alimentación de CA son los únicos indicadores visuales de la BDU. El indicador de CA se ilumina en verde siempre que el respirador se conecta a la alimentación de CA. Todos los demás indicadores visuales del respirador están en la GUI. Consulte *Indicadores y mensajes típicos de la pantalla de estado*, p. 2-31 para obtener una descripción de los indicadores y símbolos de la pantalla de estado. Consulte la siguiente sección para ver un resumen de la información que aparece en la pantalla de estado.
Pantalla de estado

La pantalla de estado es una pantalla independiente situada en la BDU. Consulte Vista frontal de la BDU, p. 2-8, elemento 6. La pantalla de estado proporciona la siguiente información según el estado del respirador:

Durante la respiración normal, la pantalla de estado muestra lo siguiente:

- Fuente de alimentación actual (CA o CC)
- Estado de seguridad Válvula de seguridad abierta (SVO) o Vent. inop.
- Presencia de baterías principales y extendidas y su estado de carga
- Nivel de carga de la batería disponible relativa
- Gráfico de presión del circuito que muestra las unidades de presión, ajuste de alarma de \ddot{P}_{PEAK} y valores actuales de P_{PEAK} y PEEP
- Conexión de aire y oxígeno
- Horas de funcionamiento del respirador
- Indicación visual del ajuste de volumen de la alarma actual

Nota:

La pantalla de estado proporciona una comprobación redundante del funcionamiento del respirador. Si la GUI detiene el funcionamiento por algún motivo, la ventilación continúa de forma predeterminada.

La figura que aparece a continuación presenta una muestra de la pantalla de estado durante la ventilación normal (opción de compresor no instalada).
En el modo Servicio, la pantalla de estado muestra lo siguiente:

- Números de serie del respirador
- Tiempo de funcionamiento del respirador
- Historial de ATG y ATC
- Estado del Autotest de encendido (POST)
- Horas hasta el siguiente mantenimiento preventivo
- Presión del gas en las entradas del colector

Consulte la Tabla 2-9, para conocer las posibilidades de la pantalla de estado.
Indicadores y mensajes típicos de la pantalla de estado

La tabla siguiente enumera los indicadores y mensajes que aparecen en la pantalla de estado.

Tabla 2-9. Indicadores y descripciones de la pantalla de estado

<table>
<thead>
<tr>
<th>Indicador o mensaje de la pantalla de estado</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pantalla de presentación. Aparece cuando el interruptor de alimentación del respirador está encendido. Cuando aparezca esta imagen, presione y suelte el botón TEST que se encuentra en la parte trasera del respirador para entrar en el modo Servicio.</td>
</tr>
<tr>
<td></td>
<td>Fallo de POST. Esta imagen aparece si ocurre un fallo de POST al arrancar el respirador, junto con el código de error (en este caso falta una batería principal).</td>
</tr>
<tr>
<td></td>
<td>Fallo en el conjunto del sensor de flujo espiratorio (EVQ) durante el autotest de encendido. Confirme la correcta instalación del conjunto del sensor de flujo espiratorio y apague y encienda el respirador.</td>
</tr>
<tr>
<td></td>
<td>Reinstale el EVQ.</td>
</tr>
</tbody>
</table>
Fallo del EVQ durante el autotest de encendido. Reinstale o sustituya el EVQ y ejecute la calibración del sensor de flujo desde el modo Servicio.

Antes de la conexión del paciente. La pantalla de estado aparece como se indica cuando el paciente no se ha conectado al respirador. Observe la ausencia de valores P_{PEAK} y PEEP.

Estado de espera. La pantalla de estado aparece cuando el respirador está en estado en espera.

Batería cargada. La batería principal del respirador (en la ranura del extremo derecho) está totalmente cargada, representada por un símbolo + y de color verde. (Imagen sin el compresor opcional instalado).
Tabla 2-9. Indicadores y descripciones de la pantalla de estado (continuación)

<table>
<thead>
<tr>
<th>Indicador o mensaje de la pantalla de estado</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batería en carga. Identifica que la batería principal del respirador se está cargando. Este icono es animado; las barras naranjas suben hacia un signo “+”, lo que indica que la batería se está cargando. Las barras verdes muestran la capacidad restante relativa de la batería. Si se instala una batería de duración prolongada, la imagen muestra una representación similar en la ubicación de la batería de duración prolongada (compartimento izquierdo). (Imagen sin el compresor opcional instalado.)</td>
<td></td>
</tr>
<tr>
<td>Icono de batería. El icono de batería indica que cuando aparece esta imagen en cualquier indicador de la pantalla de estado, el respirador está funcionando con batería. Alerta al operador de que la alimentación de CA es insuficiente para que el respirador funcione. El indicador se sustituye por el indicador “funcionando con CA” cuando se recupera la alimentación de CA adecuada.</td>
<td></td>
</tr>
<tr>
<td>Funcionando con batería. Alerta al operador de que la alimentación de CA es insuficiente para que el respirador funcione. El respirador está funcionando con la batería, a la que le quedan más de diez minutos de capacidad. Observe el aspecto del icono de la batería. (Imagen sin el compresor opcional instalado.)</td>
<td></td>
</tr>
<tr>
<td>Batería baja. Indica que la batería principal del respirador (en la ranura del extremo derecho) se está descargando y que la capacidad restante de la batería es de diez minutos o menos. El indicador del porcentaje muestra la autonomía restante de la batería. Si se instala una batería de duración prolongada, la imagen mostrará una representación similar en la ubicación de la batería de duración prolongada (ranura del extremo izquierdo). (Imagen sin el compresor opcional instalado.)</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 2-9. Indicadores y descripciones de la pantalla de estado (continuación)

<table>
<thead>
<tr>
<th>Indicador o mensaje de la pantalla de estado</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Batería muy baja. Indica que la batería principal del respirador tiene una autonomía inferior a cinco minutos. El indicador del porcentaje muestra la autonomía restante de la batería. Si se instala una batería de duración prolongada, la imagen mostrará una representación similar en la ubicación de la batería de duración prolongada. (Imagen sin el compresor opcional instalado.)</td>
</tr>
<tr>
<td></td>
<td>Fallo de alimentación. Avisa al usuario de que la batería del respirador está agotada o va a estarlo muy pronto. Sustituya la batería principal o la de duración prolongada por una batería completamente cargada o conecte el respirador a la alimentación de CA.</td>
</tr>
<tr>
<td></td>
<td>Batería no operativa. Esta imagen aparece en la pantalla de estado cuando un fallo en la batería indica que la batería no está operativa. (Imagen sin el compresor opcional instalado.)</td>
</tr>
<tr>
<td></td>
<td>Batería no instalada. Esta imagen aparece cuando no hay ninguna batería principal instalada e indica que el respirador no está operativo. (Imagen sin el compresor opcional instalado.)</td>
</tr>
</tbody>
</table>
Restablecimiento temporal de la GUI. Indica que hay una pérdida temporal de comunicación entre la BDU y la GUI. Ocurre en el respirador por motivos de diseño para mantener la funcionalidad de visualización de la GUI completa. Durante el restablecimiento temporal de la GUI, la ventilación sigue tal y como está definida en la actualidad, las alarmas visuales y sonoras NO están operativas y la pantalla de estado muestra una cuenta atrás hasta que finalice el restablecimiento temporal de la GUI. La cuenta atrás dura aproximadamente 30 segundos.

Fallo de GUI. Indica una pérdida de comunicación entre la BDU y la GUI que no puede recuperar el respirador. Durante el fallo de la GUI, la ventilación sigue tal y como está definida en la actualidad, las alarmas visuales y sonoras SÍ se anuncian y la pantalla de estado muestra “Fallo de visualización”. Sustituya el respirador cuando sea adecuado hacerlo. Repare el respirador antes de volver a utilizarlo en pacientes.

Acciones recomendadas ante una situación de fallo de la GUI:
• Verifique la estabilidad respiratoria y fisiológica del paciente.
• Confirme que el paciente está recibiendo respiración asistida; para ello, observe si se expande y contrae el tórax del paciente.
• Acceda al estado del paciente examinando los otros indicadores de monitorización (por ejemplo, la saturación de oxígeno, la frecuencia cardiaca, la presión sanguínea, etc.).
• Traslade al paciente hasta una fuente de ventilación alternativa, de acuerdo con su protocolo institucional.

Respirador no operativo (Vent. inop.). Indica que el respirador ya no puede ventilar al paciente y necesita repararse. La tecla de restablecimiento de alarma no se puede usar para recuperar una función durante una situación inoperativa del respirador. Proporcione medios alternativos de ventilación inmediatamente. Observe la pantalla del indicador de válvula de seguridad abierta.

<table>
<thead>
<tr>
<th>Indicador o mensaje de la pantalla de estado</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restablecimiento temporal de la GUI</td>
<td>Indica que hay una pérdida temporal de comunicación entre la BDU y la GUI. Ocurre en el respirador por motivos de diseño para mantener la funcionalidad de visualización de la GUI completa. Durante el restablecimiento temporal de la GUI, la ventilación sigue tal y como está definida en la actualidad, las alarmas visuales y sonoras NO están operativas y la pantalla de estado muestra una cuenta atrás hasta que finalice el restablecimiento temporal de la GUI. La cuenta atrás dura aproximadamente 30 segundos.</td>
</tr>
</tbody>
</table>
| Fallo de GUI | Indica una pérdida de comunicación entre la BDU y la GUI que no puede recuperar el respirador. Durante el fallo de la GUI, la ventilación sigue tal y como está definida en la actualidad, las alarmas visuales y sonoras SÍ se anuncian y la pantalla de estado muestra “Fallo de visualización”. Sustituya el respirador cuando sea adecuado hacerlo. Repare el respirador antes de volver a utilizarlo en pacientes. Acciones recomendadas ante una situación de fallo de la GUI:
 • Verifique la estabilidad respiratoria y fisiológica del paciente.
 • Confirme que el paciente está recibiendo respiración asistida; para ello, observe si se expande y contrae el tórax del paciente.
 • Acceda al estado del paciente examinando los otros indicadores de monitorización (por ejemplo, la saturación de oxígeno, la frecuencia cardiaca, la presión sanguínea, etc.).
 • Traslade al paciente hasta una fuente de ventilación alternativa, de acuerdo con su protocolo institucional. |
| Respirador no operativo (Vent. inop.) | Indica que el respirador ya no puede ventilar al paciente y necesita repararse. La tecla de restablecimiento de alarma no se puede usar para recuperar una función durante una situación inoperativa del respirador. Proporcione medios alternativos de ventilación inmediatamente. Observe la pantalla del indicador de válvula de seguridad abierta. |
Tabla 2-9. Indicadores y descripciones de la pantalla de estado (continuación)

<table>
<thead>
<tr>
<th>Indicador o mensaje de la pantalla de estado</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvula de seguridad abierta (SVO).</td>
<td>Durante una condición SVO, el paciente puede respirar el aire ambiental a través de la válvula de seguridad en la medida en que dicho paciente pueda respirar sin ayuda. Consulte [Válvula de seguridad abierta (SVO)](p. 4-36).</td>
</tr>
<tr>
<td>Ventilación de respaldo (BUV).</td>
<td>Indica que el respirador ha entrado en el estado de ventilación de respaldo. Consulte [Sistema de diagnóstico de segundo plano (10.16.4)](p. 10-75) para obtener una descripción de BUV.</td>
</tr>
<tr>
<td>Alimentación de CA.</td>
<td>Indicador de alimentación de CA. Cuando aparece esta imagen en cualquier indicador de la pantalla de estado, indica que el respirador funciona con alimentación de CA.</td>
</tr>
<tr>
<td>Aspecto de la pantalla de estado cuando el respirador está funcionando en modo Normal.</td>
<td>Aspecto del icono de la alimentación de CA.</td>
</tr>
</tbody>
</table>
Indicadores sonoros de la BDU

La alarma de tono continuo es el único indicador sonoro de la BDU y se describe en la Tabla 2-10.

Tabla 2-10. Funciones de los indicadores sonoros de la BDU

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarma de tono continuo (prioridad inmediata)</td>
<td>Un tono continuo anuncia una situación de respirador inoperativo (Vent. inop). Esta alarma dura como mínimo dos (2) minutos.</td>
</tr>
</tbody>
</table>

2.11.2 Conectores

El respirador incorpora los siguientes conectores:

- **Puerto de salida del respirador (Hacia el paciente)** — Conexión cónica coaxial de 15 mm (DI)/22 mm (DE) a la que se conecta el filtro antieriano inspiratorio externo.

- **Puerto de espiración (Desde el paciente)** — El ramal espiratorio del circuito del paciente se conecta a la entrada del filtro antibacteriano espiratorio. Este puerto es compatible con una conexión cónica de 22 mm (DE) estándar.

- **Sensor de flujo proximal** — El sensor de flujo proximal cuenta con un conector neumático con seguro para evitar la desconexión involuntaria. El sensor de flujo proximal mide el flujo y la presión en el circuito en "Y" del paciente. El sensor de flujo proximal es un sensor opcional. Los detalles sobre su funcionamiento se facilitan en el apéndice de este manual. Consulte el apéndice E.
• **Conectores de la interfaz estándar** — Se suministran conectores USB, HDMI y Ethernet. El conector USB permite capturar las pantallas en un dispositivo de almacenamiento USB externo y permite la comunicación con un monitor de paciente externo a través del puerto serie con el protocolo USB, y el conector HDMI permite mostrar la imagen de la GUI en un dispositivo de video externo. El conector Ethernet lo utiliza el personal de servicio para cargar nuevo software y opciones. Consulte *Uso de los puertos*, p. 5-18 para obtener más información. Consulte *Para configurar los puertos Com.* p. 5-4 para obtener información sobre la transferencia de datos USB y en serie al configurar puertos de comunicación para dispositivos externos.

2.12 Equipos adicionales

Existe un compresor de CC opcional que proporciona aire comprimido en el caso de que no se disponga de suministro de aire mural o embotellado. El compresor recibe alimentación de CC de su propio suministro de alimentación, si existe un suministro de alimentación de CA. Si no hay alimentación de CA, el compresor funciona con su batería interna. El ensamblaje de placas de circuito impreso (PCBA) del compresor se comunica con el PCBA de la CPU de la BDU. Consulte el *Apéndice del Manual del usuario del compresor* para obtener más detalles sobre el funcionamiento del compresor.

⚠️ **ADVERTENCIA:**

El uso del compresor en altitudes superiores o presiones barométricas inferiores a las especificadas podría afectar al funcionamiento del compresor/respirador. Consulte *Especificaciones ambientales*, p. 11-8.

2.13 Características especiales

Existe la opción del flujo proximal. El sensor de flujo proximal se utiliza para medir las presiones y flujos bajos asociados a la ventilación neonatal. Si el respirador está configurado con esta opción Consulte el apéndice E, para obtener más información.
2.14 **Definiciones de colores**

Consulte las siguientes figuras para ver el diagrama neumático del respirador durante la inspiración con diversos colores que representan los gases del siguiente modo:

<table>
<thead>
<tr>
<th>Color o símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxígeno a alta presión (designación NFPA 99)</td>
<td></td>
</tr>
<tr>
<td>Aire a alta presión (designación NFPA 99)</td>
<td></td>
</tr>
<tr>
<td>Mezcla de gases, incluido aire</td>
<td></td>
</tr>
<tr>
<td>Atmosfera</td>
<td></td>
</tr>
<tr>
<td>Vacío</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td></td>
</tr>
</tbody>
</table>

2.15 **Diagramas neumáticos**

Las siguientes figuras ilustran el sistema neumático del respirador con y sin el sistema de flujo proximal opcional. El sistema de flujo proximal solo se puede utilizar con pacientes neonatales.

Nota:

El compresor y el sistema de flujo proximal son opciones de hardware.
Descripción del producto

Figura 2-11. Diagrama neumático (se muestra el compresor)

1 Interruptor de presión, acumulador de mezcla (PS1)
2 Válvula solenoide, suministro de opciones (SOL2)
3 Sensor de presión, acumulador de mezcla (PMX)
4 Acumulador, mezcla (ACC_M)
5 Tubo, mezcla (T_M)
6 Válvula solenoide proporcional, suministro de gas al paciente (PSOLD)
7 Válvula solenoide, BUV (SOL 3)
8 Válvula de seguridad (SV)
9 Sensor de presión, válvula de seguridad (P_S)
10 Válvula solenoide, puesta a cero automática de la presión inspiratoria (SOL4)
11 Sensor de presión, inspiratoria (P_I)
12 Sensor de presión, barométrica (PA)
13 Vial, condensado de espiración
14 Filtro, espiración (F4)
15 Conjunto del sensor de flujo, válvula espiratoria
16 Válvula espiratoria (EV)
17 Filtro, línea de presión espiratoria (F5) 36 Sensor de presión, acumulador del compresor (PC)
18 Válvula de solenoide, puesta a cero de la presión espiratoria (SOL 5) 37 Válvula de retención, oxígeno (CVO₂)
19 Sensor de presión, espiratoria (PE) 38 Válvula de retención, aire (CVₐᵢʳ)
20 Humidificador 39 Válvula solenoide proporcional, oxígeno (PSOLO₂)
21 Filtro, bacterias externas (F₁₂) 40 Sensor de flujo, aire (FSₐᵢʳ)
22 Filtro, bacterias internas (F₁₁) 41 Válvula solenoide proporcional, aire (PSOLO₂)
23 Válvula de retención, suministro de gas al paciente (CV₂ₐᵢᵢ)
24 Sensor, oxígeno (OS) 43 Limitador, salida de aire mural (R₁)
25 Limitador, derivación de suministro de respiración (R₂) 44 Válvula de retención, entrada de aire del compresor (CVₐᵢʳ)
26 Sensor de flujo, suministro de gas al paciente (FSₚᵢᵢ⁾) 45 Conjunto de cubeta del filtro, aire (WT₂)
27 Acumulador, compresor (ACC₂) 46 Elemento del filtro, aire (F₂)
28 Válvula de liberación, acumulador del compresor (RVCA) 47 Válvula de retención, entrada de aire en la pared (CVₐᵢʳ)
29 Válvula solenoide, descarga del compresor (SOL₇) 48 Filtro, impacto de oxígeno (F₁)
30 Compresor del motor (MC) 49 Elemento del filtro, oxígeno (F₃)
31 Intercambiador de calor, compresor (HE) 50 Sensor de presión, entrada de gas de oxígeno (P₂₉)
32 Filtro, compresor de aire (F₇) 51 Sensor de flujo, oxígeno (FS₂₉)
33 Secador, compresor 52 Limitador, flujo proximal (R₄)
34 Filtro, silenciador (F₆) 53 Válvula de liberación, acumulador de mezcla (RVMA)
35 Válvula de retención, acumulador del compresor (CVₐᵢʳ) 54 Válvula solenoide, purga del acumulador de mezcla (SOL 1)
Figura 2-12. Diagrama neumático - Compresor y sistemas de flujo proximal

1 Limitador, flujo proximal (R4) 6 Circuito en “Y”, circuito del paciente
2 Válvula solenoide, flujo proximal (SOL 6) 7 Sensor, flujo proximal
3 Módulo, sistema de flujo proximal 8 Filtro, espiración neonatal
4 Sensor de presión, acumulador de flujo proximal (P_{PROX}) 9 Vial de condensado, espiratorio neonatal
5 Humidificador

Los elementos rodeados por líneas de puntos representan los componentes internos del respirador.
3 Installation

3.1 Generalidades

En este capítulo se incluye la información relativa a la instalación y configuración del respirador Serie 980 de Puritan Bennett™. Antes de poner el respirador en funcionamiento, lea con detenimiento este Manual del usuario.

Los temas incluyen:
- Avisos de seguridad
- Configuración del respirador
- Información sobre la batería
- Modos de funcionamiento del respirador
- Preparación del respirador para su uso
- Pruebas que se deben realizar antes de ventilar al paciente

3.2 Avisos de seguridad

ADVERTENCIA:
Riesgo de explosión — no lo utilice en presencia de gases inflamables. Un ambiente rico en oxígeno acelera la combustibilidad.

ADVERTENCIA:
Para garantizar el correcto funcionamiento y evitar la posibilidad de lesiones físicas, solo personal médico cualificado debe tratar de configurar y administrar tratamiento con el respirador.

ADVERTENCIA:
Para evitar descargas electrostáticas y posibles riesgos de incendio, no utilice tubos ni mangueras antiestáticos o conductores de electricidad en el respirador ni en sus inmediaciones.
ADVERTENCIA:
Utilice solamente mangueras de suministro de gas aprobadas por Covidien. El uso de otras mangueras puede ser restrictivo y causar el mal funcionamiento del respirador.

ADVERTENCIA:
Para evitar posibles lesiones, bloquee las ruedas del respirador antes de instalar o extraer sus componentes.

Precaución:
Para garantizar el rendimiento óptimo, Covidien recomienda que el mantenimiento preventivo se lleve a cabo por ingenieros biomédicos debidamente cualificados según el programa especificado. Consulte Frecuencia del mantenimiento preventivo de servicio, p. 7-22.

3.3 Montaje del producto

3.3.1 Cómo montar los componentes del respirador

El personal del servicio técnico formado por Covidien debe realizar la configuración del respirador, incluida la superación correcta del EST. En este manual no se incluyen las instrucciones de montaje del respirador.

3.3.2 Fuentes de alimentación del equipo

Uso de alimentación de CA

El respirador normalmente funciona con alimentación de CA. Consulte Conexión del respirador a la alimentación de CA, p. 3-6 para conectar el respirador a la alimentación de CA.

Uso de alimentación por batería

ADVERTENCIA:
Utilice solamente baterías de la marca Covidien. Si se utilizan las marcas de otros fabricantes, las baterías del respirador podrían funcionar durante menos tiempo del especificado o se podría causar un incendio.
ADVERTENCIA:
Para que el respirador funcione correctamente, es necesario que la batería principal esté instalada en todo momento en la ranura de la batería principal de la BDU. El proceso de inicio del respirador no se podrá completar si la batería principal no está instalada. Consulte Ubicaciones del compartimento de la batería, p. 3-22 para la identificación de las ranuras de la batería.

La batería principal solo debe instalarla el personal del servicio técnico cualificado (ya que se suministra por separado) antes de usar el respirador con el paciente. Si no hay batería, el respirador no completará el Autest de encendido (POST) y no se podrá realizar la ventilación. Compruebe que la batería está totalmente cargada antes de poner el respirador en funcionamiento.

El respirador utiliza un sistema de batería de reserva en caso de que la alimentación de CA no esté disponible o si desciende por debajo de 90 voltios aproximadamente. La batería nueva totalmente cargada proporciona al respirador un mínimo de una hora de alimentación, siempre que la temperatura ambiente se encuentre entre 20 °C (68 °F) y 25 °C (77 °F), el PBW sea igual a 70 kg y el respirador tenga la configuración predeterminada de fábrica.

Los sistemas de batería de reserva del respirador y compresor contienen una batería principal cada uno. En caso de pérdida de alimentación de CA, el respirador recibe alimentación de la batería de reserva.

El respirador y el compresor disponen de una ranura para la batería de duración prolongada. Si las baterías primaria y de duración prolongada del respirador y del compresor se encuentran disponibles, estas pueden alimentar el respirador y el compresor durante dos horas (una hora por cada batería) en las condiciones ambientales que se han descrito anteriormente. Cuando el respirador y el compresor funcionan con alimentación por batería, primero funcionan con las baterías de duración prolongada (si las hay) y después pasan a las baterías principales. Las baterías de duración prolongada y principal del respirador y del compresor se cargan siempre que el respirador esté conectado a la alimentación de CA (no es necesario encender el respirador). Si el respirador o el compresor están funcionando con batería, en la pantalla de estado se muestra cuál es la batería que está en uso, su nivel de carga y el tiempo restante durante el que funcionará dicha batería antes de que sea necesario recargarla de nuevo.
Carga de la batería

Las baterías que necesiten cargarse se cargarán siempre que el respirador esté conectado a la alimentación de CA, independientemente de si está en funcionamiento o no.

El respirador y compresor primero cargan sus baterías principales y después las de duración prolongada. Para cargar una batería, ya sea la principal o la de duración prolongada, se necesitan aproximadamente seis horas a temperatura ambiente, independientemente de si el respirador está apagado (pero conectado a la alimentación de CA) o en funcionamiento. No obstante, este tiempo de carga puede variar en función de la temperatura o del estado de carga de la batería. En la pantalla de estado se muestran las capacidades de las baterías.

El sistema de carga de la batería del compresor (en el caso de que haya un compresor) funciona de forma independiente del sistema de carga del respirador y las baterías se cargan en paralelo.

Si se produce un fallo en la batería, dicho fallo se comunica y la carga de esta batería se detiene, pero la carga de las otras baterías sin fallos continúa. El fallo de la batería se comunica mediante un error y el respirador ya no recibe alimentación de esta batería.

En la pantalla de estado del respirador se muestra el nivel de carga de las baterías instaladas, la presencia de una o más baterías con fallos y las baterías que se están cargando.

El funcionamiento del respirador no varía si las baterías se están cargando o si están totalmente cargadas.

El respirador, cuando cambia de alimentación de CA a alimentación por batería, continúa funcionando según la configuración establecida y en la pantalla de estado se ilumina un indicador que alerta al operador de que el respirador está funcionando con batería, además de activarse la alarma PÉRDIDA ALIM. CABLE. La alarma de prioridad media se activa cuando el tiempo de ejecución restante del respirador desciende a diez (10) minutos y la alarma de prioridad alta se activa cuando el tiempo restante desciende a cinco (5) minutos.
3.4 Colocación del producto

El respirador se coloca en posición vertical sobre sus ruedas al lado de la cabecera del paciente, como se muestra a continuación.

Desplace el respirador con el asa que rodea la BDU y ruédelo hasta la ubicación deseada.

Figura 3-1. Ejemplo de colocación del respirador de forma independiente
3.5 Conectividad del producto

3.5.1 Conexión del respirador a la alimentación de CA

Nota:

Acceso a la toma de corriente y posición del cable de alimentación: asegúrese de que se pueda acceder fácilmente a la toma de corriente utilizada para el respirador; el único modo de cortar totalmente el suministro eléctrico del respirador es desconectarlo de la toma de corriente.

Para conectar el cable de alimentación a la instalación eléctrica de CA

1. Enchufe el respirador a una toma de corriente eléctrica debidamente conectada a tierra con un valor nominal de al menos 15 A.

2. Verifique la conexión comprobando el indicador de CA situado debajo del interruptor de encendido situado en la parte frontal de la BDU. Consulte *Interruptor de alimentación del respirador e indicador de CA*, p. 2-27 para obtener información sobre la ubicación del interruptor de encendido y el indicador de CA.

Para conectar el cable de alimentación al respirador

1. Quite el retenedor del cable de alimentación y conecte el extremo hembra de dicho cable a la toma del cable de alimentación del respirador. Consulte *Retenedor del cable de alimentación en la BDU*, p. 3-7.

2. Vuelva a colocar el retenedor del cable de alimentación.

Utilice el gancho del cable de alimentación situado en la parte posterior del respirador para guardar dicho cable.

ADVERTENCIA:

Para que el respirador funcione correctamente y evitar el riesgo de descargas eléctricas, conecte el respirador a una toma eléctrica de CA, con conexión a tierra y de tipo hospitalario.
3.5.2 Conexión de los suministros de gas

El respirador puede conectarse al suministro de aire y oxígeno murales o embotellados de tipo hospitalario. Consulte *Conexión del respirador a los suministros de gas*, p. 3-9. Los intervalos de presión de suministro de aire y O₂ deben ser de 35 a 87 psig (de 241,3 kPa a 599,8 kPa) y el requisito de flujo medio para ambos es de 60 L/min a 40,61 psi. Los valores transitorios no deben superar los 200 L/min durante ≥ tres (3) s.
ADVERTENCIA:
Debido a las excesivas restricciones de los conjuntos de mangueras flexibles de Air Liquide™, SIS, y Dräger™, se pueden conseguir niveles de rendimiento reducidos del respirador cuando se utilizan presiones de suministro de aire u oxígeno de < 50 psi (345 kPa).

El flujo cruzado de gas desde un puerto de entrada de presión alta con un tipo de gas a otro puerto de entrada de presión alta con otro tipo de gas diferente no debe superar los 100 mL/h en condiciones normales de uso o en condiciones de un solo fallo. Si durante la condición de un solo fallo el flujo cruzado supera los 100 mL/h, se activará una alarma audible.

ADVERTENCIA:
El uso de una única fuente de gas puede provocar la pérdida de ventilación o hipoxemia si dicha fuente de gas falla y no está disponible. Por ello, tenga siempre conectadas al menos dos fuentes de gas al respirador para garantizar que, en el caso de que una de las fuentes de gas falle, el paciente siempre tiene suministro permanente de gas. El respirador tiene dos conexiones para las fuentes de gas: entrada de aire y entrada de oxígeno murales. Consulte Resumen de las alarmas no técnicas, p. 6-20 para las alarmas que se producen debido a una pérdida de suministro de gas.

Para conectar las fuentes de gas
1. Conecte la manguera de oxígeno a la conexión de entrada del oxígeno (elemento 1) como se muestra. Utilice una fuente de oxígeno de tipo médico.

2. Conecte la manguera de aire al adaptador de entrada de aire (elemento 2). Consulte Conexión del respirador a los suministros de gas, p. 3-9.
ADVERTENCIA:
Para evitar posibles riesgos de incendio y daños al respirador, asegúrese de que las conexiones a los suministros de gas estén limpias y sin lubricar, y de que no haya agua en el suministro de gas. Si cree que hay agua, utilice un colector de agua existente en el aire suministrado a través de la toma de la pared a fin de evitar que se produzcan daños en el respirador o sus componentes.

El sistema de respirador puede adquirirse con los siguientes adaptadores de entrada de gas, tanto para aire como para O₂: BOC, DISS, DISS hembra, NIST, Air Liquide, SIS y Dräger.
Consulte Accesorios y opciones, p. 9-3, para ver los números de pieza de las mangueras de suministro de gas. Fuera de los Estados Unidos, póngase en contacto con el representante local de Covidien para consultar los números de pieza correctos de las mangueras de suministro de gas.

3.5.3 Instalación del filtro

El respirador se suministra con los filtros inspiratorios interno y externo. Consulte Accesorios y opciones, p. 9-3. Para evitar infecciones y riesgos de contaminación, los filtros inspiratorio y espiratorio deben utilizarse con el respirador.

ADVERTENCIA:
Para reducir el riesgo de infecciones, utilice siempre el respirador con filtros antibacterianos inspiratorios y espiratorios.

ADVERTENCIA:
No intente utilizar filtros inspiratorios o espiratorios diseñados para su uso con respiradores que no sean los indicados para el respirador Serie 980 de Puritan Bennett™. Consulte Accesorios y opciones, p. 9-3 para ver los números de las piezas pertinentes.

ADVERTENCIA:
Consulte las instrucciones de uso de los filtros para ver los detalles de los requisitos de limpieza y esterilización, eficacia de filtrado, uso correcto del filtro y resistencia máxima del filtro, especialmente cuando se utilizan medicamentos en aerosol.

ADVERTENCIA:
Consulte las instrucciones de uso del filtro espiratorio para obtener información sobre la esterilización y limpieza del filtro reutilizable y la eficacia del filtro.

ADVERTENCIA:
No reutilice los filtros desechables inspiratorio ni espiratorio y deséchelos según la directiva del centro sanitario sobre eliminación de residuos contaminados.

Precaución:
Asegúrese de que los filtros inspiratorio y espiratorio están conectados correctamente al respirador.
Para instalar el filtro inspiratorio
1. Conecte el filtro inspiratorio al puerto **Hacia el paciente**.
2. Asegúrese de la dirección de la flecha de flujo está apuntando hacia fuera, hacia el ramal inspiratorio del circuito del paciente.

Nota:
Consulte las instrucciones de uso del filtro inspiratorio para obtener información sobre el uso y manejo correctos del filtro.

Nota:
Consulte las instrucciones de uso del filtro espiratorio para obtener información sobre el uso y manejo correctos de dicho filtro, y sobre cómo vaciar el vial de condensado para pacientes adultos y pediátricos. Consulte el apéndice D para obtener información sobre cómo vaciar el vial de condensado cuando se utilizan filtros espiratorios neonatales.

El vial de condensado debe montarse en el filtro espiratorio reutilizable antes de instalar el conjunto al respirador.

Para montar el filtro espiratorio para adultos o uso pediátrico reutilizable y el vial de condensado
1. Ajuste el filtro al vial de condensado y asegúrese de que el precinto del vial de condensado está alineado con el borde de acoplamiento del filtro espiratorio.
2. Gire el vial de condensado en sentido contrario a las agujas del reloj hasta que los topes del vial y el filtro espiratorio se junten.

ADVERTENCIA:
No ponga en funcionamiento el seguro del filtro espiratorio durante la ventilación del paciente. En caso contrario, se puede producir una condición de desconexión del paciente y la activación de la alarma correspondiente.

Para instalar el filtro espiratorio para adultos o uso pediátrico
1. Si es necesario, extraiga el ramal espiratorio del circuito del paciente del filtro espiratorio.
2. Levante el seguro del filtro espiratorio para desbloquearlo (punto 6). Con esta acción se levanta el conjunto de la válvula de espiración y la puerta del filtro se aleja del respirador. Consulte **Instalación del filtro para adultos o uso pediátrico**, p. 3-12.
3. Abra la puerta del filtro espiratorio.
4. Retire el filtro.
5. Introduzca el nuevo filtro deslizando el filtro por las ranuras de la puerta. Asegúrese de que el puerto

Desde el paciente está alineado con el orificio de la puerta y apuntando hacia fuera del respirador.

6. Cierre la puerta del filtro espiratorio.

7. Baje el seguro del filtro espiratorio para fijar el filtro.

Figura 3-4. Instalación del filtro para adultos o uso pediátrico

<table>
<thead>
<tr>
<th></th>
<th>Puerto de drenaje de condensado</th>
<th>5</th>
<th>Tapa del puerto de drenaje de condensado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vial de condensado</td>
<td>6</td>
<td>Seguro del filtro espiratorio</td>
</tr>
<tr>
<td>2</td>
<td>Filtro espiratorio</td>
<td>7</td>
<td>Puerta del filtro espiratorio</td>
</tr>
<tr>
<td>3</td>
<td>Junta del vial de condensado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Para instalar la puerta del adaptador del filtro espiratorio neonatal
1. Si es necesario, extraiga el ramal espiratorio del circuito del paciente del filtro espiratorio.
2. Levante el seguro del filtro espiratorio. Consulte *Instalación del filtro neonatal, p. 3-13* (elemento 3).
3. Extraiga la puerta del filtro espiratorio sacándola de los pasadores pivote.
4. Ajuste la puerta del adaptador neonatal en los pasadores pivote.

![Figura 3-5. Instalación del filtro neonatal](VEN_11162_A)

Para instalar el conjunto del filtro espiratorio neonatal
1. Con la puerta todavía abierta, empuje el conjunto del filtro neonatal hacia arriba hasta que quede dentro del adaptador.
2. Cierre la puerta.
3. Baje el seguro del filtro espiratorio.
4. Vuelva a conectar el ramal espiratorio del circuito del paciente al filtro.
Para usar la bolsa de drenaje

1. Extraiga el tapón de la salida de drenaje del vial de condensado situado en el filtro espiratorio.

2. Conecte el tubo de la bolsa de drenaje a la salida de drenaje del vial de condensado.

Figura 3-6. Bolsa de drenaje
3.5.4 Conexión del circuito del paciente

Consulte Conexión del circuito del paciente adulto o pediátrico, p. 3-16 o Consulte Conexión del circuito del paciente neonatal, p. 3-17 para conectar los circuitos del paciente adulto, pediátrico y neonatal.

ADVERTENCIA:
En el respirador, utilice circuitos de paciente con la distensibilidad más baja posible a fin de garantizar una compensación de distensibilidad óptima y evitar alcanzar el límite de seguridad de cinco veces el volumen corriente definido o el límite de compensación de distensibilidad. Consulte la siguiente tabla para ver los tipos de circuitos correspondientes según el peso corporal previsto (PBW).

<table>
<thead>
<tr>
<th>Tipo de circuito</th>
<th>PBW en kg (lb)</th>
<th>Permitido pero no recomendado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal</td>
<td>De 0,3 kg a 7,0 kg (de 0,66 lb a 15 lb)</td>
<td>No aplicable</td>
</tr>
<tr>
<td>Pediátrico</td>
<td>De 7,0 kg a 24 kg (de 16 lb a 53 lb)</td>
<td>De 3,5 kg a 6,9 kg y 25 kg a 35 kg (de 7,7 lb a 15 lb y 55 lb a 77 lb)</td>
</tr>
<tr>
<td>Adulto</td>
<td>De 25 kg a 150 kg (de 55 lb a 331 lb)</td>
<td>De 7,0 kg a 24 kg. (de 16 lb a 53 lb)</td>
</tr>
</tbody>
</table>

Nota:
Consulte las instrucciones de uso del circuito del paciente para obtener información sobre el uso, manejo, cuidado y mantenimiento correctos del circuito.

Se proporciona una lista de los componentes y accesorios del respirador. Consulte Accesorios y opciones, p. 9-3. En el circuito del paciente utilice solamente componentes y accesorios de la marca Covidien.

Siga el protocolo del centro sanitario para eliminar de forma segura el circuito del paciente.

Siga las instrucciones de uso del circuito del paciente para obtener información de limpieza y desinfección de los circuitos reutilizables.

Oriente el circuito del paciente colgándolo en los soportes de manejo del circuito que se suministran con el brazo flexible.
Figura 3-7. Conexión del circuito del paciente adulto o pediátrico

1. Humidificador
2. Ramal inspiratorio
3. Circuito en “Y”
4. Ramal espiratorio
5. Vial de condensado
6. Puerto Desde el paciente
7. Filtro espiratorio
8. Puerto Hacia el paciente
9. Filtro inspiratorio
Figura 3-8. Conexión del circuito del paciente neonatal

1 Humidificador
2 Ramal inspiratorio del circuito del paciente
3 Circuito en "Y"
4 Ramal espiratorio del circuito del paciente
5 Vial de condensado
6 Puerto Desde el paciente
7 Filtro espiratorio neonatal (instalado en la puerta del adaptador)
8 Puerto Hacia el paciente
9 Filtro inspiratorio
3.6 Cómo instalar los accesorios

3.6.1 Baterías

ADVERTENCIA:
Utilice solamente baterías de la marca Covidien. Si utiliza las marcas de otros fabricantes o baterías remanufacturadas, las baterías del respirador podrían funcionar durante menos tiempo del especificado o causar un riesgo de incendio.

ADVERTENCIA:
Para reducir el riesgo de infecciones por contaminación cruzada, desinfecte las baterías con un paño humedecido con una de las soluciones indicadas antes de la instalación y siempre que se transfieran de un respirador a otro. Durante su uso, limpie las superficies externas de las baterías según sea necesario. Consulte Agentes de limpieza de superficies, p. 7-6. No pulverice desinfectante directamente sobre la batería ni en su conector.

ADVERTENCIA:
Si bien el respirador Serie 980 de Puritan Bennett™ cumple con las normas citadas en el Capítulo 11, la batería de iones de litio interna del dispositivo está catalogada como Mercancía peligrosa (MP) Clase 9 - Varios, cuando se transporta con fines comerciales. Como tal, el respirador Serie 980 de Puritan Bennett™ y/o la batería de iones de litio asociada están sujetos a estrictas condiciones de transporte bajo la reglamentación de mercancías peligrosas para el transporte aéreo (IATA: Asociación Internacional de Transporte Aéreo), del Código internacional de transporte marítimo de mercancías peligrosas por mar y del Acuerdo europeo referente al Transporte internacional de mercancías peligrosas por carretera (ADR) para Europa. Las personas que transporten el dispositivo quedan excluidas de dichas regulaciones, aunque en el caso del transporte aéreo se aplican algunos requisitos.

ADVERTENCIA:
Para evitar el riesgo de incendio, explosión, descarga eléctrica o quemaduras no cortocircuite, perfore, aplaste, caliente por encima de 60 °C, incinere, desmonte ni sumerja en agua la batería.
Precaución:
Asegúrese de que las baterías están orientadas correctamente. Consulte *Orientación correcta de la batería*, p. 3-21.

Figura 3-9. Batería del respirador

Baterías principales

La batería principal del respirador está situada en el compartimento posterior de la batería situado en la parte derecha de la BDU. La batería principal del compresor está situada en el compartimento posterior de la batería situado en la base del compresor. Consulte *Ubicaciones del compartimento de la batería*, p. 3-22. La batería principal puede “cambiarse en caliente”, es decir, puede sustituirse mientras el respirador está en funcionamiento.
Para instalar o reemplazar la batería principal en la BDU o el compresor

1. Pulse el botón de nivel de carga situado en la batería para comprobar su nivel de carga y verifique que los LED de nivel de carga están iluminados. Consulte Orientación correcta de la batería, p. 3-21, para ver la ubicación del botón de nivel de carga. Si se iluminan cinco segmentos del LED en verde, significa que la carga de la batería es ≥ 90 %. Empezando por la parte inferior hasta la superior, el primer LED indica una carga ≥ 10 % de su capacidad, el segundo una carga ≥ 25% de su capacidad, el tercero una carga ≥ 50 % de su capacidad y el cuarto una carga ≥ 75% de su capacidad. Si aparece un LED iluminado en rojo en la parte superior de la batería, significa que hay un fallo en la batería. Si no aparece ningún LED iluminado significa que queda una carga de la batería inferior al 10 %.

2. Si el nivel de carga es suficiente, oriente la batería como se muestra, colóquese delante de la parte frontal del respirador y localice los compartimentos de las baterías situados en la parte derecha del módulo correspondiente. Consulte Ubicaciones del compartimento de la batería, p. 3-22. El compartimento situado hacia la parte posterior del respirador alberga la batería principal y el compartimento situado hacia la parte frontal del respirador alberga la batería de duración prolongada.

3. La batería principal está sujeta con un tornillo de mariposa (elemento 3). Para instalar la batería afloje el tornillo de mariposa cuatro o cinco vueltas.

4. Introduzca la batería y empújela dentro del compartimento hasta que haga clic, lo que indica que está sujeta en su sitio. La batería solo puede introducirse en la ranura en una única posición.
5. Apriete el tornillo de mariposa para fijar la batería y evitar que la batería principal se salga de su sitio.

Nota:
Para extraer la batería principal realice los pasos anteriores en orden inverso. Después de aflojar el tornillo de mariposa, deslice el expulsor de la batería hacia la izquierda para expulsar la batería.
Figura 3-11. Ubicaciones del compartimento de la batería

1 Compartimento y expulsor de la batería de duración prolongada de la BDU
2 Compartimento y expulsor de la batería principal de la BDU
3 BDU y tornillos de la batería principal del compresor
4 Compartimento y expulsor de la batería principal del compresor
5 Compartimento y expulsor de la batería de duración prolongada del compresor
6 Batería principal de la BDU (colocada para la instalación)

Nota:
Extraiga una de las baterías principales deslizando el expulsor de la batería hacia la izquierda. La batería sale de su compartimento.
Baterías de duración prolongada

El compartimento de la batería de duración prolongada está situado delante de la batería principal. Al igual que la batería principal, la batería de duración prolongada también puede mientras el respirador está en funcionamiento.

Para instalar o reemplazar la batería de duración prolongada en la BDU o el compresor

2. Empuje la batería hacia dentro del compartimento del módulo apropiado del respirador hasta que haga clic, lo que indica que está sujeta en su sitio. Consulte *Ubicaciones del compartimento de la batería*, p. 3-22.

Nota:

Extraiga la batería deslizando el expulsor de la batería hacia la izquierda. La batería sale de su compartimento. No hay tornillo de mariposa para las baterías de duración prolongada.

Nota:

Consulte *Carga de la batería*, p. 3-4, para obtener información sobre la carga de las baterías cuando estas están instaladas en el respirador.

3.6.2 Comprobación de las baterías

Para comprobar las baterías

1. Encienda el botón del nivel de carga situado en la batería. Una serie de LED se iluminan y muestran el nivel de carga de la batería. Cuando el LED inferior está iluminado, la batería tiene una carga $\geq 10\%$ de su capacidad. El siguiente LED se ilumina si hay una carga $\geq 25\%$ de la capacidad. El tercero se ilumina cuando la carga es $\geq 50\%$ de la capacidad. El cuarto LED se ilumina si la carga es $\geq 75\%$ y cuando el LED superior se ilumina, indica que la carga es $\geq 90\%$ de la capacidad. Consulte *Orientación correcta de la batería*, p. 3-21 para ver el botón de prueba de la batería y los LED.

3.6.3 Vida útil de la batería

La batería tiene una vida útil de aproximadamente tres (3) años. No obstante, la vida útil real depende del historial de uso y de las condiciones ambientales.
3.6.4 **Eliminación de la batería**

La batería es un residuo electrónico y debe eliminarse de acuerdo con las normativas vigentes. Siga las ordenanzas reguladoras y los planes de reciclaje locales relativos a la eliminación o el reciclado de la batería.

3.6.5 **Brazo flexible**

Utilice el brazo flexible para apoyar el circuito del paciente entre el paciente y el respirador. Consulte *Instalación del brazo flexible*, que ilustra la instalación del brazo flexible en los conectores provistos.

Figura 3-12. Instalación del brazo flexible
Cómo instalar los accesorios

Para acoplar o retirar el brazo flexible
1. Localice los puntos de inserción roscados situados en el asa del respirador.
2. Fije el brazo flexible en uno de los puntos de inserción.
3. Cuelgue el circuito del paciente con los soportes de manejo del circuito que se incluyen con el brazo flexible.
4. Para extraer el brazo flexible, primero extraiga el circuito del paciente y seguidamente afloje el brazo flexible del punto de inserción roscado del asa.

3.6.6 Humidificador

Utilice el humidificador para añadir calor o humedad al gas inhalado. Conecte el humidificador a una toma de corriente eléctrica de tipo hospitalario. Elija el humidificador (tipo y volumen apropiados para el paciente). Monte el humidificador con el soporte del humidificador como se muestra. Consulte Instalación del soporte en el rail, p. 3-26. Consulte Accesorios y opciones, p. 9-3 para ver el número de pieza del soporte del humidificador.

ADVERTENCIA:
La selección del volumen o tipo de humidificador incorrectos durante el ATC o durante la ventilación del paciente puede afectar a la precisión del volumen suministrado al paciente, ya que el respirador calculará de forma incorrecta el factor de corrección de distensibilidad utilizado durante la administración de la respiración. Esta situación puede causar problemas, ya que el volumen adicional necesario para la compensación de la capacidad de compresión del circuito podría calcularse de modo incorrecto, lo que puede provocar un suministro en exceso o en defecto del volumen deseado.

ADVERTENCIA:
Para garantizar los cálculos correctos de la distensibilidad y la resistencia, procese el ATC con el humidificador y todos los accesorios utilizados para la ventilación del paciente que estén instalados en el respirador.

ADVERTENCIA:
Siga las instrucciones de uso del fabricante del humidificador cuando utilice el humidificador en la ventilación del paciente.
Precaución:
Siga las instrucciones de uso del fabricante del humidificador para obtener un funcionamiento correcto del humidificador.

Para instalar el soporte del humidificador

1. Conecte el soporte del humidificador en el rail accesorio del respirador colocando el soporte detrás de dicho rail y fijando la abrazadera del soporte con cuatro (4) tornillos hexagonales de 5/32 pulgadas, de modo que el rail quede entre el soporte y la abrazadera. Asegúrese de que las ranuras de montaje del humidificador quedan orientadas hacia la parte externa de este.

Para instalar el humidificador

1. Deslice la parte posterior del humidificador en la ranura correspondiente del soporte del humidificador hasta que esté totalmente asentado en su posición. Consulte Instalación del humidificador en el respirador, p. 3-27. Algunos humidificadores encajan en la ranura estrecha del soporte del humidificador y otros en la ranura más ancha.
2. Llene el humidificador con agua hasta el nivel deseado de volumen de llenado.

3. Instale la cámara en el humidificador, conecte el circuito del paciente y realice el ATC.
4. Enchufe el humidificador a una toma eléctrica con conexión a tierra y de tipo hospitalario.

5. Encienda el humidificador.

Nota:
Las instrucciones detalladas sobre la instalación del humidificador y el soporte del humidificador se encuentran en las *Instrucciones de instalación del soporte del humidificador del respirador Serie 980 de Puritan Bennett™*, donde se incluyen los números de pieza y la descripción del soporte del humidificador.

3.7 Modos de funcionamiento del respirador

3.7.1 Modo Normal

El modo Normal es el que se utiliza de forma predeterminada para la ventilación del paciente. El respirador entra en modo Normal cuando se enciende, se completa la prueba POST, se configura y se introducen los parámetros de la administración de respiración. El profesional sanitario puede seleccionar, si lo desea, el modo de Inicio rápido en el que se utilizan los valores predeterminados o los ajustes de administración de respiración configurados por el centro sanitario después de introducir el PBW. La entrada en el modo Normal no se permite si no se detecta una batería principal en la BDU del respirador, se produce un fallo POST grave, o hay un fallo grave en el sistema sin solucionar, un fallo **Autotest corto (ATC)** o **Autotest largo (ATG)** sin solucionar o hay las alertas que no se han anulado.

Durante el modo Normal, el LED omnidireccional situado en la parte superior de la GUI aparece iluminado de modo permanente en verde. Si se activa una alarma, el LED parpadea en el color correspondiente a la prioridad de la alarma. Consulte *Priorización de las alarmas*, p. 6-17 para obtener detalles acerca de la prioridad de alarmas. Si se activa otra alarma simultáneamente con otra alarma activada, el LED muestra el color correspondiente al nivel más alto de prioridad. Si la alarma disminuye de nivel, en el área invariante (situada en los laterales del indicador del LED de alarma) del LED de alarma aparece el color de la alarma de mayor prioridad y en el centro del LED aparece el color de la prioridad de la alarma actual. Para obtener más información acerca de determinadas alarmas, toque el icono de registros en el área de iconos de acceso permanente de la GUI.
3.7.2 **Inicio rápido**

Inicio rápido es una parte del modo Normal, en el que se aplican los ajustes predeterminados configurados por el centro sanitario después de introducir el PBW o sexo y altura del paciente y desde donde se puede tocar el botón *Inicio rápido* para empezar la ventilación.

3.7.3 **Estado en espera**

El estado en espera puede utilizarse cuando el profesional sanitario tiene que desconectar al paciente por cualquier motivo, por ejemplo, antes de realizar un procedimiento de succión. El respirador entra en el estado en espera cuando el profesional sanitario lo solicita, se desconecta un paciente durante un período establecido de tiempo determinado por el software del respirador y el profesional sanitario confirma que el paciente ha sido desconectado intencionalmente. Si el paciente se desconecta del circuito del paciente después de transcurrido dicho período de tiempo, se activa una alarma y se inicia la secuencia de desconexión del paciente. En el estado en espera, la salida de gas se reduce a diez (10) L/min a fin de limitar el consumo de gas y permitir la detección de la reconexión del paciente, y la concentración de O₂ alcanza el 100 % para tipos de circuito adultos y pediátricos y el 40 % para el tipo de circuito neonatal. El estado en espera está disponible en todos los modos de ventilación exceptuando las siguientes situaciones: **BUV, inspiratoria y espiratoria, Ciclo de estado de oclusión (OSC), Válvula de seguridad abierta (SVO) o Respirador no operativo (Vent. Inop.).**

Nota:
No bloquee el circuito del paciente en “Y” cuando se el estado en espera esté activo. Si se bloquea, el respirador detectará una conexión del paciente e intentará reanudar la ventilación normal.

Para acceder al estado en espera

1. Toque la pestaña Menú situada en la parte izquierda de la GUI. Aparece el menú.
2. Toque *Pausa*. Aparece un cuadro de diálogo Estado en espera pendiente en el que se solicita al profesional sanitario que desconecte el circuito del paciente. Se inicia un temporizador con un tiempo de 30 s para desconectar al paciente.
3. Desconecte el circuito del paciente y toque *Confirmar* para confirmar la desconexión. Se inicia un temporizador con un tiempo de 30 s para confirmar la desconexión.
Para salir del estado en espera

1. Vuelva a conectar el circuito del paciente. El respirador reanuda la ventilación con los ajustes que se estaban utilizando antes de la desconexión.

Los siguientes ajustes del respirador se activarán durante el estado en espera:

- El flujo de base se establece en diez (10) L/min.
- 100 % O₂ para pacientes adultos/pediatícos
- 40 % O₂ para pacientes neonatales

Durante el estado en espera

- La válvula de espiración está abierta.
- Los parámetros actuales del respirador se conservan en la memoria.
- Se supervisan los sensores de flujo para detectar la reconexión del paciente.
- Las alarmas relacionadas con el paciente se suprimen temporalmente, como se describe abajo.
- Si se desea, la configuración del respirador puede cambiarse y se aplica después de la reconexión del paciente.
- El respirador muestra un indicador que está en estado en espera y un temporizador que indica el tiempo que ha transcurrido desde que el respirador está en dicho estado.
- Las comprobaciones generales del respirador continúan realizándose.

La salida del estado en espera del respirador se realiza automáticamente cuando se detecta la reconexión del paciente, cuando el profesional sanitario realiza la configuración del paciente (si la ventilación se inició erróneamente antes de finalizar la configuración) o cuando el respirador se apaga y vuelve a encender.

Antes de entrar en el estado en espera, el respirador mide la presión y el flujo del circuito del paciente para comprobar si hay un paciente conectado. Si detecta un paciente, el respirador continúa con los ajustes de ventilación establecidos antes de la solicitud, alerta al operador de que hay un estado en espera pendiente y solicita que se desconecte al paciente. Aparece un temporizador alertando al operador del tiempo restante que le queda para desconectar al paciente. Después de desconectar al paciente, el respirador solicita confirmación de la desconexión. Cuando el respirador entra en el estado en espera, aparece un mensaje en la GUI, se desactivan y restauran todas las alarmas activadas y las entradas de restablecimiento de alarmas correspondientes se registran en el Registro de eventos de alarma.
Se suspende la detección de alarmas y la administración de respiración, al mismo tiempo que se mantiene un flujo de base para la detección del paciente. Durante el estado en espera, el respirador muestra el tiempo que ha transcurrido desde que el paciente ha estado sin ventilación. Dado que el respirador mantiene un flujo de base para la detección del paciente, cuando se vuelve a conectar al paciente, la ventilación se restaura con los parámetros anteriores a la desconexión. No es necesario tocar el botón Salir de espera. Al volver a conectar al paciente, el respirador vuelve a su funcionamiento normal. Durante el estado en espera, los valores de datos del paciente no se muestran y el LED situado en la parte superior de la GUI conmuta entre el color amarillo y el verde. Las entradas y salidas del estado en espera se registran en el Registro general de eventos.

3.7.4 Modo Servicio

ADVERTENCIA:

Antes de entrar en el modo Servicio, asegúrese de que el paciente no está conectado al respirador. La respiración asistida no está disponible en modo Servicio.

El modo Servicio se utiliza para el autotest largo (ATG), la calibración del respirador, la configuración, las actualizaciones del software o para instalar las opciones (todos estos procedimientos los debe realizar el personal de servicio debidamente cualificado de Covidien), así como para ajustar la configuración impuesta por el centro sanitario. Toda la información guardada en los registros individuales está disponible en el modo Servicio. Los registros del modo Servicio incluyen:

- Registro de diagnósticos del sistema
- Registro del sistema Registro
- Registro de diagnósticos ATG/ATC
- Registro de configuración
- Registro de alarmas
- Registro de eventos generales
- Registro de servicio
- Registro de datos del paciente

Consulte el Manual de mantenimiento del respirador Serie 980 de Puritan Bennett™ para obtener los detalles de los registros del modo Servicio.
El paciente no debe estar conectado al respirador al entrar en el modo Servicio. Antes de que finalice la prueba POST, se deben realizar las acciones correspondientes para entrar a este modo.

Para acceder al modo Servicio

1. Retire el respirador del uso del paciente.

2. Ponga el interruptor del respirador en la posición de ENCENDIDO.

3. Presione y suelte el botón de modo Servicio (TEST) que se encuentra en la parte trasera del respirador cuando aparezca la pantalla de presentación de Covidien en la visualización de estado tras encender el respirador. Consulte *Botón de modo Servicio (TEST)*, p. 3-32. Consulte *Indicadores y descripciones de la pantalla de estado*, p. 2-31 para obtener una imagen de la pantalla de presentación. El respirador solicita confirmación de que no hay ningún paciente conectado.

4. Espere a que entre en el modo Servicio.

5. Confirme que no hay ningún paciente conectado al respirador tocando el botón correspondiente. Aparece el mensaje SOPORTE DE VENTILACIÓN EN MODO SERVICIO NO ESTÁ DISPONIBLE en la interfaz gráfica del usuario.
6. Realice la reparación requerida.

7. Apague el respirador para salir del modo Servicio.

Nota:
La pantalla de presentación de Covidien muestra el logotipo de Covidien y aparece momentáneamente como un banner en la visualización de estado.

Consulte el manual de mantenimiento del respirador Serie 980 de Puritan Bennett™ para obtener información sobre qué teclas se desactivan durante el ATG.

Además de poder realizar el ATC, en el modo Servicio también pueden configurarse varios elementos. Consulte la tabla siguiente para obtener una lista de elementos que puede configurar el centro sanitario y el operador.

3.8 Configuración del equipo

ADVERTENCIA:
Si en su centro sanitario se utilizan los valores predeterminados y/o los ajustes configurados por dicho centro sanitario para el conjunto de respiradores, puede haber un riesgo de parámetros de alarma inadecuados.

El respirador se suministra configurado con los parámetros de fábrica predeterminados de nuevo paciente. Los parámetros pueden configurarse para adecuarse a las preferencias del centro sanitario. El operador puede configurar cualquier parámetro que desee siempre que la opción no se haya bloqueado y no esté disponible. Al configurar el respirador, se muestran los parámetros correspondientes a la última configuración del operador. En la siguiente tabla se muestran los ajustes predeterminados de fábrica, los que puede configurar el centro sanitario o los que puede configurar el operador.

<table>
<thead>
<tr>
<th>Tabla 3-2. Configuración del respirador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Característica</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Titular de datos vitales paciente</td>
</tr>
<tr>
<td>Panel de datos del paciente de fuente grande</td>
</tr>
</tbody>
</table>
3.8.1 Preparación del respirador para su uso

Precaución:

No se apoye en la GUI ni la utilice para mover el respirador. De lo contrario, podría romper la GUI, su mecanismo de bloqueo o volcar el respirador.

Antes de empezar la ventilación del paciente, configure la GUI de modo que pueda mostrar los parámetros y la información deseada, además de los datos del paciente. Con esto evitará tener que desconectar al paciente del respirador, ya que la configuración de diversos elementos precisa que la unidad esté en el modo Servicio.
Para realizar la configuración del centro sanitario

1. Entre en el modo Servicio y toque Configuración para confirmar que no hay ningún paciente conectado. Consulte Modo Servicio, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque Configuración en la parte superior de la pantalla en modo Servicio. Aparecerá una lista de botones con los que podrá configurar los parámetros correspondientes.

3. Consulte las siguientes secciones para obtener las instrucciones específicas sobre la configuración de todos los parámetros según las preferencias del centro sanitario.

Para volver a la configuración predeterminada de fábrica

1. Entre en el modo Servicio y toque Confirmar para confirmar que no hay ningún paciente conectado. Consulte Modo Servicio, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque Configuración en la parte superior de la pantalla en modo Servicio. Aparecerá una lista de botones con los que podrá configurar los parámetros correspondientes.

3. Seleccione el parámetro modificado en las opciones del menú situado a la izquierda.

4. Toque Predet.

3.8.2 Configuración de la GUI

La pantalla puede configurarse de varios modos. Consulte Configuración del respirador, p. 3-33 para ver los parámetros configurados de fábrica, los que puede configurar el centro sanitario o los que puede configurar el operador. Una vez configurados los elementos de fábrica o los que puede configurar el centro sanitario, los ajustes pasan a ser los valores predeterminados. Los valores configurados de fábrica no pueden cambiarse. No obstante, si los parámetros que se figuran en la tabla indicada los configura el centro sanitario, se conservarán en la memoria como ajustes predeterminados. Si se realizan cambios en los parámetros que puede configurar el operador, estos se conservan en la memoria durante el ciclo de ventilación siempre que se configure el mismo paciente cuando se reanude la ventilación. Si se configura un nuevo paciente, se utilizarán los valores configurados de fábrica o los valores configurados por el centro sanitario (si se ha configurado el parámetro). El centro sanitario no puede configurar las alarmas, lo que evita que se produzcan cambios en la configuración de alarmas predeterminadas de fábrica. No obstante, la relación mL/kg predeterminada puede configurarse por el centro sanitario, lo que puede afectar a los valores de configuración de las alarmas. Por ello, revise siempre los valores predeterminados de la alarma antes de empezar la ventilación y ajuste según corresponda.
Formato de fecha y hora

El centro sanitario puede configurar la fecha y la hora según sus preferencias. La hora puede configurarse con el formato HH:MM:SS de 12 o 24 horas con resoluciones de una hora y un minuto, respectivamente. Los formatos de fecha son los siguientes:

- DD-MM-AAAA, donde DD es el día con formato de dos dígitos, MMM es una abreviatura de tres letras para el mes y AAAA es una representación de cuatro dígitos del año; o bien
- MM-DD-AAAA, donde MM es el mes con formato de dos dígitos, DD es el día con formato de dos dígitos y AAAA es una representación de cuatro dígitos del año

La fecha configurable corresponde al número de días que tiene el mes y tiene en cuenta los años bisiestos.

Para configurar los ajustes de fecha y hora del respirador para el centro sanitario

1. Entre en el modo Servicio y toque **Configuración** para confirmar que no hay ningún paciente conectado. Consulte **Modo Servicio**, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque **Fecha y hora**.

3. Toque el botón de 12 horas o de 24 horas correspondiente.

4. Toque **Hora** y gire el control para introducir la hora correcta.

5. Repita los pasos anteriores para introducir los minutos y am o pm.

6. Toque el botón correspondiente al formato de fecha deseado (DD-MM-AAAA o MM-DD-AAAA).

7. Toque **Aceptar** para confirmar la fecha y la hora.

8. Cuando termine de configurar los parámetros, salga del modo Servicio.

Unidades de presión

Las unidades de presión del respirador pueden configurarse en hPa o cmH₂O.

Para configurar las unidades de presión para el centro sanitario

1. Entre en el modo Servicio y toque **Configuración** para confirmar que no hay ningún paciente conectado. Consulte **Modo Servicio**, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque **Config. Resp.**
3. Toque el botón correspondiente a las unidades de presión deseadas.

Brillo de la pantalla y retroiluminación del teclado (ajustes de la luz)

Para configurar el brillo de la pantalla y la retroiluminación del teclado para el centro sanitario

1. Entre en el modo Servicio y toque Configuración para confirmar que no hay ningún paciente conectado. Consulte Modo Servicio, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque Light Settings. Aparecen los controles deslizantes para ajustar el brillo de pantalla y la retroiluminación del teclado.

3. Desplace los controles deslizantes para aumentar o disminuir los niveles de brillo y de retroiluminación. Otra opción es girar el control para aumentar o disminuir los niveles de brillo y de retroiluminación.

4. Toque Aceptar para aplicar los cambios o Cancelar para restablecer los ajustes originales.

5. Cuando termine de configurar los parámetros, salga del modo Servicio.

Para ajustar el brillo de la pantalla

1. Pulse la tecla de brillo de pantalla.

2. Desplace el control deslizante del brillo o gire el control para ajustar el nivel de brillo.

3. Para descartar el control deslizante toque en cualquier parte de la pantalla de la GUI o deje que transcurra el tiempo de espera de cinco (5) s.

Valores predeterminados de la configuración del nuevo paciente

Para configurar los valores predeterminados del nuevo paciente para el centro sanitario

1. Toque el botón de valores predeterminado correspondiente al nuevo paciente en cuestión: adulto, pediátrico o neonatal.

2. Toque los botones Tipo ventilación, Modo, Tipo mandatorio y Tipo trigger correspondientes a los parámetros deseados.

3. Configure los parámetros predeterminados de PBW, la relación mL/kg, el control Elevar O₂ y el porcentaje de O₂ tocando los botones correspondientes o girando el mando.
4. Repita los pasos anteriores para cada tipo de paciente seleccionando el botón correspondiente.

5. Cuando finalice la configuración predeterminada, toque Aceptar o Aceptar TODO.

6. Cuando termine de configurar los parámetros, salga del modo Servicio.

Elevar O₂

Nota:
El control Elevar O₂ añade un porcentaje de O₂ a la mezcla de respiración durante 2 minutos. El porcentaje adicional se muestra en el ícono del área de iconos de acceso permanente. El intervalo permitido oscila entre el 1 % y el 100 %.

Para ajustar la cantidad de O₂ elevado suministrado durante dos minutos

1. En el cuadro de diálogo Config. Resp. del modo Normal, toque el Elevar O₂ en el área de iconos de acceso permanente de la pantalla de la GUI. El ícono se ilumina y aparece un cuadro de diálogo con un temporizador, el botón de Elev. O₂ resaltado y listo para aplicar los cambios, y los botones Prolongar, Detener y Cerrar.

2. Gire el control para aumentar o disminuir la cantidad de oxígeno con la cantidad mostrada en el botón. El intervalo de oxígeno permitido oscila entre +1 % y +100 %.

3. Toque Prolongar para ampliar el intervalo de dos minutos. Al tocar Prolongar se reinicia el temporizador de dos minutos.

4. Toque Detener para detener el suministro de oxígeno adicional y descartar el temporizador.

La función Elevar O₂ se ajusta a las reglas siguientes:

- Si durante el intervalo de dos minutos se produce una ventilación de apnea, el suministro del % de O₂ de apnea también aumenta según la cantidad configurada.

- Cuando se activan las alarmas PÉRDIDA DE SUM DE AIRE o PÉRDIDA DE SUM DE O₂, la función Elevar O₂ se cancela en el caso de que esté curso y se desactiva temporalmente hasta que la condición de alarma desaparezca.

- Durante la PCV de seguridad, el control Elevar O₂ no tiene efecto. Durante la desconexión del circuito y los estados en espera (cuando el respirador está encendido pero no está suministrando ventilación), la función Elevar O₂ afecta a la concentración de oxígeno suministrado actualmente y no a la concentración de oxígeno establecida.
Volumen de alarma

ADVERTENCIA:
El nivel del volumen de audio de la alarma se puede ajustar. El operador debe configurar el volumen a un nivel adecuado que le permita diferenciar el sonido de la alarma de cualquier otro ruido de fondo.

Para configurar el volumen de la alarma para el centro sanitario
1. Entre en el modo Servicio y toque Configuración para confirmar que no hay ningún paciente conectado. Consulte Modo Servicio, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.
2. Toque Alarm Volume Defaults. Aparece una pantalla en la que puede configurar el volumen de alarma según el tipo de circuito.
3. Desplace el control deslizante de la alarma del tipo de circuito correspondiente (adulto, pediátrico o neonatal) o gire el control para configurar el volumen de alarma. Los ajustes del volumen oscilan entre 1 (mínimo) y 10 (máximo).
4. Cuando termine de configurar el volumen de la alarma, salga del modo Servicio.

Para ajustar el volumen de alarma
1. Presione la tecla de volumen de alarma para ajustarlo, a continuación, desplace el control deslizante del volumen de alarma o gire el control. Los valores de la alarma oscilan entre 1 (mínimo) y 10 (máximo).
2. Para descartar el control deslizante toque en cualquier parte de la pantalla de la GUI o deje que transcurra el tiempo de espera de cinco (5) segundos.

Nota:
Cada vez que se cambia el nivel de volumen suena un tono de alarma de muestra para su verificación. Si es necesario, vuelva a ajustar el volumen de alarma desplazando el control deslizante para aumentar o disminuir el volumen.

Nota:
Si el respirador inicia se apaga y vuelve a encender, el volumen de la alarma vuelve al volumen de alarma predeterminado configurado por el centro sanitario o al valor predeterminado de fábrica.
Datos vitales del paciente

Los datos del paciente se muestran en el banner de datos vitales de paciente. El operador puede configurar el banner para mostrar los datos del paciente deseados. Consulte Áreas de la GUI, p. 4-3. Se pueden configurar un total de 14 valores a la vez, con ocho (8) valores visibles y seis (6) que se vuelven más visibles al desplazar los valores con los botones de flecha izquierda y derecha en el área de datos del paciente.

Al tocar o deslizar hacia abajo la pestaña de datos del paciente situada en la parte superior de la GUI se pueden ver dos páginas adicionales de datos del paciente. Para ver la página uno o la página dos, seleccione el botón correspondiente. Los valores de los datos del paciente adicionales no pueden cambiarse.

Consulte Intervalo y resolución de la configuración del respirador, p. 11-8 para los valores de los datos del paciente predeterminados.

Para configurar los datos del paciente para el centro sanitario mostrados en la GUI

1. Entre en el modo Servicio y toque Configuración para confirmar que no hay ningún paciente conectado. Consulte Modo Servicio, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque Patient Data Defaults. Aparecen cinco (5) botones de diseño de valores preestablecidos junto con una lista de parámetros y descripciones.

3. Toque un botón de valores preestablecidos y seleccione individualmente un parámetro en la lista desplazable de abajo para que aparezca el banner de datos vitales del paciente con valores preestablecidos. Para configurar los valores predeterminados de todos los parámetros disponibles, utilice los botones de flecha izquierda y derecha. Además, puede tocar el icono del candado (bloqueo) situado encima de los parámetros de los datos del paciente en el banner de datos para permitir (cuando esté desbloqueado) o restringir (cuando esté bloqueado) que el operador pueda configurar el parámetro durante la ventilación normal.

4. Cuando termine de configurar los valores preestablecidos seleccionados, toque Aceptar y seleccione otro valor preestablecido para configurar, si lo desea.

5. Toque Valores predet. para restablecer la configuración de fábrica.

6. Cuando termine de configurar los parámetros, toque Salir para salir del modo Servicio.

Para configurar los datos del paciente mostrados en la GUI

1. Toque dos veces uno de los parámetros de datos del paciente situado en la parte superior de la pantalla de la GUI. Aparece un menú de botones con los parámetros de datos del paciente. El parámetro que ha tocado anteriormente se sustituirá con el nuevo parámetro elegido. Para ver más parámetros, toque los botones de flecha izquierda y derecha e irán apareciendo más parámetros.
2. Toque el botón correspondiente al parámetro de sustitución. El nuevo parámetro sustituye al existente.

3. Repita los pasos 1 y 2 para todos los parámetros que desee sustituir.

Visualización de los datos de paciente con un mayor tamaño de fuente

Para mejorar la visibilidad de los datos del paciente existe una pantalla que se muestra con una fuente más grande. Es posible mostrar hasta 14 valores de datos, entre los que se incluyen:

- Valores de datos del paciente predeterminados del centro sanitario (si están configurados)
- Valores restantes de datos del paciente seleccionados por el usuario (hasta 14, formas de onda y bucles incluidos)

Para configurar los datos del paciente para el centro sanitario con tamaño de fuente grande

1. Entre en el modo Servicio y toque *Configuración* para confirmar que no hay ningún paciente conectado. Consulte *Modo Servicio*, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque *Large Font Patient Data Defaults*. Aparecen cinco diseños de valores preestablecidos junto con una lista de parámetros y descripciones.

3. Toque un botón de valores preestablecidos y seleccione individualmente un parámetro para cada uno de los valores de datos del paciente correspondientes.

4. Seleccione las formas de onda de las curvas y de los bucles deseados para que aparezcan los datos del paciente con una fuente grande. Las miniaturas de las formas de onda solo aparecen en las tres celdas situadas más a la derecha del panel de datos de fuente grande.

5. Toque cualquiera de los iconos de candado (bloqueo) que se encuentran a lo largo del borde situado más a la derecha del diseño seleccionado para impedir que el operador configure la fila seleccionada.

6. Toque *Aceptar* o *Aceptar TODO* cuando haya terminado.

7. Si desea que los ajustes preestablecidos sean los valores predeterminados de fábrica, toque *Valores predet*.

8. Cuando termine de configurar los parámetros, toque *Salir* para salir del modo Servicio.
Para mostrar el panel de datos del paciente con tamaño de fuente grande

1. Deslice hacia abajo la pestaña del banner de datos vitales del paciente y toque la pestaña de datos vitales del paciente. Aparece el panel de datos adicionales del paciente.

2. Deslice hacia abajo la pestaña del banner de datos adicionales del paciente o toque la pestaña del banner de datos adicionales del paciente. Los datos del paciente aparecen con una fuente grande.

3. Deslice hacia arriba la pestaña del panel de datos del paciente con una fuente grande o toque la pestaña para restaurar el banner a su tamaño de fuente normal.

Los parámetros de datos del paciente con fuente grande se configuran del mismo modo que en la sección anterior de configuración de datos del paciente.

Formas de onda

Las curvas de color verde indican una inspiración mandatoria, las de color amarillo indican espiración y las naranjas indican una inspiración espontánea.

La GUI puede configurarse para que las tres curvas y los dos bucles se muestren simultáneamente en el área de gráficas. Consulte Áreas de la GUI, p. 4-3. Las curvas permitidas incluyen flujo frente a tiempo, presión frente a tiempo y volumen frente a tiempo. Entre los bucles permitidos se incluyen presión frente a volumen o flujo frente a volumen. Las gráficas muestran 60 segundos de información y pueden mostrarse en un formato de redibujo o en pausa con la posibilidad de activar un cursor para trazar la gráfica girando la perilla.

Para configurar las curvas y los bucles del centro sanitario

1. Entre en el modo Servicio y toque Configuración para confirmar que no hay ningún paciente conectado. Consulte Modo Servicio, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque Graph Defaults. Aparecen cinco (5) diseños de valores preestablecidos junto con una lista de parámetros y descripciones.

3. Toque un botón de diseño de valores preestablecidos. El contorno del botón de parámetros se ilumina, lo que indica que puede cambiarse. Si puede cambiarse más de un parámetro, toque el correspondiente parámetro para que se ilumine el contorno.

4. Seleccione el parámetro en la lista cuya curva se desea que aparezca en la pantalla de gráficas.

5. Configure cada uno de los diseños de la representación gráfica como se describe anteriormente.
6. Toque el ícono de candado (bloqueo) situado encima de cada diseño gráfico para impedir que el operador configure el diseño seleccionado.

7. Si desea que los ajustes preestablecidos sean los valores predeterminados de fábrica, toque Valores predet.

8. Cuando termine de configurar los parámetros, toque Salir para salir del modo Servicio.

Para configurar las curvas y los bucles

1. Toque Diseño de la gráfica debajo de las gráficas mostradas o de la pantalla de configuración del respirador. El ícono se ilumina y aparece el menú de diversos diseños de gráficas.

2. Toque el ícono de las gráficas que desea que se muestren. Las gráficas seleccionadas aparecen en la pantalla de la GUI y el cuadro de diálogo se cierra.

Para cambiar la escala de los ejes

1. Toque el eje de la gráfica deseado.

2. Gire el control para cambiar el valor. Para cada eje, gire el control hacia la derecha para disminuir los valores y hacia la izquierda para aumentarlos.

Para poner en pausa las formas de onda

1. Toque el ícono de pausa situado debajo del área de las gráficas. El ícono se ilumina en color amarillo y se completa la respiración. Aparece un cursor que al girar el control se desplaza por la gráfica y muestra los valores de los ejes x e y.

2. Toque el ícono de pausa otra vez para volver a activar la gráfica.

Consulte Para capturar pantallas de la GUI, p. 5-2, para obtener información sobre cómo guardar las gráficas.

Opacidad

Para configurar la opacidad de la pantalla para el centro sanitario

1. Acceda al modo Servicio y toque Configuración para confirmar que no hay ningún paciente conectado. Consulte Modo Servicio, p. 3-31 para obtener las instrucciones sobre cómo entrar en el modo Servicio.

2. Toque el ícono de Opacidad.

3. Gire el control para aumentar o disminuir la opacidad.

4. Toque el ícono de candado (bloqueo) situado en la parte derecha de la pantalla para permitir o impedir el ajuste de la opacidad de la pantalla.

5. Toque Aceptar para cerrar el cuadro de diálogo.
Para ajustar la opacidad de la pantalla

1. Toque el icono de control de opacidad. El icono se ilumina indicando que puede cambiarse la opacidad.

2. Gire el control para aumentar o disminuir la opacidad.

Nota:
El icono de opacidad se puede encontrar en la pantalla que se usa para configurar el respirador y en alguna de las pantallas de maniobras mecánicas respiratorias.

3.9 Comprobación de la instalación

Antes de utilizar el respirador con un paciente cargue totalmente las baterías. Consulte *Carga de la batería*, p. 3-4 para obtener información sobre la carga de las baterías. Consulte la p. 3-19 para ver el significado de los LED de estado de carga de las baterías y la p. 3-21 para ver la ubicación del interruptor de comprobación de batería y el estado de los LED.

Antes de conectar a un paciente al respirador por primera vez, un profesional del servicio técnico cualificado debe haber calibrado la válvula de espiración, los sensores de flujo y el transductor de presión atmosférica del respirador, además de haber realizado el ATG con resultados satisfactorios. Consulte el *Manual de mantenimiento del respirador Serie 980 de Puritan Bennett™* para obtener instrucciones.

Asimismo, el profesional sanitario también debe realizar el ATC.

3.9.1 ATC (autotest corto)

ADVERTENCIA:
Desconecte siempre al paciente del respirador antes de realizar el ATC o ATG. Si se realiza el ATC o ATG mientras el paciente está conectado, el paciente podría sufrir lesiones.

ADVERTENCIA:
Si durante la ventilación se observa que aumentan las presiones, compruebe si hay una oclusión en el circuito o realice un ATC.
ADVERTENCIA:
Al cambiar cualquier accesorio del circuito del paciente o el circuito propiamente dicho, realice un ATC para comprobar que no hay fugas y asegurarse de que en los cálculos del respirador se utilizan los valores correctos de resistencia y distensibilidad del circuito.

Nota:
Al extender los circuitos de respiración para pacientes neonatales, la distensibilidad resultante del sistema de respiración del respirador (VBS) puede activar una alarma V_T LIMITADO POR DISTENSIBILIDAD de tal forma que el software VC+ o VS no seguirá actualizando el objetivo de presión durante el suministro de respiración. En este caso, el usuario puede cambiar el tipo de respiración a control de presión (PC) o presión de soporte (PS).

Cuando un paciente no esté conectado a un respirador, ejecute un ATC para verificar lo siguiente en el circuito del paciente:
- Fugas de gas
- Cálculos de la distensibilidad y la resistencia del circuito

El ATC es un test de cinco minutos y debe ejecutarse en cualquiera de las siguientes situaciones:
- Antes de ventilar a un nuevo paciente
- Al cambiar el circuito del paciente y el filtro espiratorio
- Al conectar un circuito del paciente diferente al respirador
- Al cambiar el tipo de circuito del paciente
- Al instalar un filtro espiratorio nuevo o esterilizado
- Al cambiar el tipo de dispositivo de humidificación
- Al agregar accesorios al sistema respiratorio o quitar aquellos de este, por ejemplo un humidificador o colector de agua

No se necesita ningún equipo de prueba externo y el ATC requiere una intervención mínima por parte del operador.

Se pueden ajustar el tipo y el volumen de humidificación tras procesar una prueba del ATC; sin embargo el respirador hace suposiciones al calcular la resistencia y la distensibilidad si se realizan estos cambios sin volver a ejecutar el ATC. Para una administración de la respiración óptima, ejecute el ATC tras cambiar el tipo de humidificación y el volumen del humidificador.
Los resultados del ATC se graban en el registro de resultados del ATC, que se pueden ver en el modo Servicio y en el modo Normal mediante el ícono de configuración (llave).

Equipos necesarios

- Circuito de paciente propuesto para la ventilación del paciente
- Accesorios (colectores de agua, etc.)
- Filtro espiratorio y vial de condensado
- Humidificador, si procede

Otros elementos necesarios incluyen:
- Un tapón del número 1 para bloquear la vía respiratoria en el circuito en “Y” del paciente
- Dos fuentes de gas (aire y oxígeno) conectadas al respirador a una presión entre 35 psi y 87 psi (241,3 kPa y 599,8 kPa)

Secuencia de la prueba del ATC

Para ejecutar el ATC

1. Asegúrese de que el paciente **NO** está conectado al respirador.

2. Para que el respirador no detecte una conexión de paciente, asegúrese de que circuito respiratorio en “Y” no está conectado a un pulmón de prueba ni tapado de modo que pueda aumentar la presión en el circuito en “Y”.

3. Encienda el respirador con el interruptor situado en la parte frontal de la BDU, debajo de la pantalla de estado. Al encender el interruptor, el respirador procesa la prueba POST. Asegúrese de que el respirador está funcionando con alimentación de CA. De lo contrario, se pueden producir fallos en la prueba del ATC.

4. Espere al menos 15 minutos hasta que el respirador se caliente y se estabilice para garantizar la obtención de resultados exactos.

5. En la pantalla de inicio del respirador, toque ATC o el ícono **Configurar** (llave) que se muestra en el área inferior derecha de la GUI. Aparece el registro del historial de ATC y los botones Config. paciente, Proc. prueba fugas y Proc. todas ATC.

6. Conecte el circuito del paciente, los filtros, el vial de condensado y todos los accesorios que se van a utilizar durante la ventilación del paciente. Asegúrese de que el circuito en “Y” no está bloqueado.

8. Toque Aceptar para continuar o Cancelar para volver a la pantalla anterior.

9. Después de aceptar, toque el botón Tipo de circuito correspondiente al tipo de circuito del paciente utilizado para realizar el ATC y para ventilar al paciente (adulto, pediátrico o neonatal).

10. Toque el botón Tipo de humidificación correspondiente al tipo de humidificación utilizada en la ventilación del paciente. Si no se utiliza humidificador, toque HME. Si se utiliza humidificador, toque el botón Volumen humidificación y gire el control para introducir el volumen. Consulte la Tabla 3-4. para pacientes adultos y pediátricos o la Tabla 3-5. para pacientes neonatales para determinar el volumen correcto se va a introducir.

11. Toque Aceptar para empezar el ATC.

12. Siga las indicaciones. Las pruebas del ATC requieren la intervención del operador y se detendrán de modo indefinido hasta recibir una respuesta. Consulte Resultados individuales del ATC, p. 3-49 para un resumen de la secuencia de prueba y los resultados del ATC.

13. Después de realizar cada prueba, el respirador muestra los resultados. Si alguna de las pruebas falla, el resultado de la prueba aparece en la pantalla y se muestra la opción de repetir la prueba o pasar a la siguiente. Cuando se finalizan todas las pruebas del ATC, en la pantalla de estado del ATC aparecen los resultados de las pruebas individuales.

14. Para continuar con la configuración del paciente (siempre que el ATC no haya detectado una ALERTA o FALLO), toque Aceptar o inicie un nuevo ciclo del alimentación del respirador.

En la siguiente tabla se enumeran las pruebas que se realizan durante el ATC.

<table>
<thead>
<tr>
<th>Paso de prueba</th>
<th>Función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba Verif. cruz. sensor flujo ATC</td>
<td>Pruebas de O₂ y sensores de flujo de aire</td>
</tr>
<tr>
<td>Rendimiento de la válvula de espiración del ATC</td>
<td>Calibra la válvula de espiración y crea una tabla para utilizarla durante los cálculos.</td>
</tr>
<tr>
<td>Prueba Presión circuito ATC</td>
<td>Ejecuta la PSOL (válvula solenoide proporcional) de administración. Comprueba la puesta a cero de los solenoides inspiratorio y espiratorio. Realiza una prueba cruzada de los transductores de presión inspiratoria y espiratoria a varias presiones.</td>
</tr>
</tbody>
</table>
Prueba Fuga ATC: Comprueba si hay fugas en el sistema respiratorio del respirador.

Prueba Filtro espiración ATC: Comprueba si hay oclusión en el filtro espiratorio u oclusión en el compartimiento espiratorio.

Prueba Resistencia circuito ATC: Comprueba si hay oclusión en los ramales inspiratorio y espiratorio, además de calcular y guardar los parámetros de resistencia de dichos ramales.

Prueba Distensibilidad circuito ATC: Calcula la distensibilidad del circuito del paciente conectado.

ATC Prox (si está instalada la opción de flujo proximal): Verifica la funcionalidad del subsistema de flujo proximal.

Tabla 3-4. Volúmenes del humidificador para pacientes adultos y pediátricos

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>Modelo</th>
<th>Descripción</th>
<th>Ajuste de volumen del humidificador del ATC (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher & Paykel</td>
<td>MR225</td>
<td>Pediátrico, desechable, alimentación manual</td>
<td>300</td>
</tr>
<tr>
<td>Fisher & Paykel</td>
<td>MR290</td>
<td>Pediátrico/adulto, desechable, alimentación automática</td>
<td>380</td>
</tr>
<tr>
<td>Fisher & Paykel</td>
<td>MR250</td>
<td>Adulto, desechable, alimentación manual</td>
<td>480</td>
</tr>
<tr>
<td>Fisher & Paykel</td>
<td>MR210</td>
<td>Adulto, desechable, alimentación manual</td>
<td>480</td>
</tr>
<tr>
<td>Fisher & Paykel</td>
<td>MR370</td>
<td>Adulto, reutilizable, alimentación manual</td>
<td>725</td>
</tr>
<tr>
<td>Teleflex (Concha)</td>
<td>382-10</td>
<td>ConchaSmart</td>
<td>300</td>
</tr>
<tr>
<td>AirLife</td>
<td>AH290</td>
<td>Desechable, alimentación automática</td>
<td>380</td>
</tr>
</tbody>
</table>

Tabla 3-5. Volúmenes de humidificador para pacientes neonatos

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>Modelo</th>
<th>Descripción</th>
<th>Ajuste de volumen del humidificador del ATC (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher & Paykel</td>
<td>MR290</td>
<td>Neonato/adulto, desechable, alimentación automática</td>
<td>550(^1)</td>
</tr>
</tbody>
</table>
Tabla 3-5. Volumenes de humidificador para pacientes neonatos (continuación)

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>Modelo</th>
<th>Descripción</th>
<th>Ajuste de volumen del humidificador del ATC (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teleflex (Concha)</td>
<td>382-10</td>
<td>ConchaSmart</td>
<td>390</td>
</tr>
<tr>
<td>AirLife</td>
<td>AH290</td>
<td>Desechable, alimentación automática</td>
<td>520</td>
</tr>
</tbody>
</table>

1. Si se utilizan los siguientes circuitos para pacientes neonatales con un humidificador MR850 de Fisher & Paykel, introduzca 500 mL como el volumen del humidificador.
 - Circuito del paciente neonatal DAR con un solo cable calentado (DAR 30759910); para uso en incubadoras
 - Circuito del paciente neonatal DAR con un solo cable calentado (DAR 307/8682); no para uso en incubadoras

Nota:
Para tipos de paciente neonatal, introduzca el volumen del humidificador del ATC indicado en la Tabla 3-5. durante el ATC o al especificar el volumen del humidificador.

Resultados del ATC

El ATC notifica los resultados de cada una de las pruebas individuales. Tres indicadores de estado identifican los resultados del ATC y las acciones que se deben tomar.

- **Superado** — La prueba individual del ATC cumple los requisitos.
- **Alerta** — Cuando el respirador detecta uno o más fallos no críticos, aparece una alerta.
- **Fallo** — La prueba individual del ATC no cumple los requisitos.

Tabla 3-6. Resultados individuales del ATC

<table>
<thead>
<tr>
<th>Estado de prueba</th>
<th>Significado</th>
<th>Respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERADO</td>
<td>Prueba individual del ATC superada.</td>
<td>No hay que realizar ninguna acción, a menos que lo solicite el respirador.</td>
</tr>
</tbody>
</table>
| ALERTA | El resultado no es perfecto, pero no es crítico. Si el ATC está en curso, no se realizan más pruebas y se solicita que se tome una decisión. | Cuando el sistema lo solicite, toque uno de estos botones:
 - Repetir prueba
 - Sig. prueba
 - Salir de ATC |
| FALLO | El respirador ha detectado un problema crítico y no se puede completar el ATC hasta que el respirador supere la prueba fallada. | Elimine las fugas del sistema respiratorio del respirador y vuelva a realizar el ATC. Si no se resuelve el problema, repare el respirador y vuelva a realizar el ATC. |
Resultados del ATC

ADVERTENCIA:
Si se ignora una alerta en el ATC, el rendimiento del respirador puede estar fuera de las especificaciones establecidas de precisión. Ignore el estado de ALERTA y autorice la ventilación solamente cuando esté totalmente seguro de que esto no supone un peligro para el paciente ni añade riesgos debidos a otros peligros.

Cuando el ATC complete todas las pruebas, analice los resultados.

Tabla 3-7. Resultados generales del ATC

<table>
<thead>
<tr>
<th>Resultado final</th>
<th>Significado</th>
<th>Respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERADO</td>
<td>Se han superado todas las pruebas del ATC.</td>
<td>Toque Config. paciente para preparar el paciente para la ventilación</td>
</tr>
<tr>
<td>ALERTA</td>
<td>El respirador ha detectado uno o más fallos. Ignore el estado de ALERTA y autorice la ventilación solamente cuando esté totalmente seguro de que esto no supone un peligro para el paciente ni añade riesgos debidos a otros peligros.</td>
<td>Para ignorar la alerta, toque Ignorar ATC y, a continuación, toque Aceptar. Para salir del ATC, toque Salir de ATC.</td>
</tr>
<tr>
<td>FALLO</td>
<td>Se han detectado uno o más fallos críticos. El respirador pasa al estado de SVO y no puede utilizarse para la ventilación normal hasta que supere el ATC.</td>
<td>Compruebe el circuíto del paciente para determinar el problema o inicie de nuevo el ATC con un circuito de paciente diferente. Toque Repetir prueba, Proc. todas ATC o Salir de ATC y, a continuación, toque Aceptar.</td>
</tr>
</tbody>
</table>

Si toca *Ignorar ATC*, tenga en cuenta la siguiente advertencia:

Se puede realizar una prueba aislada de fuga del circuito, pero todas las pruebas del ATC se han de superar satisfactoriamente antes de utilizar el respirador para uso clínico.

Si se interrumpe un ATC completo y se ha permitido la ventilación antes de comenzar el ATC, la ventilación normal se permite si el

- ATC no ha detectado ningún fallo o alertas antes de la interrupción, y
- no se han producido otros errores que impidan la ventilación, y
- no se han realizado cambios en el tipo de circuito al inicio del ATC interrumpido.
Durante el ATC, el respirador muestra el estado actual del ATC, incluidos la prueba en curso y los resultados de las pruebas finalizadas. Los datos de las pruebas están disponibles en el modo Servicio, si procede o se muestran en la pantalla. Los registros de los resultados del ATC del respirador y su información relativa todavía siguen disponibles después de un fallo de alimentación. Las teclas de sonido en pausa y restablecimiento de alarma están deshabilitadas durante el ATC, así como las teclas Inspiración manual, Pausa inspiratoria y Pausa espiratoria.

3.9.2 ATG (Autotest largo)

La función del autotest largo (ATG) del respirador está diseñada para verificar la integridad del subsistema operativo del respirador.

Todo el software necesario para realizar el ATG se encuentra en el respirador. El ATG tarda aproximadamente 10 minutos en realizarse.

Nota:
El ATC no es parte del conjunto de pruebas del ATG. Para determinar la distensibilidad y la resistencia del circuito del paciente, ejecute un ATC.

Prerrequisitos de autotest del ATG

Al realizar el ATG, siga todas las directrices especificadas. Inspeccione todo el equipo necesario para realizar el autotest para asegurarse de que no está dañado.

1. Antes de realizar el autotest del respirador asegúrese de que tiene todo el equipo necesario. El autotest no puede realizarse correctamente si no se utiliza todo el equipo señalado.

2. Desconecte el respirador del paciente.

3. Cargue totalmente la batería principal del respirador.

4. Conecte el respirador a una fuente de alimentación de CA con un cable de alimentación de tipo hospitalario hasta que se finalice el autotest.

5. Asegúrese de que se apaga el respirador.

6. Asegúrese de que las fuentes de aire y oxígeno registran presiones entre 35 y 87 psi (de 241 a 599 kPa).

Para realizar el autotest largo (ATG) o para acceder a funciones de servicio adicionales, el respirador debe estar en modo Servicio. Consulte *Modo Servicio*, p. 3-31.
Nota:
La ventilación normal no está permitida en el modo Servicio.

ADVERTENCIA:
Desconecte siempre el paciente del respirador antes de ejecutar el ATG. Si ejecuta el ATG mientras el respirador está conectado al paciente, este puede sufrir alguna lesión.

ADVERTENCIA:
Un fallo identificado durante esta prueba indica que hay un fallo en el respirador o en un componente asociado. Rectifique el fallo y realice las reparaciones necesarias antes de utilizar el respirador con el paciente, a menos que pueda determinarse claramente que el defecto no supone un peligro para el paciente ni aumenta los riesgos que pudieran derivarse de otros peligros.

Realice un ATG en las siguientes situaciones:
• Antes de la instalación inicial y la primera vez que se utiliza el respirador.
• Cada seis meses
• Antes de realizar cualquier mantenimiento preventivo
• Tras la reparación o el mantenimiento del respirador
• Como parte de la verificación habitual de rendimiento del respirador

Durante el ATG, el respirador muestra el estado actual del ATG, lo que incluye la prueba en curso, los resultados de las pruebas finalizadas y los datos medidos (donde corresponda). Los registros de los resultados del ATG del respirador y su información relativa todavía siguen disponibles después de un fallo de alimentación. Durante el ATG, el respirador deshabilita varias teclas fuera de la pantalla situadas en el marco de la GUI.
• Sonido en pausa
• Restablecimiento de la alarma
• Inspiración manual
• Pausa inspiratoria
• Pausa espiratoria

Con el fin de solucionar un problema, procése pruebas en grupo o de forma individual.
Equipo para ATG

1. Circuito de prueba estándar de primera calidad de Covidien
2. Tapón del número uno
3. Fuentes de oxígeno y aire, ambas de 35 a 87 psi (de 241 a 599 kPa).
4. Filtro espiratorio con tamaño para adultos

Nota:
Si se intenta realizar un ATG con un filtro para neonatos puede provocar el fallo de algunas de las pruebas del ATG.

Nota:
Dadas las restricciones de las mangueras flexibles de aire/oxígeno de Air Liquide™, Dräger™ y SIS, su uso puede provocar que determinadas pruebas del ATG puedan fallar si se utilizan presiones de suministro inferiores a 345 kPa (50 psi).

3.9.3 Secuencia de la prueba del ATG

Nota:
Si el respirador está recién encendido y todavía no ha alcanzado la temperatura normal de funcionamiento, deje que se caliente durante al menos 15 minutos en modo Servicio antes de procesar el ATG para garantizar de este modo una prueba precisa.

Para realizar el ATG

1. Revise y realice todos los requisitos previos del autotest. Consulte *Prerrequisitos de autotest del ATG*, p. 3-51.
2. Obtenga todo el equipo necesario. Consulte *Equipo para ATG*, p. 3-53.
4. Verifique que las tres pruebas de CALIBRACIÓN en la pestaña CALIBRACIÓN se han superado.
5. Toque la pestaña AUTOTEST en el banner horizontal situado en la parte superior de la pantalla de monitorización.
6. Toque la pestaña ATG en las opciones del menú situado a la izquierda.
7. Toque Proc. TODO para procesar todas las pruebas en secuencia o seleccione la prueba individual deseada.

8. Seleccione una de las opciones disponibles: toque Aceptar para continuar, Cancelar para regresar a la pantalla anterior o Detener para cancelar el ATG.

9. Siga las indicaciones para quitar el filtro inspiratorio y conectar el circuito estándar de primera calidad.

10. Toque Aceptar.

11. Siga las indicaciones hasta completar el ATG. Las pruebas del ATG requieren la intervención del operador y se detendrán de modo indefinido hasta recibir una respuesta. Consulte Secuencia de la prueba del ATG, p. 3-53.

12. Cuando aparezca el mensaje DESCONECTAR O₂, desconecte la fuente de oxígeno de presión alta.

13. Cuando aparezca el mensaje CONECTAR AIRE Y O₂, conecte las fuentes de oxígeno y aire de presión alta.

15. Si falla una prueba, repítala o pase a la siguiente prueba.

16. Cuando finalicen todas las pruebas del ATG, revise los resultados pulsando en cada una de las pruebas individuales enumeradas en la parte izquierda de la GUI.

17. Toque Salir de ATG.

18. Toque Aceptar. El respirador vuelve a ejecutar la prueba POST y seguidamente aparece la pantalla de inicio del respirador.

Tabla 3-8. Secuencia de la prueba del ATG

<table>
<thead>
<tr>
<th>Paso de la prueba del ATG</th>
<th>Función</th>
<th>Interacción del usuario necesaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compens. cero</td>
<td>Prueba los transductores de la presión inspiratoria y espiratoria, y los sensores de flujo a presión ambiente.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td>Prueba fugas</td>
<td>Determina la capacidad del sistema para mantener la presión.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td>Fuga combi.</td>
<td>Verifica la integridad del sistema de combinación</td>
<td>Siga las indicaciones</td>
</tr>
</tbody>
</table>
Tabla 3-8. Secuencia de la prueba del ATG (continuación)

<table>
<thead>
<tr>
<th>Paso de la prueba del ATG</th>
<th>Función</th>
<th>Interacción del usuario necesaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSOL combi.</td>
<td>Verifica la función PSOL de combinación.</td>
<td>Ninguno</td>
</tr>
<tr>
<td>Acumulador combi.</td>
<td>Verifica el sensor de presión del acumulador de combinación y la función de cambio por exceso de presión.</td>
<td>Ninguno</td>
</tr>
</tbody>
</table>
| Presión circuito | - Comprueba la puesta a cero de los solenoides inspiratorio y espiratorio.
 | - Realiza una prueba cruzada de la válvula de seguridad, los transductores de presión inspiratoria y espiratoria a varias presiones.
 | - Verifique la función de puesta a cero de los solenoides | Ninguno | |
| Prueba de verificación cruzada del sensor de flujo | Verifica todos los sensores de flujo y PSOL a los volúmenes de flujo especificados. | Ninguno |
| PSOL admin. | Verifica la función de PSOL de administración. | Ninguno |
| Bucle invertido de la válvula espiratoria (EV) | Verifica que el bucle invertido de la válvula espiratoria se encuentra dentro del intervalo. | Ninguno |
| Precisión de la presión de la válvula espiratoria (EV) | Verifica que los valores de la presión actuales y los de la unidad flash corresponden con la válvula real de espiración instalada. | Ninguno |
| Rendimiento de la válvula espiratoria (EV) | Verifica que la válvula de espiración funciona dentro de las especificaciones establecidas en la última calibración de la válvula de espiración. | Ninguno |
| Velocidad del transductor de la válvula espiratoria (EV) | Verifica la velocidad con la que el transductor envía la señal y si el circuito de control la reconoce. No verifica la calidad de la señal. | Ninguno |
| Sistema seguridad | Prueba el funcionamiento de la válvula de seguridad. | Ninguno |
| Ventilación de reserva | Verifica los sistemas de ventilación de reserva: combinación, inspiratorio y espiratorio. | Ninguno |
| Comunicación | Verifica la función de los puertos de comunicación de la GUI, tanto serie como Ethernet. | Ninguno |
| Almacenamiento interno | Verifica la función del dispositivo de almacenamiento interno. | Ninguno |
| Retroiluminación LCD | Verifica la función de intensidad de la retroiluminación LCD de la GUI. | Ninguno |
Tabla 3-8. Secuencia de la prueba del ATG (continuación)

<table>
<thead>
<tr>
<th>Paso de la prueba del ATG</th>
<th>Función</th>
<th>Interacción del usuario necesario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pantalla de estado</td>
<td>Verifica la función de la pantalla de estado</td>
<td>Ninguno</td>
</tr>
<tr>
<td></td>
<td>• Verifica la función del LCD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Se comunica con la CPU del BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Se comunica con el compresor, si está instalado</td>
<td></td>
</tr>
<tr>
<td>Alarmas de la GUI</td>
<td>Prueba los indicadores de las alarmas de la GUI, pasando por cada una de las indicaciones de estado de las alarmas.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td>Alarmas de la BD</td>
<td>Verifica que la alarma audible de la BD funciona. Además, verifica que el fallo del condensador activa la alarma de pérdida de alimentación.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td>Prueba control giratorio</td>
<td>Verifica la función de giro del control.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td>Prueba teclas fuera pant.</td>
<td>Verifica la función de la tecla del marco de la GUI.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td>Batería del respirador</td>
<td>Prueba la batería del respirador y la distribución de la alimentación.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td></td>
<td>Ejecutar solo si el compresor está instalado</td>
<td></td>
</tr>
<tr>
<td>Batería compresor</td>
<td>Prueba la función de la batería del compresor, además del sistema de alimentación del compresor y la función del respirador.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td>Compresor</td>
<td>Prueba el funcionamiento completo del compresor: transductor de presión, respirador, motor y válvula de descarga de presión.</td>
<td>Siga las indicaciones</td>
</tr>
<tr>
<td>Fuga compresor</td>
<td>Comprueba si hay fugas en el sistema del compresor.</td>
<td>Ninguno</td>
</tr>
<tr>
<td>Rendimiento compresor</td>
<td>Prueba el rendimiento operativo del compresor con carga.</td>
<td>Ninguno</td>
</tr>
</tbody>
</table>
3.9.4 Resultados de prueba del ATG

Tabla 3-9. Resultados individuales del ATG

<table>
<thead>
<tr>
<th>Estado de prueba</th>
<th>Significado</th>
<th>Respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERADO</td>
<td>Prueba individual del ATG superada.</td>
<td>No hay que realizar ninguna acción, a menos que lo solicite el respirador.</td>
</tr>
<tr>
<td>ALERTA</td>
<td>El resultado no es perfecto, pero no es</td>
<td>Cuando el sistema lo solicite, seleccione: REPEAT PRUEBA,</td>
</tr>
<tr>
<td></td>
<td>crítico. Si el ATG está en curso,</td>
<td>SIG. PRUEBA o DETENER y,</td>
</tr>
<tr>
<td></td>
<td>no se realizan pruebas y se solicita</td>
<td>a continuación, toque ACEPTAR.</td>
</tr>
<tr>
<td></td>
<td>que se tome una decisión.</td>
<td></td>
</tr>
<tr>
<td>FALLO</td>
<td>ATG no superado satisfactoriamente.</td>
<td>Seleccione: REPEAT PRUEBA, SIG. PRUEBA o DETENER y, a continuación, toque ACEPTAR.</td>
</tr>
<tr>
<td>NO PROC. NUNCA</td>
<td>Todavía es necesario SUPERAR la prueba.</td>
<td></td>
</tr>
</tbody>
</table>

Cuando el ATG complete todas las pruebas, analice los resultados.

Tabla 3-10. Resultados generales del ATG

<table>
<thead>
<tr>
<th>Resultado final</th>
<th>Significado</th>
<th>Respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERADO</td>
<td>Se han superado todas las pruebas del ATG.</td>
<td>El ATG se ha realizado satisfactoriamente. Seleccione otras funciones del MODO SERVICIO o prepárese para las pruebas del ATC antes de volver a utilizar el respirador con el paciente.</td>
</tr>
<tr>
<td>ALERTA</td>
<td>El respirador ha detectado uno o más fallos. El resultado no es perfecto,</td>
<td>Cuando el sistema lo solicite, seleccione: REPEAT PRUEBA, SIG. PRUEBA o DETENER y, a continuación, toque ACEPTAR.</td>
</tr>
<tr>
<td></td>
<td>pero no es crítico.</td>
<td></td>
</tr>
<tr>
<td>FALLO</td>
<td>Se han detectado uno o más fallos críticos. El respirador pasa al estado de</td>
<td>Cuando el sistema lo solicite, seleccione: REPEAT PRUEBA, SIG. PRUEBA o DETENER y, y, a continuación, toque ACEPTAR.</td>
</tr>
<tr>
<td></td>
<td>SVO y no puede utilizarse para la ventilación normal hasta que supere el ATC. Se requiere asistencia técnica.</td>
<td></td>
</tr>
<tr>
<td>IGNORADO</td>
<td>Estado de ALERTA ignorada por el usuario.</td>
<td>Seleccione la siguiente prueba que desea realizar.</td>
</tr>
</tbody>
</table>
Si toca *Ignorar ATG*, tenga en cuenta la siguiente advertencia:

⚠️ **ADVERTENCIA:**
Ignore el estado de ALERTA y autorice la ventilación solamente cuando esté totalmente seguro de que esto no supone un peligro para el paciente ni añade riesgos debidos a otros peligros.

3.10 Verificación del funcionamiento

Antes de empezar a ventilar al paciente, **debe realizar el ATC y las pruebas de alarmas con resultados satisfactorios**. Consulte *Para ejecutar el ATC*, p. 3-46. Consulte *Prueba de las alarmas*, p. 6-10 también.
4 Funcionamiento

4.1 Descripción general

En este capítulo se describe el funcionamiento del respirador serie 980 de Puritan Bennett™ y se incluyen las siguientes secciones:

- Configuración del respirador
- Cómo utilizar el respirador
- Cómo utilizar la interfaz gráfica del usuario (GUI) del respirador
- Cómo establecer o cambiar los parámetros principales, de alarma o apnea
- Cómo comprobar las alarmas
- Cómo calibrar, habilitar o deshabilitar el sensor de O2
- Cómo realizar maniobras de pausa inspiratoria y espiratoria
- Cómo utilizar la ventilación no invasiva (NIV)

4.2 Función del respirador

El aire y el oxígeno procedentes de fuentes cilíndricas o murales, o del compresor opcional entran en el respirador y fluyen a través de los sensores de flujo de aire y oxígeno individuales. Estos gases se mezclan en el acumulador del módulo de combinación. Una válvula de descarga de presión situada en dicho módulo evita la sobrepresurización. El módulo de combinación cuenta además con un sensor de oxígeno que supervisa la mezcla de aire y oxígeno en función del ajuste de porcentaje de O2 que haya establecido el operador.

Una vez se mezcla el gas, fluye al sistema neumático inspiratorio, donde el sensor de flujo inspiratorio mide el flujo de gas y controla la válvula PSOL para comprobar si las presiones y los volúmenes corrientes en la administración de respiración son correctos. El sistema neumático inspiratorio dispone de una válvula de seguridad para evitar situaciones de sobrepresurización antes de fluir a través de los filtros antibacterianos al paciente por el ramal inspiratorio del circuito del paciente. Tras la espiración, el gas fluye hacia fuera del ramal espiratorio del circuito del paciente, a través del filtro antibacteriano espiratorio y de la válvula espiratoria (que incluye el sensor de flujo de espiración) y, por último, a través del puerto espiratorio.
4.3 Configuración del respirador

ADVERTENCIA: Para evitar la interrupción del funcionamiento del respirador o daños en el mismo, utilice siempre el respirador sobre una superficie plana con la orientación adecuada.

Para configurar el respirador

1. Conecte el respirador a los suministros eléctricos y de gas. Consulte Retenedor del cable de alimentación en la BDU, p. 3-7 y Conexión del respirador a los suministros de gas, p. 3-9.

2. Conecte el circuito del paciente al respirador. Consulte las figuras de p. 3-16 y p. 3-17, para conectar los circuitos del paciente adulto/pediátrico o neonatal, respectivamente.

3. Ponga el interruptor del respirador en la posición de ENCENDIDO. Consulte Interruptor de alimentación del respirador e indicador de CA, p. 2-27.

4. Antes de empezar a ventilar al paciente, realice un SST para calcular la compliancia y la resistencia de todos los elementos incluidos en el circuito del paciente. Consulte Para ejecutar el ATC, p. 3-46.

4.4 Manejo de la interfaz de usuario

La interfaz del usuario está compuesta de una GUI y una pantalla de estado. La GUI le permite acceder a los controles del respirador y a los datos del paciente. La pantalla de estado es un panel LCD de pequeño tamaño que funciona como un sistema de respaldo de la GUI, en el caso de que se produzca un fallo en esta. Consulte Pantalla de estado, p. 2-29, para obtener más información acerca de la pantalla de estado.

La pantalla de estado no es interactiva.

Durante el funcionamiento normal del respirador, en la pantalla de estado se muestra la siguiente información:

- Estado actual de la alimentación (CA o CC)
- Baterías instaladas y su estado de carga (BDU y compresor, si está disponible)
- Indicación visual del volumen de alarma audible
- Gráfico de presión del circuito donde se muestran los parámetros P_{PEAK}, PEEP y los de alarma relacionados con la presión
4.4.1 Uso de la GUI

La GUI se utiliza para interactuar con el respirador al mismo tiempo que está ventilando a un paciente o en cualquiera de sus modos de funcionamiento.

Precaución:
No se apoye en la GUI ni la utilice para mover el respirador. De lo contrario, podría romperse la GUI, su mecanismo de bloqueo o volcar el respirador.

La GUI se divide en varias áreas.

Figura 4-1. Áreas de la GUI

1. **Área de avisos** — Se encuentra situada debajo de las formas de onda. Todos los avisos o mensajes relacionados con los límites flexibles y rígidos se muestran aquí. Un **limite flexible** es un valor seleccionado que supera su límite recomendado y requiere aceptación para poder continuar. Los **límites rígidos** tienen unos límites mínimo y máximo que si se superan no pueden seleccionarse, no obstante, si el valor deseado es igual al parámetro del límite superior, sí que puede seleccionarse.

2. **Pestaña Menú** — Se encuentra situada en la parte izquierda de la pantalla de la GUI. Si desliza la pestaña hacia la derecha y toca Config, aparecen las pestañas Vent, Apnea y Alarma. Si toca estas pestañas se abren las pantallas donde pueden hacerse cambios en la configuración del respirador, en la configuración de apnea y en la configuración de las alarmas.
3. **Área de formas de onda** — Se encuentra situada en la parte central de la pantalla de la GUI y muestra las diversas formas de onda de la respiración. Consulte *Para configurar las curvas y los bucles*, p. 3-43, para obtener más información sobre cómo configurar las gráficas.

4. **Indicador de fase de respiración** — Durante la ventilación normal, en la esquina superior izquierda de la GUI aparece un indicador de respiración que muestra el tipo de respiración [Asist. (A), Control (C) o Espontánea (S)] que se está administrando al paciente y si se encuentra en la fase inspiratoria o espiratoria. Al principio de cada inspiración se actualiza el indicador de respiración y perdura hasta la siguiente actualización del tipo de respiración. Durante la inspiración, los indicadores de respiración asistida (A) y de control (C) se iluminan en color verde y los de respiración espontánea (S) en color naranja. Todos ellos aparecen en vídeo inverso donde el indicador aparece en color negro rodeado del color correspondiente. Consulte *Áreas de la GUI*, p. 4-3 Durante la fase espiratoria los indicadores de respiración aparecen en colores sólidos (verde durante las respiraciones asistida y de control y naranja durante las respiraciones espontáneas).

5. **Banner de datos vitales de paciente** — Se encuentra situado en la parte superior de la pantalla de la GUI. En el banner de datos de paciente se muestran los datos del paciente monitorizado y puede configurarse para ver los datos del paciente que se deseen. Consulte *Datos vitales del paciente*, p. 3-40 para obtener más información sobre la configuración de visualización de los datos del paciente.

6. **Banners de alarma** — Se encuentran situados en la parte derecha de la pantalla de la GUI. Estos banners indican al operador qué alarmas están activas en el color correspondiente a la prioridad (la prioridad alta aparece en rojo parpadeante, la media en amarillo parpadeante y la baja en amarillo fijo).

7. **Iconos de acceso permanente** — Se encuentran situados en la parte inferior derecha de la pantalla de la GUI. En este área se accede a los siguientes íconos: inicio (casa), configurar (llave inglesa), registros (portapapeles), elevar porcentaje de oxígeno (O₂) y ayuda (signo de interrogación). Estos íconos siempre están visibles independientemente de la función seleccionada en el GUI.

8. **Área de acceso permanente** — Se compone del área de parámetros actuales y de los íconos de acceso permanente. En este área se accede a las variables de configuración de paciente mostradas en estas áreas. Si se toca uno de los íconos aparece el menú correspondiente a la variable.

9. **Área de parámetros actuales** — Se encuentra situada en la parte central inferior de la pantalla de la GUI. Los parámetros activos actuales del respirador se muestran aquí. Si se toca uno de los botones de los parámetros actuales, aparece un diálogo donde pueden realizarse cambios con el control giratorio.

10. **Botón Config. Resp.** — Se encuentra situado en la parte inferior izquierda de la pantalla de la GUI. Si se toca este botón se accede a la pantalla de configuración del respirador.

Consulte *Pantalla de estado*, p. 2-29, para obtener información sobre los elementos mostrados durante el modo servicio.
4.4.2 **Ajuste de las propiedades de visualización de la GUI**

Opacidad de la pantalla

Con el control de opacidad, el operador puede ajustar la opacidad de la información mostrada entre un 50 % y un 100 %. A una opacidad del 50 %, la imagen aparece semitransparente y al 100 % la imagen es opaca. Si se empieza un nuevo ciclo, el valor de opacidad permanece según se ha establecido. Consulte *Para ajustar la opacidad de la pantalla*, p. 3-44 para ver las instrucciones sobre el ajuste de esta función.

Función de marcador

La función de marcador se utiliza para evitar que se cierre un cuadro de diálogo en determinadas situaciones. Al igual que el control de opacidad, el marcador aparece en la pantalla de parámetros después de iniciar la ventilación de un nuevo paciente.

Figura 4-2. Icono del marcador

1. **Icono del marcador – estado no marcado**
2. **Icono del marcador – estado marcado**

Para utilizar el marcador

1. Cuando se abre un diálogo, y por ejemplo, los botones Aceptar o Aceptar TODO están disponibles, toque el icono de marcador no marcado para marcar el diálogo y mantenerlo abierto.

2. Toque **Cerrar** para cerrar el diálogo.

Brillo de pantalla

La función brillo de pantalla se puede controlar manualmente y puede configurarse según las preferencias del centro. Consulte *Brillo de la pantalla y retroiluminación del teclado (ajustes de la luz)*, p. 3-37. El intervalo de brillo oscila entre el 25 % y 100 % con una resolución del 1 %. El valor predeterminado es 80 %.

Para ajustar manualmente el brillo de la pantalla

1. Pulse la tecla de brillo de pantalla.

2. Deslice el control deslizante del brillo hacia la derecha para aumentar el nivel de brillo y hacia la izquierda para disminuirlo. Otra opción es girar el control para aumentar o disminuir el nivel de brillo. El control desaparece de la pantalla transcurridos aproximadamente cinco (5) segundos.
Bloqueo de la pantalla

En la pantalla principal hay una tecla de bloqueo de pantalla para evitar que se produzcan cambios involuntarios en los parámetros establecidos. Si está activo, el bloqueo de pantalla deshabilita la pantalla táctil, el control giratorio y las teclas fuera de la pantalla, y se ilumina un LED en el bisel de la pantalla. Si el operador intenta utilizar la GUI, una imagen del icono de bloqueo de pantalla aparece de modo transparente sobre la GUI. Si se produce una situación de alarma, se deshabilita el bloqueo de pantalla y se habilita el uso normal de la GUI.

Para bloquear y desbloquear la pantalla

1. Pulse la tecla de bloqueo de pantalla situada en la GUI. El LED del teclado se ilumina y aparece un icono transparente en la pantalla, lo que indica que la pantalla está bloqueada. El icono desaparece al poco tiempo, pero si el operador intenta cualquiera de los controles de la pantalla táctil, vuelve a aparecer.

2. Para desbloquear la pantalla, vuelva a pulsar la tecla de bloqueo de pantalla. El LED del bloqueo de pantalla se apaga.

4.4.3 Uso de acciones al manejar la GUI

La GUI incorpora una interfaz basada en acciones cuyas funciones pueden ejecutarse con los dedos mediante diferentes movimientos. En la siguiente tabla se explican las acciones que se utilizan en la GUI.

<table>
<thead>
<tr>
<th>Acción</th>
<th>Descripción</th>
<th>Sirve para</th>
<th>Cómo se utiliza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deslizamiento</td>
<td>Deslice el dedo rápidamente sobre la superficie de la pantalla.</td>
<td>Abrir o cerrar diálogos y paneles que se contraen y amplían desde los laterales o la parte superior de la pantalla, mover datos de formas de onda, ampliar o contraer información sobre herramientas, desplazar listas o banners de alarmas y maximizar o minimizar formas de onda.</td>
<td>Para abrir diálogos o paneles, deslice el dedo hacia la parte central de la pantalla. Para cerrarlos, deslice el dedo hacia el lateral de la pantalla (o hacia arriba si desea ver datos del paciente adicionales o paneles de datos del paciente con una fuente de tamaño grande). Para mover una forma de onda en pausa, deslice el dedo en la dirección deseada. Para maximizar una forma de onda deslice el dedo hacia arriba sobre cualquier parte de la onda y para minimizarla, deslice el dedo hacia abajo sobre la forma de onda maximizada. Para ampliar la descripción larga de información sobre herramientas, deslice el dedo hacia arriba sobre la descripción de herramienta y hacia abajo para contraerla a la descripción corta. Al deslizar el dedo hacia abajo en cualquier parte del área de datos del paciente se abre el panel de datos del paciente adicionales, y si vuelve a deslizarlo sobre la pestaña de datos del paciente adicionales se muestra el panel de datos del paciente con una fuente de tamaño grande.</td>
</tr>
</tbody>
</table>
Doble toque

Toque dos veces rápidamente con el dedo la superficie de la pantalla.

Maximizar o minimizar el área visible de un diálogo, control o forma de onda y ampliar o contraer información sobre herramientas.

Al hacer doble toque se maximiza el área visible de la forma de onda o se muestra la descripción larga de información sobre herramientas. Al hacer doble toque de nuevo se minimiza el área visible de la forma de onda o se muestra la descripción corta de información sobre herramientas. Si el control es configurable, al hacer doble toque aparece el menú emergente de configuración.

Arrastrar

Desplace el dedo sobre la superficie de la pantalla sin levantarlo.

Cambiar las escalas del eje x y del eje y, reordenar gráficas de formas de onda, mover el cursor de la forma de onda, mover barras de desplazamiento y desplazar listas. La velocidad del desplazamiento varía en función de la posición del dedo respecto a la distancia del límite de la lista.

Para aumentar la escala del eje x de la forma de onda, toque el eje y arrastrelo hacia la derecha y para disminuirla arrástrelo hacia la izquierda. Para aumentar la escala del eje y, toque el eje y arrástrelo hacia la arriba y para disminuirla arrástrelo hacia abajo. Para reordenar las formas de onda, toque y arrastre la gráfica a la nueva posición. Para mover el cursor de la forma de onda, toque el cursor y arrástrelo hacia la derecha o a la izquierda. El gráfico actúa de forma similar. Desplace una lista arrastrando la barra de desplazamiento a la derecha o izquierda, hacia arriba o hacia abajo. La lista se desplaza según la dirección del movimiento del dedo. Si se arrasta el dedo desde el interior de la lista hasta fuera de su límite, se inicia la función de desplazamiento automático. Cuanto más hacia fuera del límite se arrastre el dedo, más rápido se desplaza la lista.

Tocar y mantener

Toque un elemento y manténgalo presionado al menos 0,5 segundos.

Visualizar un diálogo de información sobre herramientas del elemento tocado. La información sobre herramientas se ilumina, lo que indica que la acción de tocar y mantener está activa.

N/D

Arrastrar y soltar

Toque y arrastre un elemento a otra ubicación y levante el dedo para soltarlo.

Arrastrar el icono de ayuda para describir un elemento sobre la pantalla.

Arrastre el icono de ayuda, situado en la parte inferior derecha de la pantalla de la GUI, hasta el elemento correspondiente y suelte. Si se ilumina en azul, indica que hay información sobre herramientas disponible y se muestra con la información acerca de ese elemento (por ejemplo, un control o símbolo).
4.5 Funcionamiento del respirador

ADVERTENCIA:
Antes de empezar la ventilación del paciente, seleccione el tipo de tubo y el ID del tubo correctos.

Precaución:
No coloque recipientes con líquidos sobre el respirador ya que se pueden derramar.

Después de encender el respirador aparece una pantalla de presentación y se procesa el autotes de encendido (POST). Después de que aparezca la pantalla de presentación, el respirador muestra la opción de ventilar al mismo paciente, a uno nuevo o procesar el SST.

Los parámetros de ventilación se introducen mediante la interfaz gráfica del usuario (GUI) con los siguientes pasos generales:
1. Toque el parámetro que se muestra en la GUI.
2. Gire el control hacia la derecha para aumentar el valor o hacia la izquierda para disminuirlo.
3. Toque Aceptar para aplicar el parámetro o Aceptar TODO para aplicar varios parámetros a la vez.

Nota:
El Inicio rápido permite configurar e iniciar de modo rápido la ventilación mecánica. Antes de utilizar esta función, revise los parámetros de Inicio rápido y asegúrese de que coinciden con los del centro sanitario.

Para utilizar el Inicio rápido
1. Toque Nuevo paciente.
2. Toque el botón resaltado PBW o Sexo/Altura.
3. Gire el control para ajustar el PBW o sexo y altura del paciente (si se selecciona la opción sexo, también aparece la opción de altura).
4. Toque Inicio rápido.
5. Conecte el adaptador del circuito en “Y” a la vía aérea del paciente o a la conexión de la interfaz. Se empieza la ventilación del paciente con los valores predeterminados de Inicio rápido configurados por el centro, según el PBW o sexo/altura introducidos y el tipo de circuito utilizado durante el SST. No aparece ningún aviso para revisar los parámetros y aparece la pantalla de formas de onda.
Nota:
Si se conecta el adaptador del circuito en “Y” a la vía aérea del paciente o a la conexión de la interfaz antes de ajustar los parámetros de ventilación, el respirador empieza a ventilar con la ventilación de control presión de seguridad (PCV de seguridad) y se activa la alarma ERROR PROCEDIM. Tan pronto como el respirador recibe la confirmación de estos parámetros (al tocar Aceptar o Aceptar TODO), sale de la PCV de seguridad, restablece la alarma y suministra los parámetros seleccionados. Consulte Parámetros de la PCV de seguridad, p. 10-73 para obtener el listado de estos parámetros.

Para reanudar la ventilación del mismo paciente
1. Toque Mismo paciente en la pantalla de la GUI. En la pantalla aparecen los parámetros anteriores del respirador para su revisión antes de aplicar los parámetros al paciente.

2. Si los parámetros son correctos, toque Aceptar para confirmar. Si desea cambiar algún parámetro, toque el correspondiente parámetro, gire el control hacia la derecha para aumentar el valor o hacia la izquierda para disminuirlo y toque Aceptar para confirmar. Para hacer varios cambios de parámetros a la vez, realice los cambios necesarios y después toque Aceptar TODO para confirmar. El aspecto de los parámetros cambia del parámetro actual en blanco sin cursiva a cursiva en amarillo (destacando el parámetro pendiente). Después de aceptar los parámetros, el aspecto vuelve a cambiar a blanco sin cursiva.

3. Conecte el circuito a la vía aérea del paciente para iniciar la ventilación.

Para ventilar a un nuevo paciente
1. Toque Nuevo paciente en la pantalla de la GUI. Aparece la pantalla de parámetros de Nuevo paciente donde puede introducir los parámetros de control de la ventilación. Consulte Intervalo y resolución de la configuración del respirador, p. 11-8, para ver la configuración predeterminada del respirador.
2. Introduzca el PBW o sexo y altura del paciente (si se selecciona la opción sexo, también aparece la opción de altura).

3. Si la configuración predeterminada del respirador es apropiada para el paciente, toque INICIO para confirmar los parámetros; de lo contrario, toque un parámetro del respirador y gire el control para ajustarlo. Aplique este proceso a todos los parámetros que sea necesario ajustar.

4. Toque Aceptar o Aceptar TODO para confirmar los cambios.

5. Conecte el circuito a la vía aérea del paciente para iniciar la ventilación.

4.5.1 Configuración del respirador

ADVERTENCIA:
El respirador ofrece diversas opciones de ventilación. Durante el tratamiento del paciente, el médico debe seleccionar cuidadosamente el modo de ventilación y los parámetros que se usarán con dicho paciente, basándose en su criterio clínico, la situación y las necesidades de cada paciente, y los beneficios, las limitaciones y las características de cada opción de administración respiratoria. Dado que la situación del paciente cambia con el tiempo, evalúe periódicamente los modos y parámetros elegidos a fin de determinar si estos son o no los mejores para las necesidades actuales del paciente.
En la pantalla de configuración para un nuevo paciente se muestran la siguiente configuración del respirador:

- **Peso corporal previsto (PBW)** — Para ajustar el PBW del paciente o para seleccionar el sexo y altura del paciente. Consulte *Cálculo del peso corporal previsto (PBW)*, p. 4-21.

- **Tipo de ventilación** — Determina el tipo de ventilación que se va a administrar [invasiva o no invasiva (NIV)].

 Invasiva — Se trata de la ventilación convencional con tubo endotraqueal (ET) o tubo de traqueostomía (TRACH).

 No invasiva (NIV) — Se trata de la ventilación con máscara facial completa sin ventilación, máscaras nasales, cánulas nasales para bebés o tubos ET sin manguito. Consulte *Ventilación no invasiva (NIV)*, p. 4-22

- **Modo** — Determina el modo de respiración A/C (asistida/controlada), SIMV (modo de ventilación mandatoria intermitente sincronizada), SPONT (ventilación espontánea), BiLevel (en el caso de que esta opción esté instalada) o CPAP.

- **Tipo mandatorio** — Seleccione PC (control presión), VC (control volumen) o VC+ (volumen control plus).

- **Tipo espontáneo** — Si selecciona el modo SIMV o BiLevel, especifique PS (mantenimiento de la presión) o TC (compensación del tubo). Si selecciona el modo SPONT, especifique PS (mantenimiento de la presión), TC (compensación del tubo), VS (volumen de soporte) o PAV+ (ventilación proporcional asistida) (si la opción de software PAV+ está instalada).

Nota:

VS, PAV+ y TC solo están disponibles durante la ventilación INVASIVA.

- **Tipo de trigger** — Seleccione trigger por presión (P_{TRIG}) trigger por flujo (V_{TRIG}). La función de trigger por presión no está disponible cuando el tipo de ventilación es NIV. Si se ventila a un paciente neonatal, solo está disponible el trigger de flujo.

 Otros modos de acceder a la pantalla de configuración del respirador:

- Toque el botón *Config. Resp.* situado en la parte inferior izquierda de la pantalla de la GUI.

- Deslice la pestaña del menú situada en la parte izquierda de la GUI y toque Conf.
Para introducir los parámetros en el respirador

1. Toque los botones Tipo ventilación, Modo, Tipo mandatorio, Tipo espontáneo y Tipo trigger para seleccionarlos.

2. Toque el botón del parámetro del respirador que necesite cambios.
3. Ajuste el valor del parámetro.

4. Repita estos pasos hasta que realice todos los cambios y después, toque Aceptar o Aceptar TODO.

5. Toque INICIO. La ventilación no se inicia hasta que el circuito respiratorio esté conectado a la vía aérea del paciente. Después de iniciarse la ventilación, las formas de onda empiezan a trazarse en los ejes de las formas de onda mostrados. Consulte Formas de onda, p. 3-42, para obtener información sobre la configuración de la pantalla de gráficas.

Si es necesario hacer cambios en algún parámetro, vuelva a la pantalla Config. Resp. como se describe arriba.

Nota:
En las pestañas y botones mostrados en la GUI que contienen elementos no leídos o no visualizados aparece un ícono amarillo en forma de triángulo. Si se toca el elemento que contiene el ícono, este desaparece.

Nota:
Para hacer cambios en los parámetros después de completar la configuración del paciente, toque la pestaña Vent. situada en la parte izquierda del diálogo de Config. y realice los cambios de los parámetros como se describe arriba. El parámetro actual aparece en blanco y los cambios en cursiva en amarillo para destacar que el nuevo valor está pendiente. Toque Aceptar o Aceptar TODO, para confirmar un solo cambio o un grupo de cambios, respectivamente. Después de aceptar los parámetros, el aspecto cambia a color blanco.

Nota:
Al seleccionar los botones Inicio rápido, Aceptar, Aceptar TODO o Inicio en el diálogo Config. se implementan todos los parámetros en TODAS las cuatro pestañas de Config. (Config. Resp., Apnea, Alarmas y Más parámetros) y se descarta el diálogo Config.

Compensación del tubo

Compensación de tubo es un tipo de ventilación espontánea que se selecciona durante la configuración del respirador. Esta función permite al respirador administrar presión positiva adicional para superar la resistencia impuesta por la vía aérea artificial del paciente. Consulte p. 4-12 para obtener más información sobre la configuración del respirador. Consulte Intervalo y resolución de la configuración del respirador, p. 11-8 para obtener detalles sobre los parámetros específicos de compensación del tubo.
Funcionamiento

Para habilitar TC

1. Toque la pestaña Vent. en la pantalla de la GUI. Consulte Pantalla de configuración para un nuevo paciente, p. 4-12.

2. Toque SPONT para seleccionar el modo.

3. Toque TC para seleccionar el tipo espontáneo.

4. Termine de configurar el respirador como se describe (consulte p. 4-12 para obtener información sobre la introducción de la configuración del respirador).

5. Asegúrese de seleccionar el tipo de tubo (endotraqueal o traqueostomía) y configurar el ID del tubo correspondiente a la configuración del paciente.

6. Después de realizar los cambios, toque Aceptar para aplicar los nuevos parámetros o Cancelar para cancelar todos los cambios y descartar el diálogo.

Ajuste de tipo de tubo, ID del tubo y humidificación

ADVERTENCIA:
Para evitar una ventilación inadecuada con TC, seleccione el tipo de tubo (ET o traqueostomía) y el diámetro interno del tubo (ID) correctos para las necesidades ventilatorias del paciente. Si se introduce un parámetro de tubo de traqueostomía o tubo ET mayor o menor que el valor real, se podría generar un soporte ventilatorio inapropiado que podría causar un exceso o un defecto de ventilación.

Para seleccionar nuevos parámetros para el tubo, siga los pasos a continuación

2. Toque el botón Tipo de tubo o ID del tubo para cambiar el valor.

3. Gire el control para cambiar el parámetro.

4. Realice otros ajustes en el tubo, según corresponda.

5. Toque Aceptar o Aceptar TODO para aplicar los nuevos parámetros o Cancelar para cancelar todos los cambios y descartar el diálogo.

Nota:
Si TC es una nueva selección, los indicadores de tipo de tubo y ID del tubo parpadean, lo que indica que es necesario introducir el tipo de tubo y el ID del tubo correctos.
Para seleccionar nuevos parámetros para el humidificador, siga los pasos a continuación

1. En la pantalla de configuración del respirador, vaya a la pestaña *Más parámetros*. Aparece un diálogo con las opciones de selección del tipo y volumen del humidificador.

 El botón *Volumen humidificador* aparece debajo de la selección solo si se ha seleccionado *Tubo espiratorio no calentado* o *Tubo espiratorio calentado* como tipo de humidificador.

2. Gire el control para introducir un valor igual al volumen seco de la cámara del humidificador que se está utilizando.

3. Toque *Aceptar* o *Aceptar TODO* para aplicar los nuevos parámetros o *Cancelar* para cancelar todos los cambios y descartar el diálogo.

4.5.2 Parámetros de apnea

Después de realizar los cambios necesarios en los parámetros de ventilación, toque la pestaña *Apnea* situada en la parte izquierda del diálogo Config. Aunque no es necesario cambiar los parámetros de apnea, confirme que los parámetros predeterminados son apropiados para el paciente. Con la ventilación de apnea se permiten los tipos de respiración de control presión o control volumen. Los parámetros en las respiraciones controladas por presión incluyen *f*, *P*, *Ti*, O₂% y *T_A*. Los parámetros de apnea controlada por el volumen *f*, *V_T*, *V_MAX*, Patrón de flujo, O₂%, y *T_A*.

Nota:

Si se selecciona *Inicio rápido*, en la pestaña Apnea de la pantalla Config. Resp. aparece un triángulo amarillo, lo que indica que los parámetros no se han revisado.
Funcionamiento

Figura 4-6. Pantalla de configuración de apnea

Para establecer los parámetros de apnea
1. Seleccione el tipo de respiración de apnea deseado (PC o VC).
2. Introduzca los parámetros de apnea deseados del mismo modo que para la configuración del respirador.
3. Toque Aceptar o Aceptar TODO para confirmar la configuración de apnea.

Durante la ventilación de apnea con presión, el porcentaje de tiempo de rampa de apnea se fija en el 50 % y el parámetro constante durante el cambio de frecuencia respiratoria es T_I.

4.5.3 Parámetros de alarma

Tras aceptar los parámetros de apnea, la pantalla vuelve otra vez a mostrar las formas de onda. Vuelva al diálogo Config. Resp. y toque la pestaña Alaramas situada en la parte izquierda de la pantalla de la GUI. Aparece la pantalla de alarmas con los parámetros de alarma predeterminados. Consulte Pantalla de parámetros de alarma, p. 4-17. Revise y ajuste los parámetros de alarma del paciente según corresponda.

Nota:
Si se selecciona INICIO RÁPIDO, en la pestaña alarmas del diálogo aparece un triángulo amarillo, lo que indica que los parámetros de alarma no se han revisado.
Nota:
Consulte Intervalo y resolución de la configuración de las alarmas, p. 11-16, para ver los valores de la alarma predeterminados del nuevo paciente. Estos valores predeterminados no pueden cambiarse. El médico puede ajustar los parámetros de alarma siguiendo el procedimiento siguiente. Los parámetros de alarma se conservan en la memoria cuando el respirador inicia un nuevo ciclo y cuando se selecciona un nuevo paciente, y los parámetros actuales se restablecen como valores predeterminados de nuevo paciente.

Figura 4-7. Pantalla de parámetros de alarma

Para ajustar los parámetros de alarma

1. Toque el control deslizante de las alarmas que se van a cambiar. Todos los parámetros de alarma están disponibles para los parámetros P_{PEAK}, f_{TOT}, $V_{E TOT}$, $V_{TE MAND}$, $V_{TE SPONT}$ y V_T.

2. Gire el control hacia la derecha para aumentar el valor o hacia la izquierda para disminuirlo.

3. Continúe hasta que todas las alarmas deseadas estén ajustadas, según corresponda.

4. Toque Aceptar TODO para confirmar los parámetros de alarma.
Nota:
Existen parámetros de alarma adicionales para los tipos de respiración TC, PAV+, VS y VC+: Volumen corriente inspirado máximo (VT_I). Esta situación de alarma se produce cuando el volumen corriente inspirado es mayor que el valor establecido. La alarma VT_I también puede provocar que la administración de respiración pase a la fase espiratoria a fin de impedir la administración de volúmenes inspiratorios excesivos.

ADVERTENCIA:
Antes de iniciar la ventilación y siempre que se realicen cambios en los parámetros del respirador, asegúrese de que los parámetros de alarma son los apropiados para utilizar en el paciente.

ADVERTENCIA:
Establecer los límites de alarmas en APAGADO o utilizar valores muy altos o muy bajos, puede provocar que la alarma correspondiente no se active durante la ventilación, lo que reduce su eficacia para monitorizar al paciente y alertar al médico de situaciones que pueden precisar su intervención.

Consulte Para ajustar el volumen de alarma, p. 3-39, para asegurarse de que el volumen de alarma se ajusta correctamente.

Nota:
Cada vez que se cambia el nivel de volumen suena un tono de muestra de alarma para su verificación. Vuelva a ajustar el volumen de alarma desplazando el control deslizante del volumen de la alarma para aumentar o disminuir el volumen.

Nota:
No bloquee el circuito en “Y” mientras el respirador se encuentre en espera de la conexión del paciente. De lo contrario, el bloqueo puede indicar que se ha producido una conexión del paciente.

4.5.4 Pantalla de alarma durante el funcionamiento

Durante el funcionamiento normal del respirador, la pantalla de alarma aparece con indicadores para indicar al usuario el valor de los datos del paciente para cada parámetro (elemento 1), los parámetros de la alarma (elementos 2 y 3), intervalo reciente de los valores de los datos del paciente para las últimas 200 respiraciones (elemento 4). Si se produce una situación de alarma, el control deslizante y el botón de límite correspondiente muestran un color que indica la prioridad de la alarma. Consulte Pantalla de alarma durante el funcionamiento, p. 4-19.
4.5.5 Implementación de los cambios en la configuración del respirador

Si durante la ventilación es necesario realizar cambios en los parámetros que impliquen cambios en el PBW, modo, tipos de respiración o tipos de trigger, se puede utilizar el área actual de parámetros situada en la parte inferior de la pantalla de la GUI. Consulte Áreas de la GUI, p. 4-3, para ver la ubicación del área de parámetros actuales.

Para cambiar un parámetro del respirador en el área de “configuración actual”

1. En el área de configuración actual, toque el parámetro cuyo valor es necesario cambiar. Aparece un diálogo con los botones de todos los parámetros del respirador y el parámetro seleccionado resaltado.

2. Toque y gire el control para otros parámetros que sea necesario cambiar.

3. Toque Aceptar o Aceptar TODO.
Para cambiar un parámetro con el botón Config. Resp.

2. Cambie los parámetros como se ha descrito anteriormente.
3. Toque Aceptar o Aceptar TODO para confirmar los cambios

La configuración del respirador y de la alarma seleccionados se conservan en la memoria después de empezar un nuevo ciclo, siempre que se seleccione el mismo paciente al configurar de nuevo el respirador. Si se utiliza con un nuevo paciente, la configuración del respirador y la alarma se restablecen a sus valores predeterminados. Si hay una pérdida de alimentación (CA y batería), la configuración del respirador y de la alarma se restauran automáticamente a los valores anteriores a la pérdida de alimentación, siempre que la duración de dicha pérdida sea de cinco (5) minutos o menos. Si la pérdida de alimentación dura más de cinco minutos, la ventilación se reanuda en PCV de seguridad. La configuración del respirador y de la alarma utilizados con el paciente en ventilación se han de reanudar. Consulte Parámetros de la PCV de seguridad, p. 10-73, para obtener un listado de estos parámetros.

Para utilizar el botón Config. anterior

1. Para volver a los parámetros anteriores, toque el botón Config. anterior en la pantalla de la GUI. El respirador restaura los principales parámetros de respiración y control anteriormente utilizados, así como los parámetros de alarma y apnea, y los valores anteriores se resaltan en amarillo para su revisión. El texto de las pestañas de la configuración del respirador, alarma y apnea también se muestran en amarillo y en las pestañas aparece un triángulo amarillo, lo que indica que los parámetros anteriores no se han revisado.

2. Si los parámetros son correctos, toque Aceptar TODO.

Al confirmar los parámetros anteriores, el botón Config. anterior desaparece y vuelve a aparecer cuando se empieza la ventilación con los nuevos parámetros.

4.5.6 Variables de constante de tiempo durante los cambios en la frecuencia

En la parte inferior de la pantalla de configuración aparece un gráfico de tiempo respiratorio en el que se ilustra la relación entre el tiempo inspiratorio, el tiempo espiratorio, la relación I:E, la frecuencia respiratoria y los efectos en el tiempo respiratorio causados por el patrón de flujo, el volumen corriente y el V_{MAX} durante las respiraciones mandatorias PC, VC, BiLevel o VC+. En las respiraciones BiLevel, PC y VC+ hay tres iconos de “candado” situados debajo del gráfico de tiempo respiratorio que permiten al operador seleccionar, de izquierda a derecha, T_I, relación I:E o T_E como la variable constante durante los cambios en la frecuencia (o T_{HI}, relación
T_{H}T_{I}, o T_{I} en BiLevel). Si el modo de ventilación es SPONT, los iconos de los candados no aparecen y en el gráfico de tiempo respiratorio solo se muestra T_{I} para la inspiración manual. Si el tipo mandatorio es VC, los iconos no aparecen, pero en el gráfico de tiempo respiratorio aparece T_{P}, relación I:E y T_{E}.

Para seleccionar una variable de constante de tiempo para los cambios en la frecuencia

1. Toque el icono de candado correspondiente al parámetro que será constante durante los cambios en la frecuencia (el candado pasa de no bloqueado a bloqueado).
 El parámetro bloqueado se ilumina en el área de parámetros.

2. Gire el control para ajustar el valor del parámetro.

3. Toque Aceptar.

4.6 Cálculo del peso corporal previsto (PBW)

Numerosos parámetros predeterminados de alarma y del respirador se basan en el PBW del paciente. Bien con la introducción de la altura y sexo o bien directamente a través del parámetro PBW, el intervalo oscila entre al menos 3,5 kg (7,7 lb) y 155 kg (342 lb) para hombres y 150 kg (331 lb) para mujeres. Para entender el funcionamiento del respirador al límite más bajo del intervalo de PBW es necesario tener en cuenta que la entrada o predicción del PBW es la que rige el valor del volumen administrado, que tiene un límite inferior de 2,0 mL (si se utiliza la opción NeoMode 2.0). Los datos del PBW para hombres y mujeres adultos como función para calcular la altura se han obtenido mediante la aplicación de las ecuaciones mostradas en www.ards.net.

Supongamos que el respirador (mediante entrada de PBW o altura directa) registró un PBW de 0,3 kg. Si se especificó un volumen administrado de 4 mL/kg (PBW), el volumen requerido equivaldría tan solo a 1,2 mL, que es menor que el mínimo del respirador de 2,0 mL. A un valor deseado de 4 mL/kg, el PBW de los bebés necesitaría ser de al menos 0,5 kg o el volumen deseado debe restablecerse en mayor de 4 mL/kg (PBW). Cuando el PBW de los bebés prematuros se acerca a 1,0 kg (2,2 lb), esta restricción desaparece.

Después de introducir el PBW, revise y cambie todos los parámetros, según corresponda.

La función de correlación PBW = altura derivada de las fuentes de referencia. Para los sujetos cuyos datos de peso corporal/altura definen el intervalo de los PBW que incluyen a los neonatos de 20 a 23 semanas de edad gestacional y los adultos adolescentes de ambos géneros jóvenes al pie de las tablas ARDS, sus valores PBW se tomaron como números del percentil 50 en las tablas Fenton y las tablas y
diagramas CDC y NCHS respectivamente. Observe que las tablas Fenton proporcionan información exclusiva de datos de bebés y prematuros entre 20 y 50 semanas de crecimiento gestacional y fetal.

Nota:
Los valores repetidos que se observan en las tablas son el resultado del redondeo de decimales.

4.7 Ventilación no invasiva (NIV)

ADVERTENCIA:
Durante la NIV utilice solo interfaces de paciente sin ventilación. Las fugas asociadas a las interfaces con ventilación pueden causar la incapacidad del respirador para compensar dichas fugas, incluso si se utiliza Leak Sync.

ADVERTENCIA:
Las máscaras faciales completas utilizadas en la ventilación no invasiva deben permitir la visibilidad de la nariz y la boca del paciente para reducir el riesgo de aspiración de emesis.

ADVERTENCIA:
Al utilizar la NIV, el volumen corriente espirado del paciente (V_{TE}) puede diferir de las lecturas de V_{TE} de los datos del paciente monitorizado en el respirador debido a la aparición de fugas alrededor de la máscara. Para evitarlo, asegúrese de instalar Leak Sync. Al seleccionar NIV, la función Leak Sync se habilita automáticamente. Consulte **Para habilitar Leak Sync**, p. B-3.

La ventilación no invasiva (NIV) se utiliza cuando el médico determina que si el paciente utiliza una máscara u otra interfaz de paciente no invasiva, en lugar de un tubo endotraqueal, se obtendrán resultados más favorables.

4.7.1 Indicaciones de uso de la NIV

La NIV está indicada para su uso en pacientes pediátricos, adultos y neonatales con un acoplamiento ventilatorio neural adecuado y un impulso de la respiración estable y sostenible.

4.7.2 Interfaces de respiración NIV

Covidien ha probado con éxito las siguientes interfaces no ventiladas con NIV:

Máscara facial completa — Máscara facial completa Puritan Bennett® Benefit (grande, número de pieza 4-005253-00), máscara facial completa sin ventilación ResMed Mirage™ (mediana)

Máscara nasal — Máscara sin ventilación ResMed Ultra Mirage™ (mediana)

Cánulas nasales para bebés — Cánula nasal CPAP Sherwood Davis & Geck Argyle® (pequeña), sistema CPAP nasal para bebés Hudson RCI® (Nº. 3)

Tubo ET neonatal sin manguito — Tubo traqueal sin manguito Mallinckrodt, Murphy (3,0 mm)

4.7.3 Configuración de NIV

La NIV puede iniciarse en la pantalla Config. nuevo paciente durante el inicio de la ventilación o mientras el paciente está recibiendo ventilación invasiva. Consulte la siguiente tabla para utilizar la información de configuración de la NIV para el paciente.

Tabla 4-2. Configuración de un paciente para NIV

<table>
<thead>
<tr>
<th>Para configurar a un nuevo paciente</th>
<th>Para configurar a un paciente que está recibiendo ventilación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Encienda el respirador.</td>
<td>1. Toque o deslice la pestaña Menú situada en la parte izquierda de la GUI.</td>
</tr>
<tr>
<td>3. Introduzca el PBW o sexo y altura del paciente.</td>
<td>3. Realice los pasos del 4 al 7, igual que en la configuración del respirador para un nuevo paciente.</td>
</tr>
<tr>
<td>4. Toque Tipo de ventilación NIV.</td>
<td>4. Revise los parámetros, incluidos los parámetros de alarma y apnea y realice los cambios, si corresponde.</td>
</tr>
<tr>
<td>5. Seleccione el modo.</td>
<td></td>
</tr>
<tr>
<td>7. Complete los parámetros del respirador, incluidos los parámetros de apnea y alarma.</td>
<td></td>
</tr>
</tbody>
</table>
4.7.4 Conversión de tipo de ventilación INVASIVE a ventilación NIV

ADVERTENCIA:
Para administrar una ventilación correcta, al cambiar el tipo de ventilación en el mismo paciente, revise los cambios automáticos de los parámetros descritos. Ajuste de acuerdo a las tablas relevantes.

Algunos parámetros del respirador que están disponibles durante la ventilación INVASIVE no lo están durante la ventilación NIV. Consulte la siguiente tabla para ver los cambios automáticos que se producen en los parámetros al cambiar de ventilación INVASIVE a NIV.

<table>
<thead>
<tr>
<th>Parámetro actual INVASIVE</th>
<th>Nuevo parámetro NIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo de respiración: BiLevel</td>
<td>Modo de respiración: A/C</td>
</tr>
<tr>
<td>Modo de respiración: SIMV o SPONT</td>
<td>Parámetro de límite máximo de T_{SPONT} (T_{SPONT}) disponible</td>
</tr>
<tr>
<td>Tipo espontáneo: cualquier tipo excepto P5</td>
<td>Tipo espontáneo: P5</td>
</tr>
<tr>
<td>Tipo de trigger: Presión</td>
<td>Tipo de trigger: Flujo (El trigger por flujo es el único tipo de trigger que se permite durante la NIV)</td>
</tr>
<tr>
<td>Parámetros de alarma: P_{PEAK} (si corresponde), $V_{\text{E TOTAL}}$, $V_{\text{TE MAND}}$, $V_{\text{TE SPONT}}$, INSPiration DEMASIADO LARGA (no configurable por el usuario)</td>
<td>Parámetros de alarma: De P_{PEAK}, $V_{\text{E TOTAL}}$, $V_{\text{TE MAND}}$, $V_{\text{TE SPONT}}$ predeterminados a valores NIV de nuevo paciente. Consulte Intervalo y resolución de la configuración de las alarmas, p. 11-16. La alarma de INSPIRACIÓN DEMASIADO LARGA no está disponible.</td>
</tr>
<tr>
<td>D_{SENS}</td>
<td>Si la opción Leak Sync está deshabilitada, el parámetro D_{SENS} se establece de forma predeterminada en Desactivado.</td>
</tr>
</tbody>
</table>

Nota:
En la respiración espontánea administrada, bien sea INVASIVE o NIV, si el mantenimiento de la presión está ajustado a 0 cmH$_2$O, se aplica siempre una presión inspiratoria objetivo de 1,5 cmH$_2$O.
Cuando se está en ventilación NIV, el aspecto del botón Config. Resp. cambia, lo que permite al operador saber que el tipo de ventilación es NIV.

Figura 4-9. Botón de configuración del respirador en "NIV" indicando tipo de ventilación NIV

4.7.5 Conversión de tipo de ventilación NIV a INVASIVE

En la siguiente tabla se muestran los cambios automáticos de los parámetros que se producen al cambiar de ventilación NIV a INVASIVE.

Tabla 4-4. De NIV a INVASIVE en el mismo paciente

<table>
<thead>
<tr>
<th>Parámetro actual NIV</th>
<th>Nuevo parámetro INVASIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuración del respirador: Ti_{SPONT}</td>
<td>N/D</td>
</tr>
<tr>
<td>Parámetros de alarma: $P_{\text{PEAK}}, V_{\text{ETOT}}, V_{\text{TE MAND}}, V_{\text{TE SPONT}}$</td>
<td>Parámetros de alarma: los valores predeterminados de nuevo paciente dependen de los parámetros de ventilación INVASIVE seleccionados. Consulte Intervalo y resolución de la configuración de las alarmas, p. 11-16. La alarma de INSPIRACIÓN DEMASIADO LARGA está disponible.</td>
</tr>
<tr>
<td>D_{SENS}</td>
<td>El parámetro D_{SENS} es de manera predeterminada el valor INVASIVE de nuevo paciente. Consulte Intervalo y resolución de la configuración del respirador, p. 11-8.</td>
</tr>
</tbody>
</table>
4.7.6 Parámetro de límite de tiempo inspiratorio espontáneo máximo

La ventilación NIV incluye un parámetro en los modos SIMV o SPONT para el límite de tiempo inspiratorio espontáneo máximo (TI SPONT). Cuando el tiempo inspiratorio del paciente alcanza o supera el límite establecido, el respirador pasa de inspiración a espiración y en la parte inferior izquierda de la pantalla de la GUI aparece el símbolo TI SPONT, lo que indica que el respirador ha truncado la respiración (como se muestra abajo). El parámetro TI SPONT no restringe los cambios en el PBW; si este se disminuye, el TI SPONT puede disminuir automáticamente para permanecer dentro de sus límites permitidos.

ADVERTENCIA:

Con el indicador TI SPONT visual no suena ninguna alarma audible, ni tampoco aparece el indicador en ningún registro de alarmas o mensaje de alarmas.

Es posible que no se alcance la presión inspiratoria objetivo si el parámetro TI SPONT no es lo suficientemente largo o si las fugas del sistema son tan grandes como para provocar que el respirador trunque la respiración con el parámetro TI SPONT máximo permitido.
Nota:
Para reducir el potencial de no alcanzar la presión objetivo, minimice las fugas en el sistema y aumente el porcentaje de tiempo de rampa, o disminuya el parámetro E_{SENS} si corresponde.

4.7.7 Configuración de apnea NIV

Establezca los parámetros de apnea del paciente como se describe. Consulte Parámetros de apnea, p. 4-15. La NIV no cambia el modo en que se han establecido los parámetros de apnea.

4.7.8 Parámetros de alarma en NIV

El sistema inicialmente configura la mayoría de parámetros de alarma en función del PBW del paciente. Revise todos los parámetros de alarma y realice los cambios, según corresponda. El inicio no precisa la confirmación de los parámetros. Los parámetros de alarma se establecen del mismo modo en la ventilación NIV que en la ventilación INVASIVE.

Figura 4-11. Configuración de alarmas NIV predeterminada
Para ver los límites actuales y los valores del paciente monitorizado que se muestran en color blanco en las flechas correspondientes de cada alarma, toque la pestaña Alarmas en cualquier momento durante la ventilación. Consulte Configuración de alarmas NIV predeterminada, p. 4-27. Si se activa una alarma, el color del indicador LED cambia en función de la prioridad de la alarma. Consulte Priorización de las alarmas, p. 6-17, para ver los colores y significados de las alarmas y sus prioridades.

Nota:
Los límites superior e inferior de una alarma no pueden ser incompatibles.

Nota:
Los límites superiores de las alarmas de volumen corriente espirado espontáneo y volumen corriente espirado mandatorio tienen siempre el mismo valor. Al cambiar el límite superior de una alarma, automáticamente se cambia el límite superior de la otra.

4.8 Inspiración manual

Una inspiración manual es una inspiración obligatoria iniciada por el operador (OIM). Cuando el operador pulsa la tecla de inspiración manual mientras el respirador está en un modo que incluye respiraciones obligatorias (incluidos los modos combinados, BiLevel y SIMV), el respirador proporciona la inspiración manual utilizando los parámetros de respiración obligatoria establecidos actualmente. Una inspiración manual realizada mientras el respirador está en modo SPONT utiliza los parámetros respiratorios de apnea establecidos actualmente. Una inspiración manual basada en el volumen está compensada por la distensibilidad. Al pulsar la tecla de inspiración manual en el modo BiLevel, se pasará de T_H a T_L o de T_L a T_H, dependiendo de en qué momento se haya pulsado la tecla durante el ciclo respiratorio.

4.9 Maniobras mecánicas respiratorias

Para acceder a las maniobras de mecánica respiratoria

1. Toque o deslice la pestaña **Menú** situada en la parte izquierda de la GUI.
2. Toque **RM**.
3. Toque la pestaña correspondiente donde desea hacer la maniobra.

4. Siga las indicaciones de la pantalla de la GUI.

5. Acepte o rechace los resultados de la maniobra. Si se acepta el resultado, se guarda el valor.
4.9.1 Maniobra de pausa inspiratoria

La maniobra de pausa inspiratoria cierra las válvulas inspiratoria y espiratoria y amplía la fase inspiratoria de una sola respiración mandatoria a fin de medir la presión inspiratoria final del circuito, que se utiliza para calcular la presión de meseta inspiratoria \(P_{PL}\), la compliancia pulmonar estática \(C_{STAT}\) y la resistencia estática \(R_{STAT}\) del sistema respiratorio. Se deja que las presiones a ambos lados de la vía aérea artificial se igualen, lo que determina la presión durante un estado a flujo cero. Durante la ventilación de apnea, PCV de seguridad, OSC, BUV y en estado de espera se ignoran las solicitudes de maniobra de pausa inspiratoria. Las pausas inspiratorias están permitidas en los modos A/C, SIMV, BiLevel y SPONT. Si durante la respiración inspiratoria ya se ha producido una maniobra de pausa inspiratoria, no se permite realizar una segunda maniobra de pausa inspiratoria.

Las pausas inspiratorias pueden clasificarse en **automáticas** o **manuales**. La pausa inspiratoria **automática** dura como mínimo 0,5 segundos y tres segundos como máximo. La pausa inspiratoria **manual** comienza al pulsar y mantener pulsada la tecla de pausa inspiratoria. La pausa dura el tiempo que se mantenga pulsada la tecla (hasta un máximo de siete segundos).

Para realizar una pausa inspiratoria automática

1. Pulse y suelte la tecla Pausa inspiratoria en el bisel de la GUI o toque y suelte Inicio si va a realizar una pausa inspiratoria desde la pantalla de la GUI como se muestra arriba. El respirador realiza la maniobra de pausa inspiratoria y se muestra \(P_{PL}\), \(C_{STAT}\) y \(R_{STAT}\), junto con la fecha y la hora.

2. Toque el botón Aceptar o Rechazar para guardar o descartar los resultados. Si se selecciona Aceptar, se muestran los resultados.

Cancele una maniobra automática de pausa inspiratoria tocando Cancelar en la pantalla GUI.

Para realizar una pausa inspiratoria manual

1. Pulse y mantenga pulsada la tecla Pausa inspiratoria en el bisel de la GUI o toque y mantenga pulsado Inicio si va a realizar una pausa inspiratoria desde la pantalla de la GUI como se muestra arriba. El respirador indica que la maniobra se ha iniciado y debe soltarse para finalizar la maniobra. El respirador realiza la maniobra de pausa inspiratoria y se muestra \(P_{PL}\), \(C_{STAT}\) y \(R_{STAT}\), junto con la fecha y la hora.

2. Toque Aceptar o Rechazar para guardar o descartar los resultados. Si se toca Aceptar, se muestran los resultados.

La maniobra manual de pausa inspiratoria se cancela soltando la tecla Pausa inspiratoria.
4.9.2 Maniobra de pausa espiratoria

La pausa espiratoria amplía la fase espiratoria de la respiración actual a fin de medir la presión pulmonar espiratoria final (PEEPTOT) o PEEP total. No tiene efecto sobre la fase inspiratoria de una respiración y solo se permite una pausa espiratoria por respiración. Con la finalidad de calcular la relación I:E, la maniobra de pausa espiratoria se considera como parte de la fase espiratoria.

Durante la pausa espiratoria, se cierran las válvulas inspiratoria y espiratoria, lo que permite que las presiones a ambos lados de la vía aérea artificial se igualen. Con esto se puede calcular la PEEP intrínseca (PEEPi). PEEPi es la PEEPTOT menos el nivel establecido de PEEP. La pausa espiratoria se puede administrar de forma manual o automática y se ejecuta en la siguiente respiración mandatoria en los modos A/C, SIMV, BiLevel. En SIMV, el ciclo respiratorio en el que se activa la pausa (cuando se produce la siguiente respiración mandatoria iniciada por el respirador (CONT) programada) se ampliará con la cantidad de tiempo durante el que la pausa está activa. Para A/C y SIMV, la maniobra de pausa inspiratoria se programa para el siguiente final de la espiración antes de una respiración mandatoria. En BiLevel, la pausa espiratoria está programada para el siguiente final de la espiración antes de pasar de P_L a P_H. Durante la maniobra de pausa espiratoria, se muestran los valores de tiempo en los que la PEEPi y la PEEPTOT están igualadas, y se actualizan con regularidad ya que la estabilización de uno de estos valores indica que puede finalizarse la pausa. Durante la pausa espiratoria, el intervalo de apnea TA se amplía con la cantidad de tiempo durante el que la pausa está activa. Las solicitudes de pausa espiratoria se ignoran si el respirador está en ventilación de apnea, PCV de seguridad, OSC, SVO, BU o en estado de espera. Asimismo, las alarmas de OCLUSIÓN SEVERA están desactivadas durante las maniobras de pausa espiratoria. Si el trigger por flujo está activo, la sensibilidad por presión de reserva (P_{SENS}) detecta el esfuerzo respiratorio del paciente.

La duración máxima de la pausa de espiración manual es de 15 segundos y tres (3) segundos para la pausa espiratoria automática.

Durante una pausa espiratoria manual o automática, la PEEPi y la PEEPTOT aparecen en la GUI con la siguiente CONT para que el médico pueda ver cuándo se estabilizan estos valores, lo que indica que la maniobra puede terminarse.

Para realizar una pausa espiratoria automática

1. Pulse y suelte la tecla Pausa espiratoria situada en la GUI o toque y suelte Inicio si va a realizar una pausa espiratoria desde la pantalla de la GUI. El respirador realiza la maniobra de pausa espiratoria y se muestra un gráfico de presión del circuito, la PEEPTOT y la PEEPi, junto con la fecha y la hora.
Para realizar una pausa espiratoria manual
1. Pulse y mantenga pulsada la tecla Pausa espiratoria situada en el bisel de la GUI o toque y mantenga pulsado inicio si va a realizar una pausa espiratoria desde la pantalla de la GUI. El respirador indica que la maniobra se ha iniciado y debe soltarse el botón para finalizar la maniobra. El respirador realiza la maniobra de pausa espiratoria y se muestra un gráfico de presión del circuito, la PEEPTOT y la PEEP, junto con la fecha y la hora.

2. Acepte o rechace los resultados de la pausa.

Para cancelar una maniobra de pausa espiratoria
1. Toque Cancelar en la pantalla de la GUI.

4.9.3 Otras maniobras respiratorias

Para realizar otras maniobras respiratorias, toque la pestaña correspondiente a la maniobra que desea llevar a cabo y siga las indicaciones de la pantalla de la GUI.

4.10 Función del sensor de oxígeno

El sensor de oxígeno supervisa el porcentaje de O₂. Esta célula está montada en el módulo de mezcla de la BDU y supervisa el porcentaje de oxígeno en el gas mezclado que se administra al circuito respiratorio (es posible que no refleje la concentración real de oxígeno en el gas que el paciente inspira).

Consulte el *Manual de mantenimiento del respirador serie 980 de Puritan Bennett™* para obtener las instrucciones que indican cómo sustituir el sensor O₂.

Los parámetros de porcentaje de O₂ predeterminados de nuevo paciente son:
- Sensor O₂ habilitado
- Neonatal: 40 % O₂
- Pediátrico/adulto: 100 % O₂

Nota:
El sensor de oxígeno tiene tres estados: Habilitado, deshabilitado y calibrar. El sensor de oxígeno se habilita cuando se inicia el respirador independientemente de si se ha seleccionado la configuración de Nuevo paciente o de Mismo paciente.

Para habilitar o deshabilitar el sensor de O₂
2. Toque la pestaña Más parámetros. Aparece la pantalla Más parámetros.
3. Toque el botón de la función de sensor de O₂ deseada (Activar o Desact).

4. Toque Aceptar.

4.10.1 Vida útil del sensor de oxígeno

El parámetro de porcentaje de O₂ oscila entre aire ambiental (21 % de O₂) hasta un máximo 100 % de oxígeno. El sensor reacciona con oxígeno para producir un voltaje proporcional a la presión parcial del gas mezclado. Dado que la atmósfera ambiente contiene aproximadamente un 21 % de oxígeno, el sensor reacciona de modo constante con oxígeno y siempre produce un voltaje. La vida útil de la célula puede acortarse si se expone a temperaturas y presiones elevadas. Durante el uso normal en la UCI, el sensor de oxígeno dura aproximadamente un año, el intervalo necesario para el mantenimiento preventivo de rutina.

Como el sensor de oxígeno reacciona de modo constante con oxígeno, necesita una calibración periódica para evitar que se active la alarma de porcentaje de O₂ de forma incorrecta. Cuando el sensor de oxígeno calibrado y el respirador alcanzan la temperatura de funcionamiento de estado constante, el porcentaje supervisado de O₂ deberá estar por debajo del 3 % del valor real durante al menos 24 horas. Para garantizar que el sensor de oxígeno esté siempre calibrado, calibrelolo al menos una vez cada 24 horas.
Normalmente, el médico utiliza un analizador de O₂ en combinación con la información proporcionada por el respirador. Si se activa la alarma SIN SUMINISTRO O₂, compare la lectura de O₂ del analizador con la lectura de O₂ del respirador con el fin de solucionar el problema. El respirador cambia automáticamente al suministro de aire al 100 %.

4.10.2 **Calibración del sensor de oxígeno**

El sensor de oxígeno debe calibrarse cada 24 horas y antes de su uso. La función de calibración proporciona una calibración del sensor de O₂ de un solo punto.

Para calibrar el sensor de O₂

1. Toque **Config. Resp.**
2. Toque la pestaña **Más parámetros**.
3. Toque **Calibrar** para el sensor O₂. El sensor de oxígeno se calibra en dos minutos. Consulte **Pantalla Más parámetros con el sensor de O₂ habilitado**, p. 4-33.

4.10.3 **Comprobación de la calibración del sensor de oxígeno**

Para probar la calibración del sensor de O₂

1. Conecte el tubo de oxígeno del respirador a una fuente conocida de O₂ al 100 % (por ejemplo, un cilindro de oxígeno de uso médico).

2. Calibre el sensor de oxígeno como se describe anteriormente.

3. Conecte el tubo de oxígeno del respirador a otra fuente conocida de O₂ al 100 % (por ejemplo, un segundo cilindro de oxígeno de uso médico).

4. Establezca el porcentaje del O₂ a cada uno de los siguientes valores y deje pasar un minuto entre cada porcentaje para que el valor supervisado se establezca: 21 %, 40 %, 90 %

5. En la pantalla de la GUI, compruebe que el valor de O₂ (porcentaje de O₂ administrado) se encuentra dentro del intervalo del 3 % de cada parámetro, dejando un intervalo de un minuto entre cada parámetro.
4.11 Estrategias de protección del respirador

El respirador incorpora diversas estrategias para ayudar a la seguridad del paciente. Entre estas se incluyen el autotest de encendido (POST), el SST y una estrategia denominada Garantía de ventilación que proporciona medios alternativos de ventilación en el caso de que se produzcan determinados fallos graves en el sistema de administración respiratoria. A continuación, se describen las respuestas del sistema ante posibles fallos.

4.11.1 Autotest de encendido (POST)

La primera estrategia detecta los posibles problemas que puedan existir antes de conectar el respirador al paciente. El POST comprueba la integridad de los componentes electrónicos del respirador y en el caso de que se encuentre algún fallo crítico, impide que se inicie la ventilación. Consulte el Manual de mantenimiento del respirador serie 980 de Puritan Bennett™ para obtener una descripción completa del proceso de POST. POST puede detectar fallos importantes o leves del sistema que se manifiestan como Alertas del dispositivo. Consulte Alarma de ALERTA DEL DISPOSITIVO, p. 6-42 para obtener más información.

4.11.2 Fallo técnico

El fallo técnico se produce si ha fallado un POST o una prueba general. Consulte Autotest de encendido (POST), p. 10-77. Según la prueba que haya fallado, el respirador ventilará con los parámetros actuales, con los modificados o entrará en estado de Respirador no operativo (Vent. Inop.). El fallo técnico no puede eliminarse pulsando la tecla de restablecimiento de la alarma. Solo se puede eliminar corrigiendo el fallo que lo causó o cumpliendo los criterios de restablecimiento de la alarma.

4.11.3 SST

Además de caracterizar el circuito de respiración del respirador, el SST realiza comprobaciones básicas en el sistema neumático del respirador, entre las que se incluye la PSOL de la administración respiratoria, los sensores de flujo y la válvula de espiración. Los fallos detectados durante el SST deben corregirse antes de iniciar la ventilación.
4.11.4 **Error de procedimiento**

Un error de procedimiento se produce cuando el respirador detecta la conexión de un paciente antes de que se complete la configuración del respirador. El respirador proporciona soporte ventilatorio con los siguientes parámetros predeterminados de Ventilación de control de presión de seguridad (PCV de seguridad). Consulte *Parámetros de la PCV de seguridad*, p. 10-73.

4.11.5 **Garantía de ventilación**

Durante la ventilación, el respirador realiza pruebas frecuentes de segundo plano del subsistema de administración respiratoria (Consulte *Red de seguridad*, p. 10-72). En el caso de que fallen determinados componentes críticos del sistema neumático, la garantía de ventilación proporciona un soporte ventilatorio continuado mediante una de las tres estrategias de ventilación de reserva (BUV), evitando el fallo a fin de mantener el nivel máximo de ventilación que puede administrarse con seguridad. Consulte *Sistema de diagnóstico de segundo plano*, p. 10-75, para obtener una descripción detallada de las estrategias de ventilación de reserva.

Nota:
No confunda BUV con PCV de seguridad, que ocurre cuando se conecta a un paciente antes de que se complete la configuración del paciente, o con ventilación de apnea, que ocurre en respuesta a una situación de apnea del paciente.

4.11.6 **Válvula de seguridad abierta (SVO)**

En caso de un fallo grave que no se pueda evitar de forma segura, el respirador, como último recurso, se revierte al estado seguro. En el estado seguro, el respirador abre la válvula de seguridad y la válvula de espiración, permitiendo que el paciente respire aire de la habitación (si es capaz), siempre que el circuito del paciente no esté ocluido. Durante el SVO, el paciente (si está conectado) puede respirar el aire ambiental a través de la válvula de seguridad una vez libere presión en el circuito del paciente. El paciente espira a través de la válvula de espiración con resistencia mínima y la válvula de espiración también actúa como una válvula de retención, de modo que evita el flujo de gas procedente del filtro espiratorio o del ramal espiratorio del circuito. Las condiciones de SVO se registran en los registros de alarmas y eventos ya que son los eventos que provocan la condición de SVO. Si se elimina la condición que causa la aparición de SVO, el respirador elimina el estado de SVO. Los datos del paciente no se muestran en la GUI, pero los gráficos continúan.

Funcionamiento

4-36 **Manual del usuario**
trazándose. Durante la SVO, el respirador ignora las oclusiones del circuito y se desconecta. Si la condición que causa la SVO solo puede corregirse mediante la reparación del respirador, la alarma SVO no puede restablecerse pulsando la tecla de restablecimiento de la alarma.

4.11.7 Respirador no operativo (Vent. Inop.)

Se produce cuando el respirador detecta un error catastrófico que impide que funcionen ninguno de los otros estados de seguridad. Vent. Inop. limita la presión al paciente dado que el respirador entra en el estado de SVO, deshabilita (cierra) las válvulas inspiratorias (PSOL) y purga el acumulador del sistema de combinación de gas. Se abre la válvula de seguridad y el indicador de respirador no operativo (Vent Inop) se ilumina y se activa una alarma de prioridad alta procedente de la alarma principal y se activa la alarma secundaria (tono continuo). El respirador solo puede salir de este estado si se inicia un ciclo y se supera satisfactoriamente el EST. La alarma de Respirador no operativo no puede restablecerse con la tecla de restablecimiento de la alarma. Se suspenden todas las detecciones y activaciones de las condiciones de alarma de los datos del paciente.

4.12 Apagado del respirador

Cuando se apaga el interruptor de encendido del respirador, el respirador ejecuta un apagado ordenado, además de guardar los datos del paciente antes de desconectar la alimentación eléctrica. Si el respirador detecta que hay un paciente conectado en el momento en que se apaga el interruptor de encendido, se activa una alarma de alta prioridad y aparece un banner en la pantalla que pide que el operador confirme la solicitud de apagado. El respirador ejecutará el apagado solo después de que el operador haya confirmado.

Todos los registros se conservan en la memoria del respirador tras el cierre de este. Cuando los registros alcanzan el número máximo de entradas, los valores nuevos sobrescriben los más antiguos. Consulte Registros del respirador, p. 8-2, para obtener información acerca de los registros del respirador.
Página dejada en blanco intencionadamente
5 Información sobre los datos del producto

5.1 Descripción general

En este capítulo se describen las funciones del respirador serie 980 de Puritan Bennett™ diseñadas para proporcionar información al médico. Entre esta información se incluye el idioma, los métodos de visualización y transferencia de datos y los tipos de puertos externos del dispositivo. Asimismo, se incluye la información relativa a la conexión a un sistema externo de monitorización de pacientes.

5.2 Idioma

El idioma utilizado en el respirador viene configurado de fábrica.

5.3 Pantalla de datos

Los datos mostrados se actualizan en tiempo real. El médico puede ver datos de formas de onda hasta un máximo de 60 segundos, además de pausar y capturar hasta dos bucles con la función de captura de pantalla. El operador puede pausar las pantallas en cuyo caso aparece un cursor con los valores numéricos relevantes para los puntos de intersección del cursor y la forma de onda o bucle. La forma de onda escalar contiene un único valor, pero el bucle contiene datos del eje x y del eje y. El operador puede desplazar el cursor con el control giratorio por toda la forma de onda o por el bucle y leer los datos correspondientes. Consulte Formas de onda, p. 3-42 para obtener más detalles sobre la configuración y visualización de las formas de onda.

5.4 Transmisión de datos

El acceso a los datos del respirador puede realizarse por conectores RS-232 o USB. Los siguientes datos están disponibles para su descarga por medio de conexión a un dispositivo remoto o unidad flash:

- Imágenes de formas de onda (función de captura de pantalla): Puerto USB
- Datos de gráficas de forma de onda: puerto RS-232, puerto USB con capacidad de conversión de USB a puerto en serie (según la configuración del puerto Com)
- Resultados de los comandos DCI: puerto RS-232, puerto USB con capacidad de conversión de USB a puerto en serie (según la configuración del puerto Com)
5.4.1 Captura de pantalla de la GUI

Precaución:
La interfaz USB debe utilizarse para guardar las capturas de pantalla y para interconectar con un monitor externo de pacientes. No debe proporcionar alimentación a otros tipos de dispositivos que contengan una interfaz USB.

Precaución:
Únicamente deben utilizarse dispositivos USB compatibles; de lo contrario, el rendimiento de la GUI puede verse afectado negativamente.

Es necesario utilizar una unidad de almacenamiento flash de 128 MB en formato de archivo de 32 bits para descargar imágenes desde los puertos USB. El dispositivo USB indicado en la Tabla 9-1. es el ÚNICO dispositivo USB actualmente compatible para utilizarse en el PB980. Para realizar el pedido de un dispositivo USB compatible, póngase en contacto con el Servicio técnico de Covidien llamando al +1 800 255 6774 o con un representante local de Covidien.

Para capturar pantallas de la GUI

1. Vaya hasta la pantalla en la que desea capturar una imagen (por ejemplo, la pantalla de gráficas de formas de onda). No es necesario pausar la forma de onda antes de realizar la captura de pantalla.

2. Toque el icono de captura de pantalla en el área de iconos de acceso permanente de la pantalla de la GUI. Si lo desea, navegue a otra pantalla y repita los pasos 1 y 2 hasta diez (10) imágenes. Si se captura otra imagen y se aumenta la cola a once imágenes, la imagen más nueva sobrescribe la imagen más antigua, de este modo siempre hay únicamente diez imágenes disponibles.

Nota:
Si el icono de la cámara aparece tenue, significa que la función de captura de pantalla está procesando imágenes y no se encuentra disponible. Cuando termina el procesamiento, el icono de la cámara deja de estar tenue y la función de captura de pantalla vuelve a estar disponible.

Para transferir imágenes capturadas a un dispositivo de almacenamiento USB

1. Deslice el Menú situado en la parte izquierda de la GUI. Consulte Abra la pestaña Menú, p. 4-12.

2. Toque Captura pantalla. Aparece una lista de capturas de pantalla identificadas con la fecha y la hora. Además, también aparece un control deslizante, lo que indica que hay más imágenes de las que se muestran.
3. Introduzca un dispositivo de almacenamiento USB pasivo (unidad flash) en uno de los puertos USB situados en la parte posterior del respirador. La orientación correcta del dispositivo USB es con los contactos metálicos hacia el botón de prueba. Consulte Ubicaciones de los puertos, p. 5-18. Si hay más de un dispositivo de almacenamiento USB instalado en el respirador, toque el botón del dispositivo USB de destino donde se copiará la imagen. Si se introduce un dispositivo incompatible, el puerto se deshabilitará hasta que se retire el dispositivo y se confirme la extracción con el botón de confirmación. Aparece el mensaje que se muestra en la Figura 5-1.

Figura 5-1. Mensaje de dispositivo USB incompatible

Nota:
La extracción del dispositivo de almacenamiento USB externo mientras se graban los archivos de captura de pantalla puede dar lugar a una transferencia incompleta de archivos y a archivos inservibles.

4. En la lista de imágenes, toque el nombre de la imagen.

5. Toque Copiar. La imagen se guarda en el dispositivo de almacenamiento USB de destino.

6. Otra opción es tocar Seleccionar todo y todas las imágenes de la lista se guardan en el dispositivo USB y se pueden ver e imprimir desde el ordenador personal.

Nota:
El formato de archivo de las capturas de pantalla es .PNG.
5.4.2 Configuración de comunicaciones

Para especificar la configuración de comunicaciones del respirador

1. Toque el icono Configurar en el área de iconos de acceso permanente de la GUI. Aparece un menú con varias pestañas.

2. Toque la pestaña Config. comunic. Aparece la pantalla Config. comunic. en la que se pueden configurar tres (3) puertos. Estos puertos pueden designarse como DCI, Philips, Spacelabs o Formas onda.

Nota:
Las formas de onda pueden seleccionarse en cualquier puerto, pero solo en un puerto a la vez.

Figura 5-2. Pantalla Config. comunic.

5.4.3 Configuración del puerto Com

Al configurar el puerto Com el respirador puede comunicarse con los dispositivos mostrados en la Pantalla Config. comunic. o capturar datos de formas de onda (en formato ASCII) del respirador.

Para configurar los puertos Com.

1. Toque COM1, COM2, o COM3.

2. Gire el control que indica la configuración del dispositivo deseada.
3. Seleccione la velocidad en baudios deseada. Si se selecciona formas de onda, la velocidad en baudios se configura automáticamente en 38400.

4. Seleccione 7 u 8 bits de datos.

5. Seleccione la paridad par, impar o ninguna si los bits de datos = 8.

Conecte el dispositivo al puerto configurado anteriormente. Consulte Ubicaciones de los puertos, p. 5-18 para obtener una descripción y las ubicaciones de los puertos Com.

Nota:
Cuando un puerto USB se configura como puerto Com, es necesario utilizar un cable adaptador de USB a puerto en serie. Este adaptador debe basarse en el chipset fabricado por Prolific. Para obtener más información, póngase en contacto con el representante de Covidien.

Al seleccionar formas de onda cuando se configura un puerto Com, el respirador puede transmitir de forma continua la presión, el flujo y los números de secuencia en formato ASCII desde el puerto en serie seleccionado, a una velocidad en baudios de 38400 bits/s, así como también los bits de parada seleccionados y la paridad por el operador. Se realizan lecturas de flujo y se toma una muestra de presión cada 20 ms. Esta muestra de lecturas se transmitirá al puerto en serie seleccionado al final de cada respiración a velocidades de respiración de 10/min. y superiores. Para respiraciones de mayor duración, se transmiten al menos los ocho primeros segundos de la respiración. El formato de los datos es el siguiente: El inicio de la respiración, donde “BS, S:nnn,<LF>” indica el inicio de la respiración, ‘S:nnn’ es un número de secuencia incrementado en cada respiración y <LF> es un carácter de alimentación de línea. Los campos fff y ppp muestran los datos de flujo y presión de respiración. El final de la espiración aparece indicada por: “BE<LF>” donde “BE” indica el final de la respiración y <LF> es un carácter de alimentación de línea.

5.4.4 Comandos en serie

El sistema del respirador proporciona comandos para establecer la comunicación con el respirador y desde este con un puerto Com. Los comandos del respirador desde un dispositivo incluyen:

- **RSET:** Consulte Comando RSET, p. 5-6.
- **SNDA:** Consulte Comando SNDA, p. 5-6.
- **SNDF:** Consulte Comando SNDF, p. 5-10.
Nota:
El respirador solo responde si recibe un retorno de carro <CR> después de la cadena de comandos.

5.4.5 Comando RSET

El comando RSET borra los datos del búfer de recepción del respirador. El respirador no envía una respuesta al sistema host. Introduzca el comando RSET exactamente como se muestra:

```
RSET<CR>
```

5.4.6 Comando SNDA

El comando SNDA indica al respirador que envíe al sistema host la información relativa a los parámetros del respirador y los datos del paciente monitorizado. Introduzca el comando SNDA exactamente como se muestra:

```
SNDA<CR>
```

Cuando el respirador recibe el comando SNDA<CR>, responde con el código MISCA, seguido de la información relativa a los parámetros del respirador y los datos del paciente monitorizado.

La respuesta MISCA adopta el formato siguiente:

```
MISCA 706 97 <STX> CAMPO 5, … CAMPO 101, <ETX> <CR>
```

1. Código de respuesta al comando SNDA
2. Número de bytes entre <STX> y <CR>
3. Número de campos de datos entre <STX> y <ETX>
4. Inicio de transmisión (02 hex)
5. Campo de datos, alineado a la izquierda y completado con espacios
6. Fin de transmisión (03 hex)
7. Retorno de carro de terminación

Los campos no disponibles se marcan como "No utilizados". Los guiones bajos representan uno o varios espacios que llenan cada cadena de caracteres.
En la tabla siguiente se enumeran las respuestas MISCA a los comandos SNDA.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISCA</td>
<td>Respuesta al comando SNDA (5 caracteres)</td>
</tr>
<tr>
<td>706</td>
<td>El número de bytes entre <STX> y <CR> (3 caracteres)</td>
</tr>
<tr>
<td>97</td>
<td>El número de campos entre <STX> y <ETX> (2 caracteres)</td>
</tr>
<tr>
<td><STX></td>
<td>Carácter de inicio de transmisión (02 hex)</td>
</tr>
<tr>
<td>Campo 5</td>
<td>Hora del respirador (HH:MM_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 6</td>
<td>ID del respirador para permitir hosts externos e identificar de forma exclusiva cada respirador 980 de Puritan Bennett™ (18 caracteres)</td>
</tr>
<tr>
<td>Campo 7</td>
<td>Número de habitación (6 caracteres)</td>
</tr>
<tr>
<td>Campo 8</td>
<td>Fecha (MMM_DD_YYYY_) (12 caracteres)</td>
</tr>
<tr>
<td>Campo 9</td>
<td>Parámetro modo (CMV___, SIMV__, CPAP__ or BILEVL) (CMV = A/C) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 10</td>
<td>Parámetro de frecuencia respiratoria en respiraciones por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 11</td>
<td>Parámetro de volumen corriente en litros (6 caracteres)</td>
</tr>
<tr>
<td>Campo 12</td>
<td>Parámetro de flujo máximo en litros por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 13</td>
<td>Parámetro de porcentaje de O₂ (6 caracteres)</td>
</tr>
<tr>
<td>Campo 14</td>
<td>Parámetro de sensibilidad por presión en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 15</td>
<td>Parámetro de PEEP o Pₜ (en BiLevel) en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 16</td>
<td>Tiempo de meseta en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 17-20</td>
<td>No utilizado (6 caracteres)</td>
</tr>
<tr>
<td>Campo 21</td>
<td>Intervalo de apnea en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 22</td>
<td>Parámetro de volumen corriente de apnea en litros (6 caracteres)</td>
</tr>
<tr>
<td>Campo 23</td>
<td>Parámetro de frecuencia respiratoria de apnea en respiraciones por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 24</td>
<td>Parámetro de flujo máximo de apnea en litros por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 25</td>
<td>Parámetro de porcentaje de O₂ de apnea (6 caracteres)</td>
</tr>
<tr>
<td>Campo 26</td>
<td>Parámetro de mantenimiento de la presión en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 27</td>
<td>Parámetro del patrón de flujo (CUADRADO o RAMPA__) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 28-29</td>
<td>No utilizado (6 caracteres)</td>
</tr>
</tbody>
</table>
Tabla 5-1. Respuesta MISCA (continuación)

<table>
<thead>
<tr>
<th>Componente</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo 30</td>
<td>Estado elevar O₂ (ENCENDIDO___ o APAGADO___) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 31-33</td>
<td>No utilizado (6 caracteres)</td>
</tr>
<tr>
<td>Campo 34</td>
<td>Parámetro frecuencia respiratoria total en respiraciones por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 35</td>
<td>Volumen corriente espirado en litros (6 caracteres)</td>
</tr>
<tr>
<td>Campo 36</td>
<td>Parámetro de volumen espirado por minuto en litros (6 caracteres)</td>
</tr>
<tr>
<td>Campo 37</td>
<td>Volumen espontáneo por minuto en litros (6 caracteres)</td>
</tr>
<tr>
<td>Campo 38</td>
<td>Presión de circuito máxima en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 39</td>
<td>Presión media de las vías aéreas en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 40</td>
<td>Presión inspiratoria final en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 41</td>
<td>Componente espiratorio de valor monitorizado de la relación I:E, suponiendo un componente inspiratorio de 1 (6 caracteres)</td>
</tr>
<tr>
<td>Campo 42</td>
<td>Límite de presión máxima del circuito en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 43-44</td>
<td>No utilizado (6 caracteres)</td>
</tr>
<tr>
<td>Campo 45</td>
<td>Límite de volumen mínimo corriente espirado en litros (6 caracteres)</td>
</tr>
<tr>
<td>Campo 46</td>
<td>Límite de volumen mínimo espirado por minuto en litros (6 caracteres)</td>
</tr>
<tr>
<td>Campo 47</td>
<td>Límite de frecuencia respiratoria máxima en respiraciones por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 48</td>
<td>Estado de alarma de presión máxima del circuito (NORMAL, ALARMA_ o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 49-50</td>
<td>No utilizado (6 caracteres)</td>
</tr>
<tr>
<td>Campo 51</td>
<td>Estado de alarma de volumen corriente espirado mínimo (mandatorio o espontáneo) (NORMAL, ALARMA_ o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 52</td>
<td>Estado de alarma de volumen mínimo espirado por minuto (NORMAL, ALARMA_ o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 53</td>
<td>Estado de alarma de frecuencia respiratoria máxima (NORMAL, ALARMA_ o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 54</td>
<td>Estado de alarma de suministro sin O₂ (NORMAL, ALARMA_ o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 55</td>
<td>Estado de alarma sin suministro de aire (NORMAL, ALARMA_ o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 56</td>
<td>No utilizado (6 caracteres)</td>
</tr>
<tr>
<td>Campo 57</td>
<td>Estado de alarma de apnea (NORMAL, ALARMA_ o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 58-59</td>
<td>No utilizado (6 caracteres)</td>
</tr>
<tr>
<td>Componente</td>
<td>Descripción</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Campo 60</td>
<td>Hora del respirador (HH:MM_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 61</td>
<td>No utilizado (6 caracteres)</td>
</tr>
<tr>
<td>Campo 62</td>
<td>Fecha (MMM_DD_YYYY_) (12 caracteres)</td>
</tr>
<tr>
<td>Campo 63</td>
<td>Compliancia estática (C_{STAT}) de maniobra de pausa inspiratoria en mL/cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 64</td>
<td>Resistencia estática (R_{STAT}) de maniobra de pausa inspiratoria en cmH$_2$O/L/s (6 caracteres)</td>
</tr>
<tr>
<td>Campo 65</td>
<td>Compliancia dinámica (C_{DYN}) en mL/cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 66</td>
<td>Resistencia dinámica (R_{DYN}) en cmH$_2$O/L/s (6 caracteres)</td>
</tr>
<tr>
<td>Campo 67</td>
<td>Fuerza inspiratoria negativa (NIF) en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 68</td>
<td>Capacidad vital (VC) en L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 69</td>
<td>Flujo espontáneo máximo (PSF) en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 70</td>
<td>Flujo base establecido por el respirador por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 71</td>
<td>Parámetro de sensibilidad por flujo en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 72-83</td>
<td>No utilizado (6 caracteres)</td>
</tr>
<tr>
<td>Campo 84</td>
<td>Presión inspiratoria final en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 85</td>
<td>Parámetro de presión inspiratoria o P_H en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 86</td>
<td>Parámetro de tiempo inspiratorio o T_H en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 87</td>
<td>Parámetro de intervalo de apnea en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 88</td>
<td>Parámetro de presión inspiratoria de apnea en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 89</td>
<td>Parámetro de frecuencia respiratoria de apnea en respiraciones por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 90</td>
<td>Parámetro de tiempo inspiratorio de apnea en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 91</td>
<td>Parámetro de porcentaje de O$_2$ de apnea (6 caracteres)</td>
</tr>
<tr>
<td>Campo 92</td>
<td>Límite de presión máxima del circuito de apnea en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 93</td>
<td>Estado de sonido en pausa (ACTIVADO _____ o DESACTIVADO___) (6 caracteres).</td>
</tr>
<tr>
<td>Campo 94</td>
<td>Estado de alarma de apnea (NORMAL, ALARMA_, o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 95</td>
<td>Estado de oclusión severa/alarma Desconectar (NORMAL, ALARMA_, o RESTAB_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 96</td>
<td>Componente inspiratorio de la relación I:E o componente alto de H:L (BiLevel) (6 caracteres)</td>
</tr>
</tbody>
</table>
Información sobre los datos del producto

5.4.7 Comando SNDF

SNDF es un comando enviado desde un dispositivo host externo al sistema del respirador para indicarle que transmita todos los datos de parámetros del respirador, los datos del paciente monitorizado y situaciones y parámetros de alarma. Introduzca el comando SNDF exactamente como se muestra:

SNDF<CR>

Cuando el respirador recibe el comando SNDF<CR>, responde con el código MISCF, seguido de la información relativa a los parámetros del respirador, los datos del paciente monitorizado e información de alarmas.

La respuesta MISCF adopta el formato siguiente:

```
<table>
<thead>
<tr>
<th>MISCF</th>
<th>1225*</th>
<th>169</th>
<th>&lt;STX&gt;</th>
<th>CAMPO 5, … CAMPO 169,</th>
<th>&lt;ETX&gt;</th>
<th>&lt;CR&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
```

1. Código de respuesta al comando SNDF
2. Número de bytes entre <STX> y <CR>
3. Número de campos de datos entre <STX> y <ETX>
4. Inicio de transmisión (02 hex)

Cuadro 5-1. Respuesta MISCA (continuación)

<table>
<thead>
<tr>
<th>Componente</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo 97</td>
<td>Componente espiratorio de la relación I:E o componente bajo de H:L (BiLevel) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 98</td>
<td>Parámetro de componente inspiratorio de apnea de la relación I:E (6 caracteres)</td>
</tr>
<tr>
<td>Campo 99</td>
<td>Parámetro de componente espiratorio de apnea de la relación I:E (6 caracteres)</td>
</tr>
<tr>
<td>Campo 100</td>
<td>Constante durante el cambio de parámetro de frecuencia de respiraciones mandatorias con control de presión (I-TIME o I/E___ o______) (6 caracteres) (donde ______ representa TE o PCV no activo)</td>
</tr>
<tr>
<td>Campo 101</td>
<td>Valor monitorizado de la relación I:E (6 caracteres)</td>
</tr>
<tr>
<td><ETX></td>
<td>Carácter de fin de transmisión (03 hex)</td>
</tr>
<tr>
<td><CR></td>
<td>Retorno de carro de terminación</td>
</tr>
</tbody>
</table>
En la tabla siguiente se enumeran las respuestas MISCF a los comandos SNDF.

Nota:
Los campos no aplicables contendrán un cero o estarán en blanco.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISCF</td>
<td>Respuesta al comando SNDF (5 caracteres)</td>
</tr>
<tr>
<td>1225*</td>
<td>Número de bytes entre <STX> y <CR> (4 caracteres) *1229 si se selecciona Phillips para el puerto Com en la configuración de comunicaciones</td>
</tr>
<tr>
<td>169</td>
<td>Número de campos entre <STX> y <ETX> (3 caracteres)</td>
</tr>
<tr>
<td><STX></td>
<td>Carácter de inicio de transmisión (02 hex)</td>
</tr>
<tr>
<td>Campo 5</td>
<td>Hora del respirador (HH:MM_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 6</td>
<td>ID del respirador para permitir hosts externos e identificar de forma exclusiva cada respirador 980 de Puritan Bennett™ (18 caracteres)</td>
</tr>
<tr>
<td>Campo 7</td>
<td>Fecha (MMM_DD_YYYY_) (12 caracteres)</td>
</tr>
<tr>
<td>Campo 8</td>
<td>Tipo de ventilación (NIV______ o INVASIVE_) (9 caracteres)</td>
</tr>
<tr>
<td>Campo 9</td>
<td>Modo (A/C___, SIMV__, SPONT_ o CPAP) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 10</td>
<td>Tipo mandatorio (PC____, VC____, VC+_) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 11</td>
<td>Tipo espontáneo (PS____, TC____, VS____, PA____ (6 caracteres)</td>
</tr>
<tr>
<td>Campo 12</td>
<td>Parámetro de tipo de trigger (V_TRIG, P_TRIG) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 13</td>
<td>Parámetro de frecuencia respiratoria en respiraciones por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 14</td>
<td>Parámetro de volumen corriente (V) en L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 15</td>
<td>Parámetro de flujo máximo (V_MAX) en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 16</td>
<td>Parámetro de porcentaje de O₂ (6 caracteres)</td>
</tr>
<tr>
<td>Campo 17</td>
<td>Parámetro de sensibilidad por presión en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 18</td>
<td>PEEP/CPAP en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 19</td>
<td>Parámetro de meseta en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 20</td>
<td>Parámetro de intervalo de apnea en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 21</td>
<td>Parámetro de volumen corriente de apnea en L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 22</td>
<td>Parámetro de frecuencia respiratoria de apnea en respiraciones por minuto (6 caracteres)</td>
</tr>
<tr>
<td>Campo 23</td>
<td>Parámetro de flujo máximo de apnea en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 24</td>
<td>Parámetro de porcentaje de O₂ de apnea (6 caracteres)</td>
</tr>
<tr>
<td>Componente</td>
<td>Descripción</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Campo 25</td>
<td>Parámetro de presión inspiratoria de apnea PCV en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 26</td>
<td>Parámetro de tiempo inspiratorio de apnea PCV en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 27</td>
<td>Parámetro de patrón del flujo de apnea (CUADRADO o RAMPA) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 28</td>
<td>Parámetro de tipo mandatorio de apnea (PC o VC) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 29</td>
<td>Componente inspiratorio de apnea de la relación I:E (si el tipo mandatorio de apnea es PC) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 30</td>
<td>Componente espiratorio de apnea de la relación I:E (si el tipo mandatorio de apnea es PC) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 31</td>
<td>Parámetro de mantenimiento de la presión (cmH$_2$O)</td>
</tr>
<tr>
<td>Campo 32</td>
<td>Parámetro del patrón de flujo (CUADRADO o RAMPA) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 33</td>
<td>Estado elevar O$_2$ (ENCENDIDO o APAGADO) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 34</td>
<td>Parámetro de alarma de presión máxima inspiratoria (P_{PEAK}) en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 35</td>
<td>Parámetro de alarma de presión mínima inspiratoria (P_{PEAK}) en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 36</td>
<td>Parámetro de alarma de volumen máximo espirado por minuto (V_{ETOT}) en L/min o APAGADA (6 caracteres)</td>
</tr>
<tr>
<td>Campo 37</td>
<td>Parámetro de alarma de volumen mínimo espirado por minuto (V_{ETOT}) en L/min o APAGADA (6 caracteres)</td>
</tr>
<tr>
<td>Campo 38</td>
<td>Parámetro de alarma de volumen corriente mandatorio máximo espirado (V_{TEMAND}) en mL o APAGADA (6 caracteres)</td>
</tr>
<tr>
<td>Campo 39</td>
<td>Parámetro de alarma de volumen corriente mandatorio mínimo espirado (V_{TEMAND}) en mL o APAGADA (6 caracteres)</td>
</tr>
<tr>
<td>Campo 40</td>
<td>Parámetro de alarma de volumen corriente espontáneo máximo espirado ($V_{TESPONT}$) en mL o APAGADA (6 caracteres)</td>
</tr>
<tr>
<td>Campo 41</td>
<td>Parámetro de alarma de volumen corriente espontáneo mínimo espirado ($V_{TESPONT}$) en mL o APAGADA (6 caracteres)</td>
</tr>
<tr>
<td>Campo 42</td>
<td>Parámetro de alarma de frecuencia respiratoria máxima (f_{TOT}) en respiraciones/min. o APAGADA (6 caracteres)</td>
</tr>
<tr>
<td>Campo 43</td>
<td>Parámetro de alarma de volumen corriente inspirado máximo (V_{I}) en mL (6 caracteres)</td>
</tr>
<tr>
<td>Campo 44</td>
<td>Parámetro de flujo base en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 45</td>
<td>Parámetro de sensibilidad por flujo (V_{SENS}) en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 46</td>
<td>Parámetro de presión inspiratoria PCV (P$_i$) en cmH$_2$O (6 caracteres)</td>
</tr>
<tr>
<td>Componente</td>
<td>Descripción</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Campo 47</td>
<td>Parámetro de tiempo inspiratorio PCV (T_I) en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 48</td>
<td>Parámetro de componente inspiratorio de la relación I: E o parámetro de componente alto de la relación H: L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 49</td>
<td>Parámetro de componente espiratorio de la relación I: E o parámetro de componente bajo de la relación H: L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 50</td>
<td>Parámetro de constante durante el cambio de frecuencia (I-time, E: VE o E-time) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 51</td>
<td>Parámetro de ID del tubo en mm (6 caracteres)</td>
</tr>
<tr>
<td>Campo 52</td>
<td>Parámetro de tipo de tubo (ET o TRACH) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 53</td>
<td>Parámetro de tipo de humidificación (tubo espiratorio no calentado, tubo espiratorio calentado o HME) (18 caracteres)</td>
</tr>
<tr>
<td>Campo 54</td>
<td>Parámetro de volumen del humidificador en L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 55</td>
<td>Parámetro del sensor de O_2 (habilitado o deshabilitado) (9 caracteres)</td>
</tr>
<tr>
<td>Campo 56</td>
<td>Parámetro de desconexión de sensibilidad (DSENS) en porcentaje o APAGADO (6 caracteres)</td>
</tr>
<tr>
<td>Campo 57</td>
<td>Parámetro de porcentaje del tiempo de rampa (6 caracteres)</td>
</tr>
<tr>
<td>Campo 58</td>
<td>PAV+ parámetro de porcentaje de soporte en porcentaje o L/min para PAV+ tipo de respiración (6 caracteres)</td>
</tr>
<tr>
<td>Campo 59</td>
<td>Parámetro de sensibilidad espiratoria (ESENS) en porcentaje o L/min para PAV+ tipo de respiración (6 caracteres)</td>
</tr>
<tr>
<td>Campo 60</td>
<td>Parámetro de PBW en Kg (6 caracteres)</td>
</tr>
<tr>
<td>Campo 61</td>
<td>Parámetro de volumen de soporte objetivo (VT_SUPP) en L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 62</td>
<td>Parámetro de presión máxima (P_U) (en BiLevel) en cmH_2O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 63</td>
<td>Parámetro de presión mínima (P_L) (en BiLevel) en cmH_2O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 64</td>
<td>Parámetro de tiempo de presión máxima (T_U) (en BiLevel) en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 65</td>
<td>Límite de tiempo inspiratorio espontáneo máximo (TISPONT) en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 66</td>
<td>Parámetro de tipo de circuito (ADULTO O PEDIÁTRICO) (9 caracteres)</td>
</tr>
<tr>
<td>Campo 67</td>
<td>Parámetro de tiempo de presión mínima (T_L) (en BiLevel) en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 68</td>
<td>Parámetro de tiempo espiratorio (T_J) en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 69</td>
<td>Parámetro de presión inspiratoria final (P_IEND) en cmH_2O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 70</td>
<td>Parámetro de frecuencia respiratoria (fTOT) en respiraciones por minuto (6 caracteres)</td>
</tr>
</tbody>
</table>
Información sobre los datos del producto

Tabla 5-2. Respuesta MISCF (continuación)

<table>
<thead>
<tr>
<th>Componente</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo 71</td>
<td>Volumen corriente espirado (V_{TE}) en L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 72</td>
<td>Volumen espirado del paciente por minuto (V_{ETOT}) en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 73</td>
<td>Presión máxima de las vías aéreas (P_{PEAK}) en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 74</td>
<td>Presión media de las vías aéreas (P_{MEAN}) en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 75</td>
<td>Componente espiratorio de valor monitorizado de la relación I:E, suponiendo un componente inspiratorio de 1 (6 caracteres)</td>
</tr>
<tr>
<td>Campo 76</td>
<td>Relación I:E (6 caracteres)</td>
</tr>
<tr>
<td>Campo 77</td>
<td>Porcentaje de O₂ administrado (6 caracteres)</td>
</tr>
<tr>
<td>Campo 78</td>
<td>Volumen corriente inspirado (V_{T}) en L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 79</td>
<td>PEEP intrínseca (PEEP) en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 80</td>
<td>Resistencia total estimada (R_{TOT}) en cmH₂O/L/s (6 caracteres)</td>
</tr>
<tr>
<td>Campo 81</td>
<td>Resistencia paciente estimada (R_{PAV}) en cmH₂O/L/s (6 caracteres)</td>
</tr>
<tr>
<td>Campo 82</td>
<td>Elastancia paciente estimada (E_{PAV}) en cmH₂O/L/s (6 caracteres)</td>
</tr>
<tr>
<td>Campo 83</td>
<td>Compliancia del paciente estimada (C_{PAV}) en mL/cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 84</td>
<td>No utilizado</td>
</tr>
<tr>
<td>Campo 85</td>
<td>Índice de respiraciones rápidas superficiales (f/V_{T}) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 86</td>
<td>Tiempo inspiratorio de porcentaje espontáneo ($T_{I/TTOT}$) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 87</td>
<td>PEEP supervisada en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 88</td>
<td>Tiempo inspiratorio espontáneo ($T_{I SPONT}$) en segundos (6 caracteres)</td>
</tr>
<tr>
<td>Campo 89</td>
<td>Volumen espirado espontáneo por minuto ($V_{E SPONT}$) en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 90</td>
<td>PEEP intrínseca (PEEP) de maniobra de pausa espiratoria en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 91</td>
<td>PEEP total (PEEP$_{TOT}$) de maniobra de pausa espiratoria en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 92</td>
<td>Compliancia estática (C_{STAT}) de maniobra de pausa inspiratoria en mL/cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 93</td>
<td>Resistencia estática (R_{STAT}) de maniobra de pausa inspiratoria en cmH₂O/L/s (6 caracteres)</td>
</tr>
<tr>
<td>Campo 94</td>
<td>Presión de meseta (P_{PL}) de maniobra de pausa inspiratoria en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 95</td>
<td>Tiempo inspiratorio espontáneo máximo (ALERTA o en blanco) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 96</td>
<td>Compliancia dinámica (C_{DYN}) en mL/cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 97</td>
<td>Resistencia dinámica (R_{DYN}) en cmH₂O/L/s (6 caracteres)</td>
</tr>
<tr>
<td>Componente</td>
<td>Descripción</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Campo 98</td>
<td>Flujo espontáneo máximo (PSF) en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 99</td>
<td>Flujo espiratorio máximo (PEF) en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 100</td>
<td>Flujo espiratorio final (EEF) en L/min (6 caracteres)</td>
</tr>
<tr>
<td>Campo 101</td>
<td>Reservado</td>
</tr>
<tr>
<td>Campo 102</td>
<td>Fuerza inspiratoria negativa (NIF) en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 103</td>
<td>Cambio de presión P₀,₁ en cmH₂O (6 caracteres)</td>
</tr>
<tr>
<td>Campo 104</td>
<td>Capacidad vital (VC) en L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 105</td>
<td>Sonido en pausa (ACTIVADO o DESACTIVADO) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 106</td>
<td>Alarma de ventilación de apnea* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 107</td>
<td>Alarma de volumen máximo espirado por minuto* (↑VₑTOT) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 108</td>
<td>Alarma de volumen corriente espirado máximo* (↑VTₑ) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 109</td>
<td>Alarma de porcentaje alto de O₂* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 110</td>
<td>Alarma de presión inspiratoria máxima* (↑PₑPEAK) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 111</td>
<td>Alarma de presión máxima del respirador* (↑PₑVENT) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 112</td>
<td>Alarma de frecuencia respiratoria máxima* (↑fₑTOT) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 113</td>
<td>Alarma de pérdida de alimentación de CA* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 114</td>
<td>Alarma de batería no operativa* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 115</td>
<td>Alarma de batería baja* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 116</td>
<td>Alarma de pérdida de alimentación* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 117</td>
<td>Alarma de volumen corriente mandatorio espirado mínimo* (↓VTₑMAND) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 118</td>
<td>Alarma de volumen mínimo espirado por minuto* (↓VₑTOT) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 119</td>
<td>Alarma de volumen mínimo corriente espontáneo espirado* (↓VTₑSPONT) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 120</td>
<td>Alarma de porcentaje bajo de O₂* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 121</td>
<td>Alarma de presión del suministro de aire bajo* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 122</td>
<td>Alarma de presión de suministro de O₂ bajo* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 123</td>
<td>Alarma de compresor no operativo* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 124</td>
<td>Alarma Desconectar* (6 caracteres)</td>
</tr>
</tbody>
</table>

* Las posibles respuestas son: NORMAL, BAJO, MEDIO, ALTO o RESTABLECER.
<table>
<thead>
<tr>
<th>Componente</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo 125</td>
<td>Alarma de oclusión severa* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 126</td>
<td>Alarma de inspiración muy larga* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 127</td>
<td>Error de procedimiento* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 128</td>
<td>Alarma de volumen corriente limitado de compliancia* (V_T) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 129</td>
<td>Alarma de volumen corriente espontáneo espirado máximo* (T_{SPONT}) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 130</td>
<td>Reservado</td>
</tr>
<tr>
<td>Campo 131</td>
<td>Alarma de límite de compensación alta* ($\uparrow P_{COMP}$) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 132</td>
<td>Alarma de Inicio PAV + inspiración muy larga* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 133</td>
<td>Alarma de PAV+ R y C no evaluadas* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 134</td>
<td>Alarma de volumen no administrado (VC+)* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 135</td>
<td>Alarma de volumen no administrado (VS)* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 136</td>
<td>Alarma de presión inspiratoria mínima* ($\downarrow P_{PEAK}$) (6 caracteres)</td>
</tr>
<tr>
<td>Campo 137</td>
<td>Fallo de funcionamiento técnico A5* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 138</td>
<td>Fallo de funcionamiento técnico A10* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 139</td>
<td>Fallo de funcionamiento técnico A15* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 140</td>
<td>Fallo de funcionamiento técnico A20* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 141</td>
<td>Fallo de funcionamiento técnico A25* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 142</td>
<td>Fallo de funcionamiento técnico A30* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 143</td>
<td>Fallo de funcionamiento técnico A35* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 144</td>
<td>Fallo de funcionamiento técnico A40* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 145</td>
<td>Fallo de funcionamiento técnico A45* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 146</td>
<td>Fallo de funcionamiento técnico A50* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 147</td>
<td>Fallo de funcionamiento técnico A55* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 148</td>
<td>Fallo de funcionamiento técnico A60* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 149</td>
<td>Fallo de funcionamiento técnico A65* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 150</td>
<td>Fallo de funcionamiento técnico A70* (6 caracteres)</td>
</tr>
</tbody>
</table>

* Las posibles respuestas son: NORMAL, BAJO, MEDIO, ALTO o RESTABLECER.
5.5 Puertos de comunicación

ADVERTENCIA:
Para evitar posibles lesiones, conecte solo dispositivos que cumplen la norma IEC 60601-1 a los puertos situados en la parte posterior del respirador, exceptuando los dispositivos pasivos de almacenamiento en memoria (“unidades flash”) y los cables adaptadores de USB a puerto en serie. Si se utiliza un cable adaptador de USB a puerto en serie debe estar conectado a un dispositivo que cumpla la norma IEC 60601-1.

ADVERTENCIA:
Para evitar posibles lesiones, cuando el respirador esté ventilando al paciente, no conecte ningún dispositivo que esté conectado al paciente a ninguno de los puertos no clínicos que se indican a continuación.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campo 151</td>
<td>Fallo de funcionamiento técnico A75* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 152</td>
<td>Fallo de funcionamiento técnico A80* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 153</td>
<td>Fallo de funcionamiento técnico A85* (6 caracteres)</td>
</tr>
<tr>
<td>Campo 154</td>
<td>Volumen corriente espontáneo (V_{TE SPONT}) en litros (6 caracteres)</td>
</tr>
<tr>
<td>Campo 155</td>
<td>Trabajo respiratorio total (WOB_{TOT}) en julios/L (6 caracteres)</td>
</tr>
<tr>
<td>Campo 156</td>
<td>Estado Leak Sync (9 caracteres) (ENCENDIDO O APAGADO)</td>
</tr>
<tr>
<td>Campo 157</td>
<td>Porcentaje de LEAK (6 caracteres)</td>
</tr>
<tr>
<td>Campo 158</td>
<td>LEAK (6 caracteres)</td>
</tr>
<tr>
<td>Campo 159</td>
<td>V_{LEAK} (6 caracteres)</td>
</tr>
<tr>
<td>Campo 160</td>
<td>Alarma prox. no operativo* (ALARMA o NORMAL)</td>
</tr>
<tr>
<td>Campo 161-171</td>
<td>Reservado</td>
</tr>
<tr>
<td><ETX></td>
<td>Carácter de fin de transmisión (03 hex)</td>
</tr>
<tr>
<td><CR></td>
<td>Retorno de carro de terminación</td>
</tr>
</tbody>
</table>

* Las posibles respuestas son: NORMAL, BAJO, MEDIO, ALTO o RESTABLECER.
Información sobre los datos del producto

5.5.1 Uso de los puertos

Consulte Transmisión de datos, p. 5-1 para obtener información sobre los detalles de la transferencia de datos.

Puerto RS-232

Para utilizar el puerto RS-232
1. Es necesario un cable con un conector DB-9 macho para conectar el puerto RS-232 al respirador.
2. Realice la conexión apropiada a un dispositivo de monitorización. Se puede necesitar un cambiador de género, un cable de módem nulo o protector de enchufe. Consulte con el profesional de tecnología de la información del centro sanitario.

3. Asegúrese de especificar la velocidad en baudios, la paridad y los bits de datos en la configuración de comunicaciones del respirador de modo que coincidan con los parámetros del dispositivo de monitorización.

4. Para obtener los datos del respirador se necesita un monitor diseñado para utilizar este puerto. Configure el dispositivo de monitorización para recibir los datos del respirador. Entre estos datos se incluyen los datos de forma de onda.

5. Programe el dispositivo remoto y envíe los comandos RS-232 apropiados como se describen en la siguiente sección.

Consulte *Respuesta MISCA*, p. 5-7 y *Respuesta MISCF*, p. 5-11, para ver las respuestas MISCA y MISCF a los comandos SNDA y SNDF.

Puerto de Ethernet

El puerto de Ethernet lo utiliza el personal de servicio para acceder a los diversos registros y actualizar el software del respirador.

Puerto llamada a enfermera

En el sistema del respirador existe una alarma remota o una función de llamada a enfermera que puede utilizarse para emitir de modo remoto el estado de alarma del respirador. Las alarmas de prioridad media y alta se emiten de modo remoto. El conector de llamada a enfermera está situado en la parte posterior del respirador, como se muestra. Consulte *Ubicaciones de los puertos*, p. 5-18.

Consulte las instrucciones de uso del fabricante de la alarma remota para obtener información sobre la conexión correcta de la llamada a enfermera.

Puertos USB

Los puertos USB se utilizan para las capturas de pantalla o para recibir datos en serie cuando el puerto USB se ha configurado para puerto en serie. Esto también se conoce como transmisión de datos por medio de una conexión en serie con un protocolo USB. Consulte *Configuración de comunicaciones*, p. 5-4, para ver los detalles sobre la configuración del puerto Com. A fin de realizar capturas de pantalla se necesita un dispositivo USB externo de almacenamiento en memoria (“unidad flash”) para capturas de pantalla. Se proporcionan las instrucciones de uso de este puerto para las capturas de pantalla. Consulte *Para capturar pantallas de la GUI*, p. 5-2.
Puerto HDMI

Se puede utilizar una pantalla externa por medio de una conexión con el puerto HDMI.

Para utilizar el puerto HDMI con una pantalla externa

1. Conecte un extremo del cable HDMI al puerto HDMI situado en la parte posterior del respirador (elemento 6, arriba).

2. Conecte el otro extremo del cable a la pantalla externa. Puede utilizarse un adaptador de HDMI a DVI.

3. Encienda el dispositivo. La GUI se muestra en el dispositivo de pantalla externa.

Puerto de servicio

El puerto de servicio solo lo puede utilizar el personal del servicio técnico.

5.6 Recuperación de datos almacenados

Los datos del respirador se guardan en varios registros a los que se puede acceder mediante el icono de registro. Se puede acceder a algunos registros durante la ventilación normal, y algunos solo están disponibles para el personal de Covidien cuando el respirador se encuentra en modo de servicio. Consulte Registros del respirador, p. 8-2 para obtener más información sobre los datos almacenados en varios registros.

5.7 Configuración de las pantallas

El operador puede configurar algunos parámetros del respirador según sus preferencias personales. Consulte Configuración del respirador, p. 3-33, para ver la tabla donde se muestran los parámetros configurables y quién los puede configurar.

Consulte Preparación del respirador para su uso, p. 3-34, para obtener información sobre cómo configurar cada pantalla.

5.8 Impresión de datos o capturas de pantalla

El respirador no puede conectarse directamente a una impresora.

Guarde las capturas de pantalla en un dispositivo de almacenamiento externo, como una unidad flash de USB, y después imprima desde el ordenador. Consulte Captura de pantalla de la GUI, p. 5-2, para ver las instrucciones sobre cómo utilizar la función de captura de pantalla.
5.9 Conectividad a sistemas externos

El respirador es compatible con los sistemas de monitorización Philips Medical IntelliVue MP50 y Spacelabs Ultraview.

Nota:
No todos los monitores de pacientes son compatibles con el respirador serie 980 de Puritan Bennett™.
6 Rendimiento

6.1 Descripción general

Este capítulo contiene información detallada sobre el rendimiento del respirador serie 980 de Puritan Bennett™, entre la que se incluye:

- Parámetros del respirador
- Interpretación de las alarmas y pruebas de las alarmas
- Descripción detallada de determinadas alarmas
- Datos del paciente monitorizados

6.2 Opciones del sistema

Existen varias opciones de software disponibles en el respirador. Los detalles de dichas opciones se describen en los apéndices que se incluyen en este manual. La información relativa a la opción de hardware del compresor se incluye en apéndice del Manual del usuario del compresor.

6.3 Consideraciones medioambientales

ADVERTENCIA:
El uso del respirador/compresor en altitudes superiores o presiones barométricas inferiores a las especificadas podría afectar a su funcionamiento. Consulte *Especificaciones ambientales*, p. 11-8, para obtener un listado completo de las especificaciones medioambientales.
6.4 Configuración del respirador

Los parámetros del respirador predeterminados se basan en el tipo de circuito seleccionado durante el SST. Se pueden utilizar un circuito para pacientes neonatales, pediátricos o adultos, y todos los accesorios necesarios para ventilar al paciente cuando se realiza el SST.

6.4.1 Tipo de ventilación

El profesional sanitario ha de introducir el tipo de ventilación para especificar de qué modo se va a ventilar al paciente: de forma invasiva o no invasiva (NIV). El tipo de ventilación optimiza los límites de alarma de los pacientes NIV y deshabilita algunos parámetros de la ventilación NIV.

6.4.2 Modo

Los modos de ventilación disponibles son los modos mandatorios (A/C) o espontáneo (SPONT), así como dos modos “mixtos”: SIMV y BiLevel.

- **A/C (Asistida-Controlada)** — El modo A/C (Control. Asist.) garantiza la administración de una cantidad mínima de respiraciones mandatorias en base a la frecuencia (f) establecida por el profesional sanitario. Las respiraciones en A/C pueden ser iniciadas por el paciente (ASIST) o por el respirador (CONT).

- **SPONT (Espontáneo)** — El modo SPONT administra únicamente respiraciones espontáneas iniciadas por el paciente.

- **SIMV (Ventilación mandatoria intermitente síncrona)** — SIMV es un modo mixto que permite administrar respiraciones tanto mandatorias como espontáneas. El modo SIMV garantiza como mínimo una respiración mandatoria por ciclo de respiración definido, que puede ser iniciada por el paciente o por el respirador. El tipo mandatorio de una respiración SIMV puede ser PC, VC o VC+.

- **BiLevel** — BiLevel es otro modo mixto que superpone las respiraciones espontáneas del paciente en la estructura de respiración de las respiraciones mandatorias de PC. Este modo hace uso de dos niveles de presión: PL y PH. El intervalo del ciclo de respiración de los modos SIMV y BiLevel es de 60/f, donde f es la frecuencia respiratoria establecida por el operador.

- **CPAP** — CPAP solo está disponible cuando el tipo de circuito es neonatal y el tipo de ventilación es NIV. El modo CPAP permite la respiración espontánea con un nivel de PEEP deseado. A fin de limitar la activación involuntaria de las alarmas asociadas a la ausencia de volúmenes de retorno en la respiración de la CPAP nasal, la CPAP carece de parámetros de alarma para el volumen minuto espirado y el volumen corriente espirado.
6.4.3 Tipo de respiración

Los modos A/C y SIMV incluyen los siguientes tipos de respiración mandatoria: control del volumen (VC), control de la presión (PC) y volumen control plus (VC+). A este conjunto se le suele denominar también de tipo mandatorio.

- **VC (Volumen Control)** — El respirador administra un volumen corriente establecido por el operador.

- **PC (Control de la presión)** — El respirador administra una presión establecida por el operador.

- **VC+ (Control mejorado del volumen)** — Control mejorado del volumen (un tipo de respiración mandatoria y controlada por la presión que no restringe el flujo durante la fase inspiratoria y que ajusta automáticamente la presión inspiratoria objetivo de respiración a respiración para alcanzar el volumen corriente deseado a pesar de los cambiantes estados del pulmón). Consulte Administración de respiraciones mandatorias, p. 10-16 para obtener más información sobre el modo VC+.

Las inspiraciones mandatorias se activan de las siguientes maneras:

- **Trigger por presión (P-TRIG)** — Los cambios en la presión del circuito provocan que el respirador administre una respiración. Estos cambios de la presión están relacionados con la sensibilidad por presión (PSENS) establecida por el operador. Si el paciente hace el esfuerzo de inspirar, la presión de las vías respiratorias disminuye. Si la presión disminuye lo equivalente al menos al valor de PSENS, el respirador administra una respiración.

- **Trigger de flujo (V-TRIG)** — Los cambios en el flujo del circuito provocan que el respirador administre una respiración. La administración respiratoria y los sensores de flujo espiratorio miden el flujo de gas del sistema de respiración del respirador. A medida que el paciente inspira, el flujo administrado se mantiene constante y el sensor de flujo espiratorio mide el flujo reducido. Cuando la diferencia entre las dos mediciones del flujo equivale al menos al valor de sensibilidad por flujo (VSENS) establecido por el operador, el respirador administra una respiración.

- **Trigger de tiempo** — El respirador administra una respiración una vez transcurrido un tiempo específico.

- **Trigger del operador (IM)** — El operador pulsa la tecla de inspiración manual. A la respiración mandatoria iniciada por el operador se le conoce también como respiración IM. Durante una respiración IM, la respiración se administra en base a la configuración actual de una respiración mandatoria.

Los modos de respiración espontánea, tales como SIMV, BiLevel y SPONT, incluyen los siguientes tipos de respiración (denominados de tipo espontáneo):

- **PS (Presión de soporte)** — El respirador administra una presión positiva definida por el operador superior a PEEP (o P1 en BiLevel) durante una respiración espontánea. Si se selecciona SIMV como el modo, se selecciona automáticamente PS para el tipo espontáneo.
• **VS (Volumen de soporte)** — El respirador administra una presión positiva definida por el operador superior a PEEP durante una respiración espontánea y ajusta automáticamente el nivel de presión de respiración a respiración para administrar sistemáticamente el volumen corriente definido.

• **TC (Compensación del tubo)** — Se trata de una presión positiva adicional que se administra al paciente durante el curso de respiraciones espontáneas para superar la resistencia de la vía aérea artificial.

• **PAV+ (Ventilación proporcional asistida)** — Se trata de una opción de software que permite al respirador reducir el trabajo respiratorio (WOB) facilitando la inspiración del paciente mediante una cantidad establecida por el operador y proporcional a la presión generada por el paciente. Consulte el apéndice C, para obtener información sobre el modo PAV+.

Los métodos de activación inspiratoria de las respiraciones espontáneas son:

• **Trigger por presión (P-TRIG)** — Idéntico al descrito en el apartado de triggers de inspiración mandatoria.

• **Trigger de flujo (V-TRIG)** — Idéntico al descrito en el apartado de triggers de inspiración mandatoria.

• **Trigger del operador (IM)** — Como el operador solo puede iniciar una respiración mandatoria pulsando la tecla de inspiración manual, el modo espontáneo admite IM, aunque la respiración se administra en base a la configuración en uso de una respiración de apnea.

Consulte *Inspiración: detección e inicio*, p. 10-5 para obtener información más detallada sobre los distintos métodos de activación.

6.5 Alarmas

⚠️ **ADVERTENCIA:**
El sistema de ventilación no está diseñado para ser un dispositivo de monitorización integral y no activa alarmas para todos los tipos de situaciones. Para un conocimiento detallado del funcionamiento del respirador, asegúrese de leer detenidamente este manual antes de intentar utilizar el sistema de ventilación.

⚠️ **ADVERTENCIA:**
Configurar los límites de alarma como DESC o con valores extremadamente altos o bajos puede hacer que la alarma asociada no se active durante la ventilación, lo que reduce su eficacia para supervisar al paciente y para alertar al profesional sanitario de situaciones que pueden requerir su intervención.
Este manual utiliza las siguientes convenciones al analizar las distintas alarmas existentes:

Una flecha que apunta hacia arriba o hacia abajo (1 o 3) que indica la descripción o el nombre de una alarma sin especificar su parámetro antes del nombre en sí de la propia alarma. Una flecha que apunta hacia arriba o hacia abajo y que contiene un símbolo de límite horizontal (2 o 4) indica el parámetro de alarma antes del nombre específico de la misma. Algunas situaciones de alarma, tales como 1PPEAK y 1VTI, limitan la administración respiratoria interrumpiendo la inspiración y pasando a la fase de espiración. Estas situaciones de alarma aparecen indicadas como límites de alarma. Consulte Descripciones y simbología de las alarmas, p. 6-7.

6.5.1 Mensajes de alarma

Las alarmas se anuncian visualmente por medio de un indicador ubicado en la parte superior de la GUI que dispone de un campo de visión de 360°. Si se produce una situación de alarma, dicho indicador parpadeará a una frecuencia y con un color determinado dependiendo de la prioridad de la alarma. Las alarmas se muestran también a modo de banners de colores en la parte derecha de la pantalla de la GUI. Siempre que se produce una situación de alarma, el color del banner indica la prioridad de la misma (amarillo para prioridad baja (!) y media (!!) y rojo para prioridad alta (!!!)). Para obtener información más detallada acerca de las situaciones de alarma técnicas y no técnicas, consulte sus respectivas tablas en las páginas p. 6-20 y p. 6-34.

Se define una alarma principal si es la alarma inicial. Una alarma dependiente se activa como resultado de las condiciones que han llevado a la alarma principal. A este fenómeno se le denomina también aumento o intensificación del grado de alarma. El software del respirador incorpora una estrategia de intensificación para gestionar situaciones en las que la causa inicial de la alarma goza del suficiente potencial para provocar una o más alarmas adicionales. Cuando se produce una situación de alarma, las alarmas subsiguientes relacionadas con la causa de la alarma inicial intensifican el grado de alarma inicial y no aparecen en la GUI como alarmas independientes. El mensaje de análisis de la alarma inicial se actualizará con la información de las alarmas relacionadas, y la columna de registro de evento de alarma mostrará la alarma inicial como intensificada.

Una alarma principal se compone de un mensaje base, de un mensaje de análisis y de un mensaje de resolución. El mensaje base describe la naturaleza de la alarma principal. El mensaje de análisis describe la causa probable de la alarma y puede incluir intensificaciones de la misma. El mensaje de solución proporciona las instrucciones pertinentes para corregir la situación de alarma.
Los banners de alarma, cuando se desplazan hacia la izquierda desde la parte derecha del GUI, muestran mensajes de las alarmas activas indicadas. La siguiente figura muestra el formato de los mensajes de alarma.

Figura 6-1. Formato de los mensajes de alarma

1. Mensaje base
2. Mensaje de análisis
3. Mensaje de resolución

Una **alarma enganchada** es aquella cuyo indicador visual permanece iluminado incluso si una situación de alarma se ha restablecido automáticamente. Los indicadores de la alarma enganchada están situados en los laterales del LED omnidireccional. Es posible restablecer una alarma enganchada con solo pulsar la tecla de restablecimiento de la alarma. Si no hay ninguna alarma activa, la alarma enganchada de mayor prioridad aparecerá en el LED omnidireccional de la GUI. Una **alarma bloqueable** no pone fin a una función de sonido en pausa activa (no suena una alerta sonora durante una función silenciosa de alarma activa), mientras que una alarma no bloqueable cancela el período de sonido en pausa y emite una alarma audible. Tanto las alarmas de datos de pacientes como la alarma de DESCONEXIÓN DEL CIRCUITO son alarmas bloqueables.

Nota:
Al producirse una nueva situación de alarma bloqueable, la alarma no emitirá un sonido audible si se desactivó la alarma bloqueable anterior.
Las siguientes directrices definen el modo en que se muestran los mensajes de alarma:

- Las alarmas principales precederán a las alarmas dependientes.

- El sistema añadirá alarmas dependientes a los mensajes de análisis de las alarmas principales activas con las que guarden relación. En caso de que se restablezca una alarma dependiente, el sistema la eliminará del mensaje de análisis de la alarma principal.

- El nivel de prioridad de una alarma principal equivale o es superior al nivel de prioridad de cualquier de sus alarmas dependientes activas.

- Una alarma no puede pasar a ser dependiente de una alarma que se produzca posteriormente.

- En caso de que se restablezca una alarma principal, las alarmas dependientes activas pasarán a ser principales a no ser que sean alarmas dependientes de otra alarma principal activa. Este procedimiento se rige por los criterios de restablecimiento de las alarmas principales y dependientes.

- El sistema aplicará el nuevo límite de alarma en base a los cálculos de alarma en el instante en que se acepte el límite de alarma.

- El nivel de prioridad de una alarma dependiente se basa exclusivamente en sus condiciones de detección (y no en la prioridad de las alarmas relacionadas).

- Cuando una alarma provoca que el respirador entre en estado OSC, o válvula de seguridad abierta (SVO), la pantalla de datos del paciente se queda en blanco (incluidas las formas de onda). El tiempo transcurrido sin ventilación mecánica (es decir, desde que el sistema entró en estado de OSC o SVO) se muestra en la pantalla de la GUI. Si la alarma que ha provocado el estado de OSC o SVO se restablece automáticamente, el respirador restablecerá a su vez todos los algoritmos de detección de alarma de los datos de pacientes.

Tabla 6-1. Descripciones y simbología de las alarmas

<table>
<thead>
<tr>
<th>Descripción de las alarmas</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión máxima de compensación</td>
<td>P_{COMP}</td>
</tr>
<tr>
<td>Porcentaje máximo de oxígeno administrado</td>
<td>$O_2%$</td>
</tr>
<tr>
<td>Volumen espirado máximo por minuto</td>
<td>V_{ETOT}</td>
</tr>
<tr>
<td>Parámetro de volumen espirado máximo por minuto</td>
<td>V_{ETOT}</td>
</tr>
<tr>
<td>Volumen corriente espirado máximo</td>
<td>V_T</td>
</tr>
<tr>
<td>Parámetro de volumen corriente espirado máximo</td>
<td>V_T</td>
</tr>
<tr>
<td>Límite de volumen corriente inspirado máximo</td>
<td>V_{TI}</td>
</tr>
</tbody>
</table>
6.5.2 Tecla de restablecimiento de la alarma

La función de restablecimiento de la alarma puede utilizarse en cualquier situación de alarma no técnica. Consulte Gestión de las alarmas, p. 6-16 para conocer la diferencia existente entre las alarmas técnicas y las no técnicas. El restablecimiento de la alarma reinicializa el algoritmo que el respirador emplea para detectar inicialmente la alarma, salvo en situaciones de alarma de PÉRDIDA DE ALIM. CA, COMPRESOR NO OPERATIVO, BATERÍA BAJA, SIN SUMIN. AIRE, SIN SUMIN. O2 y ERROR PROCEDIM., y en alarmas de baterías activas. Si la causa de la alarma sigue estando presente tras pulsar la tecla de restablecimiento de la alarma, la alarma volverá a activarse. El respirador registrará todas las pulsaciones de la tecla de restablecimiento de la alarma.

<table>
<thead>
<tr>
<th>Descripción de las alarmas</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión interna máxima del respirador</td>
<td>↑PVENT</td>
</tr>
<tr>
<td>Frecuencia respiratoria máxima</td>
<td>↑fTOT</td>
</tr>
<tr>
<td>Parámetro de frecuencia respiratoria máxima</td>
<td>↑fTOT</td>
</tr>
<tr>
<td>Tiempo inspiratorio espontáneo máximo</td>
<td>↑TI SPONT</td>
</tr>
<tr>
<td>Límite de tiempo inspiratorio espontáneo máximo</td>
<td>↑TI SPONT</td>
</tr>
<tr>
<td>Presión máxima del circuito</td>
<td>↑PPEAK</td>
</tr>
<tr>
<td>Límite de presión máxima del circuito</td>
<td>↑PPEAK</td>
</tr>
<tr>
<td>Presión del circuito baja</td>
<td>↓PPEAK</td>
</tr>
<tr>
<td>Parámetro de presión del circuito baja</td>
<td>↓PPEAK</td>
</tr>
<tr>
<td>Volumen corriente espirado mandatorio bajo</td>
<td>↓VTE MAND</td>
</tr>
<tr>
<td>Parámetro de volumen corriente espirado mandatorio bajo</td>
<td>↓VTE MAND</td>
</tr>
<tr>
<td>Volumen minuto espirado bajo</td>
<td>↓VETOT</td>
</tr>
<tr>
<td>Parámetro de volumen minuto espirado bajo</td>
<td>↓VETOT</td>
</tr>
<tr>
<td>Volumen corriente espirado espontáneo bajo</td>
<td>↓VTE SPONT</td>
</tr>
<tr>
<td>Parámetro de volumen corriente espirado espontáneo bajo</td>
<td>↓VTE SPONT</td>
</tr>
<tr>
<td>Porcentaje de oxígeno administrado bajo</td>
<td>↓O2%</td>
</tr>
</tbody>
</table>
6.5.3 Tecla de sonido en pausa

ADVERTENCIA:
No ponga en pausa, des habilite ni baje el volumen de la alarma audible del respirador si ello puede poner en peligro la seguridad del paciente.

La función de sonido en pausa silencia temporalmente la parte acústica de una alarma durante dos minutos. Si una vez transcurrido dicho período de dos minutos la situación de alarma sigue presente, la alarma volverá a sonar. En ese caso, si se vuelve a pulsar la tecla de sonido en pausa de la alarma, la alarma volverá a silenciarse durante otro período de dos minutos. Una luz LED se encenderá en la tecla y una cuenta atrás aparecerá en la GUI, al lado del símbolo del indicador de sonido en pausa, para indicar la función de sonido en pausa activa. La función de sonido en pausa no permite desconectar la alarma acústica; solo permite, como ya se ha explicado, silenciar durante dos minutos la parte acústica de la alarma. El LED omnidireccional de la GUI parpadea únicamente durante una situación de alarma activa y durante el período de sonido en pausa y su aspecto cambia según la prioridad si la alarma se intensifica. La tecla de restablecimiento de la alarma cancela el estado de sonido en pausa. Si la causa que ha provocado la alarma sigue estando presente, la alarma volverá a activarse.

6.5.4 Tecla de volumen de la alarma

El sistema dispone de una tecla de volumen de la alarma que permite ajustar el volumen de la misma. El volumen de la alarma viene establecido automáticamente de fábrica en 10 (máximo) o al nivel institucional predeterminado en función del tipo de circuito si ya ha sido previamente configurado. Al ajustar el volumen de la alarma, el sistema emite un tono de muestra para que el médico pueda decidir el volumen más indicado para el entorno en el que se encuentra. Si se produce una situación de alarma de prioridad alta, el volumen de la alarma aumentará en un (1) punto con respecto a su volumen actual si no se atiende dicha situación de alarma en menos de 30 s. Si no se atiende una situación de alarma de prioridad alta en menos de 60 s, el volumen de la misma aumentará progresivamente hasta llegar a su volumen máximo.

Consulte *Para ajustar el volumen de alarma*, p. 3-39, para obtener instrucciones sobre cómo ajustar el volumen de la alarma.
ADVERTENCIA:
El nivel del volumen de audio de la alarma se puede ajustar. El operador debe configurar el volumen a un nivel adecuado que le permita diferenciar el sonido de la alarma de cualquier otro ruido de fondo. Consulte Para ajustar el volumen de alarma, p. 3-39.

6.5.5 Prueba de las alarmas

Para probar las alarmas es necesario contar con fuentes de oxígeno y de aire, así como con un suministro de CA estable. Pruebe las alarmas al menos cada seis meses siguiendo los procedimientos descritos en este manual.

Equipo necesario

• Pulmón de pruebas (Ref. 4-000612-00)
• Circuito para pacientes adultos

Si la alarma no se manifiesta como es de esperar, verifique la configuración del respirador y repita la prueba. Las pruebas de alarmas comprueban el funcionamiento de las siguientes alarmas:

• DESCONEXIÓN DEL CIRCUITO
• VOLUMEN CORRIENTE ESPIRADO MANDATORIO BAJO (\(V_{TE\,MAND} \))
• VOLUMEN TOTAL ESPIRADO BAJO POR MINUTO (\(V_{ETOT} \))
• PRESIÓN MÁXIMA DEL CIRCUITO (\(P_{PEAK} \))
• OCLUSIÓN SEVERA
• PÉRDIDA ALIM. CA
• APNEA
• VOLUMEN CORRIENTE ESPIRADO ESPONTÁNEO BAJO (\(V_{TE\,SPONT} \))
• SIN SUMIN. \(O_2 \)
• PORCENTAJE MÍNIMO DE \(O_2 \) ADMINISTRADO (\(O_2\% \))
• PORCENTAJE MÁXIMO DE \(O_2 \) ADMINISTRADO (\(O_2\% \))
Configuración del respirador para las pruebas de las alarmas

1. Desconecte el circuito del paciente del respirador y apague el respirador durante al menos cinco minutos.

2. Encienda el respirador. El respirador ejecutará POST.

3. Seleccione NUEVO PACIENTE en la GUI.

4. Ajuste el perfil del nuevo paciente utilizando los siguientes parámetros:

 - **PBW**: 70 kg
 - **Tipo de ventilación**: INVASIVE
 - **Modo**: A/C
 - **Tipo mandatorio**: VC
 - **Tipo de trigger**: V-TRIG

5. Establezca los siguientes parámetros para el nuevo paciente:

 - **f**: 6,0 l/min
 - **V_T**: 500 mL
 - **V_MAX**: 30 L/min
 - **TPL**: 0 s
 - **Patrón de flujo**: SQUARE (Cuadrado)
 - **VSENS**: 3 L/min
 - **Porcentaje de O_2**: 21 %
 - **PEEP**: 5 cmH_2O

6. Establezca los siguientes parámetros de apnea:

 - **TA**: 10 s
 - **f**: 6,0 l/min
 - **Porcentaje de O_2**: 21%
 - **V_T**: 500 mL

7. Establezca los siguientes parámetros de alarma:

 - **PPEAK**: 70 cmH_2O
 - **fTOT**: APAGADO
 - **VETOT**: 1 L/min
 - **VETOT**: 3,5 L/min
8. Ajuste la pantalla de gráficas de forma que muestre una gráfica volumen-tiempo (para su uso en la prueba de la alarma de APNEA).

9. Conecte un circuito para pacientes adultos al respirador y acople un pulmón de pruebas al circuito.

Notas:
No toque el pulmón de pruebas ni el circuito del paciente durante la prueba de la alarma de DESCONEXIÓN DEL CIRCUITO para así lograr unos resultados satisfactorios en la misma.

Prueba de la alarma de DESCONEXIÓN DEL CIRCUITO
1. Permite que el respirador administre un mínimo de cuatro respiraciones. Durante la fase inspiratoria de una respiración, desconecte el filtro inspiratorio del puerto para el paciente. El respirador anunciará una alarma de DESCONEXIÓN DEL CIRCUITO al desconectar dicho filtro.

2. Conecte el filtro inspiratorio al puerto Hacia paciente para restablecer automáticamente la alarma.

Prueba de la alarma VOLUMEN CORRIENTE ESPIRADO MANDATORIO BAJO (VT MAND)
Establezca VT en 225 mL. El respirador anunciará una alarma de VOLUMEN CORRIENTE ESPIRADO MANDATORIO BAJO (VT MAND) en la tercera respiración consecutiva tras pulsar Aceptar.

Prueba de alarma de VOLUMEN TOTAL ESPIRADO BAJO POR MINUTO (VE TOT)
Establezca el límite de la alarma VE TOT en 3,45 L/min. El respirador anunciará una alarma de VOLUMEN TOTAL ESPIRADO BAJO POR MINUTO (VE TOT) en la siguiente respiración tras pulsar Aceptar.

Prueba de la alarma PRESIÓN MÁXIMA DEL CIRCUITO (PPEAK)
1. Efectúe los siguientes cambios en los parámetros de paciente y alarma:

 \[V_T \]: 500 mL
 \[V_{MAX} \]: 30 L/min
 \[P_{PEAK} \]: 20 cmH₂O
2. Tras una respiración, el respirador anunciará una alarma de PRESIÓN MÁXIMA DEL CIRCUITO (P_{PEAK}). Si la alarma no suena, compruebe el circuito del paciente en busca de fugas.

Prueba de alarma de OCLUSIÓN SEVERA

1. Efectúe los siguientes cambios en los parámetros de alarma:

 P_{PEAK}: 50 cmH$_2$O

2. Pulse la tecla de restablecimiento de la alarma para restablecer todas las alarmas.

3. Ajuste D_{SENS} al parámetro ν_{MAX}.

4. Desconecte el circuito respiratorio del respirador del puerto DESDE PACIENTE y bloquee el flujo de gas.

5. Mientras mantiene la oclusión, asegúrese de que el indicador de la válvula de seguridad abierta aparece en la pantalla de estado, que la GUI muestra el tiempo transcurrido sin suministrar ventilación mecánica normal y que el pulmón de pruebas se infla y se desinfla rápidamente con pequeños impulsos a medida que el respirador administra respiraciones basadas en la presión.

6. Pulse la tecla de restablecimiento de la alarma para restablecer todas las alarmas.

Prueba de alarma de PÉRDIDA ALIM. CA

1. Permita que el respirador administre un mínimo de cuatro respiraciones y, acto seguido, desconecte el cable de alimentación de la instalación eléctrica de CA. En caso de haber alguna batería cargada, la GUI anunciará una alarma de PÉRDIDA DE ALIM. CA. Si la carga actual de la batería solo tiene autonomía para menos de 10 minutos, la GUI anunciará una alarma de BATERÍA BAJA. Si no hay alimentación de batería, la BDU anunciará una alarma de PÉRDIDA DE ENERGÍA.

2. Conecte el cable de alimentación a la instalación eléctrica de CA. La alarma de PÉRDIDA DE ALIM. CA o de BATERÍA BAJA se restablecerán automáticamente.

Prueba de la alarma de APNEA

1. Efectúe los siguientes cambios en los parámetros de alarma:

 P_{PEAK}: 70 cmH$_2$O

 Modo: SPONT

 Tipo espontáneo: PS

Nota:

Para evitar la activación de una respiración durante el intervalo de apnea, no toque el pulmón de pruebas o el circuito del paciente.
Nota:
En la prueba de la alarma de apnea, el volumen corriente espirado (VTE) que aparece en el apartado de datos del paciente debe ser superior a la mitad del volumen administrado que se muestra en la gráfica volumen-tiempo de la pantalla de gráficas para que la apnea pueda restablecerse automáticamente. Consulte Ventilación de apnea, p. 10-40, para obtener la descripción técnica de la ventilación de apnea.

2. La GUI anunciará una alarma de APNEA a los 10 s de tocar Aceptar.
3. Apriete dos veces el pulmón de pruebas para simular dos respiraciones posteriores iniciadas por el paciente. La alarma de APNEA se restablecerá automáticamente.
4. Permita que el respirador retome la ventilación de apnea.

Prueba de la alarma de VOLUMEN CORRIENTE ESPIRADO ESPONTÁNEO BAJO

1. Efectúe los siguientes cambios en los parámetros de paciente y alarma:
 - **Tipo de trigger:** P-TRIG
 - **PSENS:** 4 cmH₂O
 - **VTE SPONT:** 2500 mL

2. Pulse la tecla de restablecimiento de la alarma para restablecer la alarma de apnea.
3. Apriete lentamente el pulmón de pruebas para simular respiraciones espontáneas. El respirador anunciará una alarma de VOLUMEN CORRIENTE ESPIRADO ESPONTÁNEO BAJO (VTE SPONT) al comienzo de la cuarta inspiración espontánea consecutiva.
4. Efectúe los siguientes cambios en los parámetros de paciente:
 - **Modo:** A/C
 - **VTE SPONT:** APAGADO
5. Pulse la tecla de restablecimiento de la alarma para restablecer la alarma de VTE SPONT.

Prueba de la alarma SIN SUMIN. O₂

1. Desconecte el suministro de entrada de oxígeno. El respirador anunciará una alarma de SIN SUMINISTRO DE O₂ a la siguiente respiración.
2. Conecte el suministro de entrada de oxígeno. La alarma de SIN SUMINISTRO DE O₂ se restablecerá automáticamente al cabo de dos respiraciones tras volver a conectar el oxígeno.
Pruebas de las alarmas de PORCENTAJE MÍNIMO DE O₂ SUMINISTRADO y PORCENTAJE MÁXIMO DE O₂ SUMINISTRADO

1. Efectúe los siguientes cambios en los parámetros de paciente y alarma:

 \[P_{SENS} \] 2 cmH\(_2\)O

 \[\text{Porcentaje de O}_2 \] 100 %

2. Efectúe los siguientes cambios en los parámetros de apnea:

 \[T_A \] 60 s

3. Conecte el tubo de oxígeno del respirador a una fuente de suministro de aire de garantías (por ejemplo: un cilindro de aire de uso médico) o a una salida de aire en la pared.

4. Conecte el tubo de aire del respirador a una fuente sanitaria de suministro de oxígeno de garantías.

5. Observe la pantalla de la GUI. El porcentaje de O\(_2\) administrado que se muestra en pantalla debe disminuir, y el respirador debe anunciar una alarma de porcentaje de \(\downarrow \text{O}_2 \) de prioridad media en un plazo máximo de 60 s y una alarma porcentaje de \(\downarrow \text{O}_2 \) de prioridad alta en un plazo máximo de dos (2) minutos.

6. Establezca el porcentaje de O\(_2\) en 21 %.

7. Observe la pantalla de la GUI. El porcentaje de O\(_2\) administrado que se muestra en pantalla debe aumentar y el respirador debe anunciar una alarma de porcentaje de \(\uparrow \text{O}_2 \) de prioridad media en un plazo máximo de 60 s y una alarma de porcentaje de \(\uparrow \text{O}_2 \) de prioridad alta en un plazo máximo de dos (2) minutos.

8. Retire el tubo de aire de la fuente de suministro de oxígeno y vuelva a conectarlo a una fuente sanitaria de suministro de aire de garantías.

9. Retire el tubo de oxígeno de la fuente de suministro de aire y vuelva a conectarlo a una fuente sanitaria de suministro de oxígeno de garantías.

10. Pulse la tecla de restablecimiento de la alarma para eliminar todas las alarmas.

ADVERTENCIA:
Antes de volver a poner en funcionamiento el respirador, revise todos los parámetros y ajustelos adecuadamente en función del paciente al que se le vaya a suministrar ventilación.
6.5.6 Visualización de las alarmas

Cuando se produzca una situación de alarma, el LED omnidireccional de la parte superior de la GUI parpadeará de un color u otro en función de la prioridad de la alarma, el sistema emitirá una serie de tonos acústicos y se mostrará en la GUI un banner de alarma. Consulte Áreas de la GUI, p. 4-3. Cuando aparezca en pantalla un banner de alarma, este mostrará su mensaje base. Al tocar el mensaje de alarma, este se expandirá para mostrar los mensajes de análisis y de resolución. Además, podría contener un enlace al registro de alarmas o a la pantalla de parámetros de alarmas. Toque el enlace para ver mostrada la información solicitada. El LED omnidireccional se mantendrá permanentemente encendido y alternará de color en caso de que se hayan producido varias alarmas con distintos niveles de prioridad. En caso de que una situación de alarma múltiple tenga lugar, el respirador mostrará en pantalla de manera simultánea las dos alarmas activas de máxima prioridad.

6.5.7 Retraso de la alarma

Determinación de una situación de alarma

El tiempo de retraso desde el momento en que la situación de alarma tiene lugar por primera vez hasta que la alarma es anunciada es imperceptible.

Retraso a/desde un sistema de alarma distribuida

Para las situaciones de alarma transmitidas por el puerto serie, el retraso total depende de la tasa de sondeo del dispositivo externo. El retraso desde el momento en que el puerto serie es sondeado por el dispositivo externo hasta que el mensaje de alarma deja el puerto serie no supera los tres (3) segundos. Un ejemplo de dispositivo externo es un monitor de paciente.

6.5.8 Gestión de las alarmas

Los parámetros de alarma en uso se guardan en la memoria no volátil (NVRAM) del respirador. Si otro profesional sanitario cambia los parámetros de alarma, estos quedarán aplicados en el sistema. Por ejemplo, no hay alarmas predeterminadas de fábrica seleccionables por el usuario.

La estrategia de gestión de alarmas del sistema tiene como fin
- Detectar y dar a conocer lo más rápido posible las causas legítimas mientras reduce al mínimo las falsas alarmas.
• Identificar la causa potencial y sugerir medidas oportunas para determinados tipos de alarmas. No obstante, el médico debe tomar la decisión final de todas las medidas de carácter sanitario.

• Facilitar la identificación del nivel de prioridad de las alarmas.

• Permitir un proceso de configuración de las alarmas rápido y sencillo.

Las alarmas del respirador pueden ser de prioridad alta, de prioridad media o de prioridad baja, y se clasifican como técnicas o no técnicas.

El respirador está equipado con dos alarmas: la alarma principal y la alarma secundaria. La alarma principal anuncia alarmas de prioridad alta, media y baja en el momento en que tienen lugar. La alarma secundaria (también denominada de prioridad “inmediata” en la siguiente tabla) es una alarma que emite un sonido constante y que se anuncia durante situaciones de respirador no operativo (vent inop) o de pérdida completa del suministro eléctrico. Esta alarma recibe energía de un condensador y dura 120 segundos como mínimo.

En la siguiente tabla figuran los distintos niveles de prioridad de las alarmas y sus características visuales, acústicas y de restablecimiento automático. Una alarma se restablece automáticamente en el momento en que deja de producirse la situación que la provoca.

Tabla 6-2. Priorización de las alarmas

<table>
<thead>
<tr>
<th>Nivel de prioridad</th>
<th>Indicador visual</th>
<th>Indicador acústico</th>
<th>Características del autoreset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inmediata</td>
<td>Específica de una situación de alarma o de fallo de funcionamiento de un componente del equipo.</td>
<td>Tono acústico constante durante 120 s como mínimo.</td>
<td>N/D</td>
</tr>
<tr>
<td>Alta: se requiere atención inmediata para garantizar la seguridad del paciente.</td>
<td>El LED ubicado en la parte superior de la GUI parpadea de color rojo, aparece un banner rojo de alarma en la pantalla de la GUI y aparece una barra de color rojo junto al icono de parámetros de alarma en la pantalla Alarma.</td>
<td>Alarma acústica de prioridad alta (una secuencia de cinco tonos que se repite dos veces, hace una pausa y vuelve a repetirse).</td>
<td>La alarma visual no se restablece automáticamente. Los indicadores visuales de alarma permanecen iluminados tras un restablecimiento automático. Se ha de pulsar la tecla de restablecimiento de la alarma para hacer desaparecer el indicador visual.</td>
</tr>
</tbody>
</table>
Tabla 6-2. Priorización de las alarmas (continuación)

<table>
<thead>
<tr>
<th>Nivel de prioridad</th>
<th>Indicador visual</th>
<th>Indicador acústico</th>
<th>Características del autoreset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media: se requiere una pronta atención.</td>
<td>El LED de la parte superior de la GUI parpadea de color amarillo, aparece un banner amarillo de alarma en la pantalla de la GUI y aparece una barra de color amarillo junto al icono de parámetros de alarma en la pantalla Alarmas. !!</td>
<td>Alarma acústica de prioridad media (una secuencia repetida de tres tonos).</td>
<td>El indicador LED se apaga y el restablecimiento automático queda anotado en el registro de alarmas.</td>
</tr>
<tr>
<td>Baja: se ha producido un cambio en el sistema del respirador o en el paciente.</td>
<td>El LED de la parte superior de la GUI se mantiene encendido de color amarillo, aparece un banner amarillo de alarma en la pantalla de la GUI y aparece una barra de color amarillo junto al icono de parámetros de alarma en la pantalla Alarmas. !</td>
<td>Alarma acústica de prioridad baja (dos tonos que no se repiten).</td>
<td>El indicador LED se apaga y el restablecimiento automático queda anotado en el registro de alarmas.</td>
</tr>
<tr>
<td>Normal: el respirador funciona correctamente</td>
<td>El LED ubicado en la parte superior de la GUI se mantiene encendido de color verde, no aparece ningún banner de alarma y aparecen valores de color blanco junto al icono de parámetros de alarma en la pantalla Alarmas.</td>
<td>Ninguno.</td>
<td>Ninguno</td>
</tr>
<tr>
<td>Inmediata</td>
<td>La pantalla de estado muestra que la GUI ha sufrido un problema técnico.</td>
<td>La alarma secundaria emite una secuencia repetida de tonos individuales, ya que la alarma principal (que es parte de la GUI) sufre problemas técnicos.</td>
<td>Ninguno</td>
</tr>
</tbody>
</table>
Una **alarma técnica** es aquella que se anuncia cuando se produce una infracción de alguno de los estados de autosupervisión del respirador como, por ejemplo, un fallo de POST o los fallos técnicos detectados por el sistema de diagnóstico de segundo plano del respirador. Este tipo de alarma abarca los fallos técnicos detectados por el sistema de diagnóstico de segundo plano del respirador. Las alarmas técnicas no se pueden restablecer pulsando la tecla de restablecimiento de la alarma. Consulte *Sistema de diagnóstico de segundo plano*, p. 10-75. Las alarmas técnicas se dividen en ocho categorías, las cuales se muestran en la siguiente tabla.

Tabla 6-3. Categorías de las alarmas técnicas

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Nombre</th>
<th>Prioridad</th>
<th>Respuesta del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Respirador no operativo (Vent Inop)</td>
<td>Alta</td>
<td>El respirador pasa al estado seguro. Consulte Estrategias de protección del respirador, p. 4-35.</td>
</tr>
<tr>
<td>2</td>
<td>Ventilación de seguridad para espiración (Esp BUV)</td>
<td>Alta</td>
<td>Ventilación de reserva</td>
</tr>
<tr>
<td>3</td>
<td>Ventilación de seguridad para inspiración (Insp BUV)</td>
<td>Alta</td>
<td>Ventilación de reserva</td>
</tr>
<tr>
<td>4</td>
<td>Mezcla de Ventilación de seguridad (Mix BUV)</td>
<td>Alta</td>
<td>Ventilación de reserva</td>
</tr>
<tr>
<td>5</td>
<td>SVO</td>
<td>Alta</td>
<td>El respirador pasa al estado seguro. Consulte Estrategias de protección del respirador, p. 4-35.</td>
</tr>
<tr>
<td>6</td>
<td>Precaución</td>
<td>Alta</td>
<td>La ventilación se mantiene tal y como se halla establecida</td>
</tr>
<tr>
<td>7</td>
<td>Advertencia</td>
<td>Media</td>
<td>La ventilación se mantiene tal y como se halla establecida</td>
</tr>
<tr>
<td>8</td>
<td>Notificación</td>
<td>Baja</td>
<td>La ventilación se mantiene tal y como se halla establecida (no se muestra en el banner de alarma)</td>
</tr>
</tbody>
</table>

Consulte la siguiente tabla para conocer el listado de alarmas técnicas del respirador, su significado y qué hacer en caso de que se produzcan. *Consulte Intervalo y resolución de la configuración de las alarmas*, p. 11-16 para conocer los parámetros, intervalos, resoluciones, valores predeterminados de nuevo paciente y exactitudes de todas las alarmas del respirador.
Una **alarma no técnica** es aquella que se anuncia cuando se produce un fallo en la interacción paciente-respirador o un problema en los suministros eléctricos o de gas que el profesional sanitario puede mitigar por su cuenta.

Tabla 6-4. Alarmas técnicas

<table>
<thead>
<tr>
<th>Mensaje de alarma</th>
<th>Significado</th>
<th>Qué hacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSOR DE O₂</td>
<td>El sensor de O₂ está mal calibrado o sufre un fallo técnico.</td>
<td>Vuelva a calibrar o sustituya el sensor de O₂.</td>
</tr>
<tr>
<td>ALERTA DEL DISPOSITIVO</td>
<td>De distinta índole. La categoría de alarma técnica aparece descrita. Consulte Categorías de las alarmas técnicas, p. 6-19. Obtendrá más información acerca de las distintas alarmas técnicas en el registro de diagnóstico del sistema, cuyo enlace se proporciona en el banner de alarma expandido.</td>
<td>Siga el mensaje de resolución que aparece en la GUI.</td>
</tr>
</tbody>
</table>

Tabla 6-5. Resumen de las alarmas no técnicas

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>PÉRDIDA ALIM. CA</td>
<td>Baja</td>
<td>Funcionando con la batería principal del respirador.</td>
<td>N/D</td>
<td>El respirador pasa automáticamente a recibir corriente de la batería. El interruptor de alimentación está encendido. No hay suministro de CA disponible. El indicador de uso de la batería de la pantalla de estado se enciende. Se restablece en el momento en que el sistema vuelve a recibir suministro de CA.</td>
</tr>
<tr>
<td>PÉRDIDA ALIM. CA</td>
<td>Baja</td>
<td>Funcionando con la batería principal del respirador y del compresor.</td>
<td>N/D</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>APNEA (alarma de datos de pacientes)</td>
<td>Media</td>
<td>Ventilación de apnea. Intervalo resp. > intervalo apnea.</td>
<td>Verif. paciente y config.</td>
<td>El intervalo de apnea establecido ha transcurrido sin que el respirador, el paciente o el operador hayan activado una respiración. Se restablece una vez que el paciente inicia una respiración por tercera vez consecutiva. Posible alarma dependiente: 4(V_E\text{TOT}).</td>
</tr>
<tr>
<td>Alta</td>
<td></td>
<td>Duración de apnea ampliada o varios episodios de apnea.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESCONEXIÓN DEL CIRCUITO</td>
<td>Alta</td>
<td>Sin ventilación.</td>
<td>Verif. paciente. Reconnect circuit.</td>
<td>El respirador se ha recuperado de una pérdida de energía imprevista que ha durado más de 5 minutos y detecta la desconexión del circuito. La pantalla de la GUI muestra el tiempo transcurrido sin ventilación mecánica. Se restablece una vez se vuelve a conectar el circuito.</td>
</tr>
<tr>
<td>Alta</td>
<td></td>
<td>Sin ventilación.</td>
<td>Verif. paciente. Reconnect circuit.</td>
<td>El respirador detecta la desconexión del circuito y pasa al estado de espera; la pantalla de la GUI muestra el tiempo transcurrido sin ventilación mecánica. Se restablece una vez se vuelve a conectar el circuito.</td>
</tr>
<tr>
<td>Mensaje base</td>
<td>Prioridad</td>
<td>Mensaje de análisis</td>
<td>Mensaje de resolución</td>
<td>Comentarios</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>(V_T) LIMITADO POR DISTENSIBILIDAD (la alarma no es ajustable) (alarma de datos del paciente)</td>
<td>Baja</td>
<td>Límite de compensación por distensibilidad alcanzada.</td>
<td>Compruebe el estado del paciente y el tipo de circuito. El volumen inspirado puede ser inferior al definido. Compruebe el estado del paciente y el tipo de circuito.</td>
<td>El volumen de distensibilidad necesario para compensar la administración de una respiración VC, VC+ o VS excede el máximo permitido para tres respiraciones consecutivas.</td>
</tr>
<tr>
<td>COMPRESOR NO OPERATIVO</td>
<td>Baja</td>
<td>Sin aire en compresor.</td>
<td>Sustituya el compresor.</td>
<td>Sin indicador de compresor listo en la pantalla de estado.</td>
</tr>
<tr>
<td>(P_{PEAK}) (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Última resp. (\geq) límite defin.</td>
<td>Verif. paciente, circuito y tubo ET.</td>
<td>Presión medida de las vías respiratorias (\geq) límite definido. El respirador interrumpirá la respiración en curso a no ser que ya se encuentre en la fase espiratoria. Posibles alarmas dependientes: (\downarrow V_{TE , MAND}), (\downarrow V_{E , TOT}), (\uparrow k_{TOT}). Medida correctiva: Verif. paciente. Asegúrese de que no haya fugas y compruebe el parámetro de ID o el tipo de tubo. Plantéese reducir el parámetro % Supp o aumentar (P_{PEAK}).</td>
</tr>
<tr>
<td>Medio</td>
<td></td>
<td>Últimas 3 resp. (\geq) límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alta</td>
<td></td>
<td>Últimas 4 o más resp. (\geq) límite defin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\uparrow P_{COMP}) (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Última resp. espont. (\geq) límite (P_{PEAK}) defin. -5 cmH(_2)O.</td>
<td>En TC:</td>
<td>Presión de las respiraciones espontáneas (\geq) límite defin. Posibles alarmas dependientes: (\downarrow V_{TE SPONT}), (\downarrow V_{E TOT}), (\uparrow f_{TOT}), (\downarrow V_{TE SPONT}). Medida correctiva: Asegúrese de que no haya fugas. Compruebe que se está utilizando el tipo de tubo adecuado. Compruebe que el diámetro interno del tubo corresponde con el PBW del paciente. Compruebe el parámetro de (P_{PEAK}).</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Últimas 3 resp. espont. (\geq) límite (P_{PEAK}) defin. -5 cmH(_2)O.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>Últimas 4 o más resp. espont. (\geq) límite (P_{PEAK}) defin. -5 cmH(_2)O.</td>
<td>En PAV+:</td>
<td>Asegúrese de que no haya fugas y compruebe el parámetro de ID o el tipo de tubo.</td>
</tr>
<tr>
<td>(\downarrow P_{PEAK}) (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Últimas 2 resp., presión; presión (\leq) límite defin.</td>
<td>Mirar si hay fugas.</td>
<td>Presión inspiratoria máxima (\leq) parámetro de alarma (disponible únicamente cuando el tipo mandatorio es VC+* o cuando el tipo de ventilación es NIV). Presión objetivo = el nivel mínimo: (PEEP + 3) cmH(2)O. El respirador no puede administrar el volumen objetivo. Posibles alarmas dependientes: (\uparrow f{TOT}). Medida correctiva: Verif. paciente y config.</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Últimas 4 resp., presión (\leq) límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>Últimas 10 o más resp., presión (\leq) límite defin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Al no permitir el algoritmo de control de la presión del tipo VC+ que la presión inspiratoria objetivo sea inferior a \(PEEP + 3\) cmH\(_2\)O, el mero intento de ajustar el límite de alarma de \(\downarrow P_{PEAK}\) al mismo nivel o por debajo del mismo hará que la alarma se desconecte.
Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\uparrow \text{O}_2 %) (alarma de datos de pacientes)</td>
<td>Media</td>
<td>(% \text{O}_2) medido > defin. dur. (\geq 30) s pero < 2 min.</td>
<td>Verif. paciente, fuentes gas, analizador (\text{O}_2) y respirador.</td>
<td>El porcentaje de (\text{O}_2) medido durante cualquier fase del ciclo de respiración es como mínimo un (7) % (12 % durante la primera hora de funcionamiento) superior al parámetro de porcentaje de (\text{O}_2) durante al menos 30 segundos. (estos porcentajes aumentan en torno a un (5) % durante cuatro minutos tras una disminución del parámetro de porcentaje de (\text{O}_2)).</td>
</tr>
<tr>
<td>Alta</td>
<td>Alta</td>
<td>(% \text{O}_2) medido > defin. dur. (\geq 2) min.</td>
<td>Verif. paciente, fuentes gas, analizador (\text{O}_2) y respirador.</td>
<td></td>
</tr>
<tr>
<td>(\downarrow \text{O}_2 %) (alarma de datos de pacientes)</td>
<td>Alta</td>
<td>(% \text{O}_2) medido < % (\text{O}_2) defin.</td>
<td>Verif. paciente, fuentes gas, analizador (\text{O}_2) y respirador.</td>
<td>El porcentaje de (\text{O}_2) medido durante cualquier fase del ciclo de respiración es como mínimo un (7) % (12 % durante la primera hora de funcionamiento) inferior al parámetro de porcentaje de (\text{O}_2) durante al menos 30 segundos, o inferior al (18) %. (estos porcentajes aumentan en torno a un (5) % durante cuatro minutos tras un aumento del parámetro de porcentaje de (\text{O}_2)).</td>
</tr>
<tr>
<td>Mensaje base</td>
<td>Prioridad</td>
<td>Mensaje de análisis</td>
<td>Mensaje de resolución</td>
<td>Comentarios</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>(\uparrow V_{TE}) (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Últimas 2 resp. (\geq) límite defin.</td>
<td>Verif. config., cambios en R y C paciente.</td>
<td>Volumen corriente espirado (\geq) límite defin. La alarma se actualiza cada vez que vuelve a calcularse el volumen corriente espirado. Posible alarma dependiente: (\uparrow V_{E\ TOT}).</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Últimas 4 resp. (\geq) límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>Últimas 10 o más resp. (\geq) límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\uparrow V_{E\ TOT}) (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>(V_{E\ TOT}) (\geq) límite defin. durante (\leq 30) s.</td>
<td>Verif. paciente y config.</td>
<td>Volumen espiratorio por minuto (\geq) límite definido. La alarma se actualiza cada vez que vuelve a calcularse un volumen espiratorio por minuto. Posible alarma dependiente: (\uparrow V_{TE}).</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>(V_{E\ TOT}) (\geq) límite defin. durante (> 30) s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>(V_{E\ TOT}) (\geq) límite defin. durante (> 120) s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\uparrow f_{TOT}) (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>(f_{TOT}) (\geq) límite defin. durante (\leq 30) s.</td>
<td>Verif. paciente y config.</td>
<td>Frecuencia respiratoria total (\geq) límite defin. La alarma se actualiza al comienzo de cada inspiración. Se restablece cuando la frecuencia respiratoria medida pasa a ser inferior al límite de la alarma. Posibles alarmas dependientes: (\downarrow V_{TE\ MAND}), (\downarrow V_{TE\ SPONT}), (\downarrow V_{E\ TOT}).</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>(f_{TOT}) (\geq) límite defin. durante (> 30) s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>(f_{TOT}) (\geq) límite defin. durante (> 120) s.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\uparrow P_{\text{VENT}}) (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>1 resp. ≥ límite.</td>
<td>Verif. paciente, circuito y tubo ET.</td>
<td>Presión inspiratoria > 110 cmH₂O y el tipo mandatorio es VC o el tipo espontáneo es TC o PAV+. El respirador interrumpirá la respiración en curso a no ser que ya se encuentre en la fase espiratoria. Posibles alarmas dependientes: (\downarrow V_{\text{E MAND}}), (\downarrow V_{\text{E TOT}}), (\uparrow f_{\text{TOT}}). Medida correctiva:</td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>3 o más resp. ≥ límite.</td>
<td></td>
<td>2. Facilite ventilación alternativa. Deje de utilizar el respirador y póngase en contacto con el servicio técnico.</td>
</tr>
<tr>
<td>Mensaje base</td>
<td>Prioridad</td>
<td>Mensaje de análisis</td>
<td>Mensaje de resolución</td>
<td>Comentarios</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>BATERÍA NO OPERATIVA</td>
<td>Baja</td>
<td>Carga inadecuada o batería principal del respirador averiada.</td>
<td>Reparar/sustituir la batería principal del respirador.</td>
<td>La batería se halla instalada pero no funciona o carga durante ≥ 6 horas. Se restablece cuando la batería pasa a estar operativa.</td>
</tr>
<tr>
<td>BATERÍA NO OPERATIVA</td>
<td>Baja</td>
<td>Carga inadecuada o batería del compresor averiada.</td>
<td>Reparar/sustituir la batería del compresor.</td>
<td></td>
</tr>
<tr>
<td>BATERÍA NO OPERATIVA</td>
<td>Baja</td>
<td>Carga inadecuada o batería principal del respirador y del compresor averiada.</td>
<td>Reparar/sustituir la batería principal del respirador y del compresor.</td>
<td></td>
</tr>
<tr>
<td>INSPIRACIÓN DEMASIADO LARGA (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Últimas 2 resp. espont. = Límite T_i basado en PBW.</td>
<td>Verif. paciente. Mirar si hay fugas.</td>
<td>Tiempo inspiratorio para respiración espontánea ≥ límite basado en PBW. El respirador pasa a la fase de espiración. Se restablece cuando T_i es inferior al límite basado en PBW. Activa únicamente cuando el tipo de ventilación es INVASIVA.</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Últimas 4 resp. espont. = Límite T_i basado en PBW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>Últimas 10 o más resp. espont. = Límite T_i basado en PBW.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rendimiento

Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>INICIO PAV DEMASIADO LARGO (alarma de</td>
<td>Baja</td>
<td>Inicio PAV no</td>
<td>Mirar si hay fugas,</td>
<td>No es posible evaluar la resistencia y la compliancia del paciente durante el inicio PAV. Posibles alarmas dependientes: (\downarrow V_\text{TE SPONT}, \downarrow V_\text{E TOT}, \uparrow t_\text{TOT}). Medida correctiva: Verif. paciente. (los tiempos inspiratorios del paciente podrían ser más breves de lo necesario para evaluar su resistencia y compliancia). Compruebe que son correctos el tipo de humidificación seleccionado y el volumen de humidificador vacío.</td>
</tr>
<tr>
<td>datos de pacientes) (se produce</td>
<td></td>
<td>completo durante ≥ 45 s</td>
<td>taquipnea y config. de (f_\text{VTI}) y (P_\text{PEAK}).</td>
<td></td>
</tr>
<tr>
<td>única cuando PAV+ se encuentra</td>
<td>Media</td>
<td>Inicio PAV no</td>
<td>Mirar si hay fugas,</td>
<td></td>
</tr>
<tr>
<td>en uso)</td>
<td></td>
<td>completo durante ≥ 90 s</td>
<td>taquipnea y config. de (f_\text{VTI}) y (P_\text{PEAK}).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>Inicio PAV no</td>
<td>Mirar si hay fugas,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>completo durante ≥ 120 s</td>
<td>taquipnea y config. de (f_\text{VTI}) y (P_\text{PEAK}).</td>
<td></td>
</tr>
<tr>
<td>R Y C PAV NO EVALUADO (alarma de</td>
<td>Baja</td>
<td>R y/o C con más</td>
<td>Mirar si hay fugas,</td>
<td>No es posible evaluar la resistencia y/o la compliancia durante un estado estacionario de PAV+. El inicio fue satisfactorio, pero las evaluaciones posteriores no se realizaron con éxito. Medida correctiva: Verif. paciente. (los tiempos inspiratorios del paciente podrían ser más breves de lo necesario para evaluar su resistencia y compliancia). Compruebe que son correctos el tipo de humidificación seleccionado y el volumen de humidificador vacío.</td>
</tr>
<tr>
<td>datos de pacientes) (se produce</td>
<td></td>
<td>de 15 min antig.</td>
<td>taquipnea y config.</td>
<td></td>
</tr>
<tr>
<td>única cuando PAV+ se encuentra</td>
<td>Media</td>
<td>R y/o C con más</td>
<td>de ID del tubo, (f_\text{VTI}) y (P_\text{PEAK}).</td>
<td></td>
</tr>
<tr>
<td>en uso)</td>
<td></td>
<td>de 30 min antig.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6-5. Resumen de las alarmas no técnicas (continuación)
Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>PÉRDIDA DE ALIMENTACIÓN</td>
<td>Inmediata</td>
<td>N/D</td>
<td>N/D</td>
<td>El interruptor del respirador se encuentra en la posición de encendido y el sistema no recibe corriente de CA ni de la batería. Aunque esta alarma no se manifieste con un indicador visual, una alarma acústica independiente sonará durante al menos 120 segundos. Puede restablecer la alarma acústica colocando el interruptor en la posición de apagado.</td>
</tr>
<tr>
<td>BATERÍA BAJA</td>
<td>Media</td>
<td>Tiempo funcionamiento batería principal respi. < diez minutos.</td>
<td>Sustituir o dejar recargar batería principal respirador.</td>
<td>Se restablece cuando la batería dispone de ≥ diez minutos de autonomía de funcionamiento.</td>
</tr>
<tr>
<td>BATERÍA BAJA</td>
<td>Media</td>
<td>Tiempo funcionamiento batería compresor < diez minutos.</td>
<td>Sustituir o dejar recargar batería del compresor.</td>
<td></td>
</tr>
<tr>
<td>BATERÍA BAJA</td>
<td>Media</td>
<td>Tiempo funcionamiento batería principal respi. < diez minutos y tiempo funcionamiento batería compresor < 10 minutos.</td>
<td>Sustituir o dejar recargar batería principal del respirador y compresor.</td>
<td>Se restablece cuando la batería principal o el compresor dispone de ≥ diez minutos de autonomía de funcionamiento o cuando el sistema vuelve a recibir alimentación de CA.</td>
</tr>
<tr>
<td>BATERÍA BAJA</td>
<td>Alta</td>
<td>Tiempo funcionamiento batería principal respi. < cinco minutos.</td>
<td>Sustituir o dejar recargar batería principal respirador.</td>
<td>Se restablece cuando la batería dispone de cinco minutos o más de autonomía o cuando el sistema vuelve a recibir alimentación de CA.</td>
</tr>
<tr>
<td>BATERÍA BAJA</td>
<td>Alta</td>
<td>Tiempo funcionamiento batería compresor < cinco minutos.</td>
<td>Sustituir o dejar recargar batería del compresor.</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATERÍA BAJA</td>
<td>Alta</td>
<td>Tiempo funcionamiento batería principal respi. < cinco minutos y tiempo funcionamiento batería compresor < 5 minutos.</td>
<td>Sustituir o dejar recargar batería principal del respirador y compresor.</td>
<td>Se restablece cuando la batería dispone de cinco minutos o más de autonomía o cuando el sistema vuelve a recibir alimentación de CA.</td>
</tr>
<tr>
<td>\downarrowV_{TE MAND} (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Últimas 2 resp. mandat \leq límite defin.</td>
<td>Comprobar si hay fugas, cambios en Ry C paciente.</td>
<td>Volumen corriente espirado mandatorio \leq límite defin. La alarma se actualiza cada vez que vuelve a calcularse el volumen corriente espirado mandatorio. Posibles alarmas dependientes: \downarrowV_{E TOT}, \uparrowT_{TOT}.</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Últimas 4 resp. mandat \leq límite defin.</td>
<td>Verif. paciente y config.</td>
<td>Volumen corriente espirado espontáneo \leq límite definido. La alarma se actualiza cada vez que vuelve a calcularse el volumen corriente espirado espontáneo. Posibles alarmas dependientes: \downarrowV_{E TOT}, \uparrowT_{TOT}.</td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>Últimas 10 o más resp. mandat \leq límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\downarrowV_{TE SPONT} (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Últimas 4 resp. espont. \leq límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Últimas 7 resp. espont. \leq límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>Últimas 10 o más resp. espont. \leq límite defin.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑VTI (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Última resp. espont. ≥ límite defin.</td>
<td>En TC, VS o PAV+: Verif. paciente y config.</td>
<td>Volumen inspiratorio administrado ≥ límite inspiratorio. El respirador pasa a la fase de espiración. Posibles alarmas dependientes: ↓VTE SPONT, ↓VTI, ↑VTI.</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Últimas 3 resp. espont. ≥ límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>Últimas 4 o más resp. espont. ≥ límite defin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓VTE TOT (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>VTE TOT ≤ límite defin. durante ≤ 30 s.</td>
<td>Verif. paciente y config.</td>
<td>Volumen total por minuto ≤ límite definido. La alarma se actualiza cada vez que vuelve a calcularse el volumen espirado por minuto. Posibles alarmas dependientes: ↓VTE SPONT, ↓VTI, ↑VTI.</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>VTE TOT ≤ límite defin. durante > 30 s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alta</td>
<td>VTE TOT ≤ límite defin. durante > 120 s.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6-5. Resumen de las alarmas no técnicas (continuación)

<table>
<thead>
<tr>
<th>Mensaje base</th>
<th>Prioridad</th>
<th>Mensaje de análisis</th>
<th>Mensaje de resolución</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUMEN NO ADMINISTRADO (no ajustable) (alarma de datos de pacientes)</td>
<td>Baja</td>
<td>Últimas 2 resp. espont. (o mandat.); presión > nivel permisible máx.</td>
<td>Verif. paciente y config. de $\uparrow P_{PEAK}$.</td>
<td>Presión objetivo de la inspiración $>$ ($P_{PEAK} - PEEP - 3, \text{cmH}2\text{O}$), cuando el tipo espontáneo es VS o el tipo mandatorio es VC+. El respirador no puede administrar el volumen objetivo. Posibles alarmas dependientes: Para respiraciones de tipo VC+: $\downarrow V{TE,MAND}$ $\downarrow V_{E,TOT}$ $\uparrow f_{TOT}$ Para respiraciones de tipo VS: $\downarrow V_{TE,SPONT}$ $\downarrow V_{E,TOT}$ $\uparrow f_{TOT}$ Medida correctiva: Verif. paciente y config.</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>Últimas 10 o más resp. espont. (o mandat.); presión > nivel permisible máx.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIN SUMIN. AIRE</td>
<td>Baja</td>
<td>Compresor no operativo. La ventilación se mantiene tal y como se halla establecida. Solo O$_2$ disponible.</td>
<td>Comprobar la fuente aire.</td>
<td>El respirador administra 100 % O$_2$. Presión de suministro de aire $\leq 17, \text{psig}$. Se reabre se si se conecta la presión de suministro $\geq 35, \text{psig}$.</td>
</tr>
<tr>
<td>SIN SUMIN. AIRE</td>
<td>Alta</td>
<td>Compresor no operativo. La ventilación sigue según ajuste salvo % O$_2$ = 100.</td>
<td>Comprobar la fuente aire del paciente.</td>
<td></td>
</tr>
</tbody>
</table>
Los datos para las formas de onda en tiempo real y los volúmenes supervisados se obtienen a partir de sensores internos.
<table>
<thead>
<tr>
<th>Mensaje de alarma</th>
<th>Significado</th>
<th>Qué hacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PÉRDIDA ALIM. CA</td>
<td>El respirador y/o el compresor está funcionando con la batería.</td>
<td>Controle el nivel de carga de la batería para asegurarse de que dispone de autonomía suficiente para garantizar el funcionamiento del respirador/compresor.</td>
</tr>
<tr>
<td>APNEA (alarma de datos de pacientes)</td>
<td>El tiempo entre respiraciones excede el intervalo de apnea definido.</td>
<td>Verif. paciente y config.</td>
</tr>
<tr>
<td>DESCONEXIÓN DEL CIRCUITO</td>
<td>El circuito del paciente se ha desconectado o se ha producido una fuga considerable en el mismo.</td>
<td>Vuelva a conectar el circuito del paciente o solucione la fuga.</td>
</tr>
<tr>
<td>VT limitado por distensibilidad</td>
<td>El volumen de distensibilidad necesario para compensar la administración de una respiración VC, VC+ o VS excede el máximo permitido para tres respiraciones consecutivas.</td>
<td>Compruebe el estado del paciente y el tipo de circuito. El volumen inspirado puede ser inferior al definido.</td>
</tr>
<tr>
<td>COMPRESOR NO OPERATIVO</td>
<td>No se detecta presión aire en el acumulador del compresor. La pantalla de estado indica que el compresor no está operativo.</td>
<td>Repare o sustituya el compresor.</td>
</tr>
<tr>
<td>†P_{PEAK} (alarma de datos de pacientes)</td>
<td>Presión medida de las vías respiratorias ≥ límite definido. Posibilidad de una reducción del volumen corriente.</td>
<td>• Compruebe el estado del paciente.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compruebe el circuito del paciente.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compruebe el tubo endotraqueal.</td>
</tr>
<tr>
<td>‡P_{PEAK} (alarma de datos de pacientes)</td>
<td>La presión inspiratoria máxima del circuito del paciente es igual o inferior al parámetro de alarma. Esta alarma está únicamente disponible cuando NIV es el tipo de ventilación seleccionado o cuando VC+ es el tipo mandatorio seleccionado durante la ventilación INVASIVA.*</td>
<td>Asegúrese de que no haya fugas en el circuito del paciente y compruebe el VBS.</td>
</tr>
</tbody>
</table>

* Al no permitir el algoritmo de control de la presión del tipo VC+ que la presión inspiratoria objetivo sea inferior a PEEP + 3 cmH₂O, el mero intento de ajustar el parámetro de alarma de ‡P_{PEAK} al mismo nivel o por debajo del mismo hará que la alarma se desconecte.
Tabla 6-6. Alarmas no técnicas y sugerencias (continuación)

<table>
<thead>
<tr>
<th>Mensaje de alarma</th>
<th>Significado</th>
<th>Qué hacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑O₂% (alarma de datos de pacientes)</td>
<td>El porcentaje de O₂ medido durante cualquier fase del ciclo de respiración es como mínimo un 7 % (12 % durante la primera hora de funcionamiento) superior al parámetro de porcentaje de O₂ durante al menos 30 segundos. La ventana de porcentajes aumenta en torno a un 5 % durante cuatro minutos tras aumentar el valor del porcentaje de O₂ definido.</td>
<td>Examine al paciente y compruebe las fuentes de suministro de aire y oxígeno, el analizador de oxígeno y el respirador.</td>
</tr>
</tbody>
</table>
| ↓O₂% (alarma de datos de pacientes) | El porcentaje de O₂ medido durante cualquier fase del ciclo de respiración es como mínimo un 7 % (12 % durante la primera hora de funcionamiento) inferior al parámetro de porcentaje de O₂ durante al menos 30 segundos. La ventana de porcentajes aumenta en torno a un 5 % durante cuatro minutos tras aumentar el valor del porcentaje de O₂ definido. | • Examine al paciente y compruebe las fuentes de suministro de aire y oxígeno, el analizador de oxígeno y el respirador.
• Calibre el sensor de oxígeno. Consulte *Calibración del sensor de oxígeno*, p. 4-34 para obtener más información acerca de cómo calibrar el sensor de oxígeno.
• Utilice un monitor de O₂ externo y desactive el sensor de O₂. |
| ↑VT (alarma de datos de pacientes) | Volumen corriente espirado ≥ parámetro de alarma de las dos últimas respiraciones. | • Verifique la configuración del paciente.
• Compruebe si se han producido cambios en la resistencia y compliancia del paciente. |
| ↑VT_TOT (alarma de datos de pacientes) | Volumen por minuto ≥ parámetro de la alarma. | Verifique la configuración del paciente. |
| ↑f_TOT (alarma de datos de pacientes) | El ritmo respiratorio de todas las respiraciones ≥ parámetro de la alarma. | Examine al paciente y compruebe la configuración del respirador. |
Tabla 6-6. Alarmas no técnicas y sugerencias (continuación)

<table>
<thead>
<tr>
<th>Mensaje de alarma</th>
<th>Significado</th>
<th>Qué hacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP<sub>VENT</sub> (alarma de datos de pacientes)</td>
<td>El transductor de presión inspiratoria ha medido una presión de > 110 cmH₂O en VC, TC o PAV+. El respirador pasa a la fase espiratoria. Existe la posibilidad de que se haya producido una reducción del volumen corriente.</td>
<td>• Examine al paciente, verifique el circuito del paciente (incluyendo los filtros) y el tubo endotraqueal. Asegúrese de que el ID del tubo ET es del tamaño adecuado. Compruebe el flujo del respirador y/o los parámetros de volumen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vuelva a realizar el SST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consiga una fuente de ventilación alternativa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Deje de utilizar el respirador con fines sanitarios y consiga asistencia técnica.</td>
</tr>
<tr>
<td>BATERÍA NO OPERATIVA</td>
<td>La batería no dispone de autonomía suficiente tras intentar cargarla durante seis horas o el sistema de baterías no funciona debidamente.</td>
<td>Vuelva a cargar la batería conectando el respirador a la toma de CA o sustitúyala o instale una batería de duración prolongada.</td>
</tr>
<tr>
<td>INSPIRACIÓN DEMASIADO LARGA (alarma de datos de pacientes)</td>
<td>El tiempo inspiratorio en base a PBW de las dos últimas respiraciones espontáneas excede el límite definido por el respirador. Activa únicamente cuando el tipo de ventilación es INVASIVA.</td>
<td>• Examine al paciente.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compruebe el circuito del paciente en busca de fugas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compruebe los parámetros de porcentaje de tiempo de rampa y E<sub>SENS</sub>.</td>
</tr>
<tr>
<td>PÉRDIDA DE ALIMENTACIÓN</td>
<td>El interruptor del respirador se encuentra en la posición de encendido, pero el sistema no recibe corriente de CA ni de la batería. Aunque esta alarma no se manifieste con un indicador visual, una alarma acústica independiente (de prioridad inmediata) sonará durante al menos 120 segundos.</td>
<td>• Compruebe la integridad de las conexiones de suministro de CA y de la batería.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consiga una fuente de ventilación alternativa si fuera preciso.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Instale una batería de duración prolongada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Apague el interruptor de alimentación para restablecer la alarma.</td>
</tr>
<tr>
<td>Mensaje de alarma</td>
<td>Significado</td>
<td>Qué hacer</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>BATERÍA BAJA</td>
<td>Alarma de prioridad media que indica que la batería dispone de una autonomía de < diez (10) minutos para surtir de energía al respirador o compresor. Alarma de prioridad alta que indica que la batería dispone de una autonomía de < cinco (5) minutos para surtir de energía al respirador o compresor.</td>
<td>Vuelva a cargar la batería conectando el respirador a la toma de CA o sustitúyala o instale una batería de duración prolongada.</td>
</tr>
</tbody>
</table>
| \(V_{\text{TE MAND}} \) (alarma de datos de pacientes) | El volumen corriente espirado mandatorio del paciente es \(\leq \) al parámetro de alarma de las dos últimas respiraciones mandatorias. | • Examine al paciente.
• Compruebe si el circuito del paciente presenta fugas.
• Compruebe si se han producido cambios en la resistencia o compliancia del paciente. |
| \(V_{\text{TE SPONT}} \) (alarma de datos de pacientes) | El volumen corriente espirado espontáneo del paciente es \(\leq \) al parámetro de alarma de las dos últimas respiraciones espontáneas. | • Examine al paciente.
• Compruebe la configuración del respirador. |
| \(V_{\text{ETOT}} \) (alarma de datos de pacientes) | El volumen por minuto de todas las respiraciones es \(\geq \) al parámetro de la alarma. | • Examine al paciente.
• Compruebe la configuración del respirador. |
| **SIN SUMIN. AIRE** | La presión del suministro de aire es inferior a la presión mínima necesaria para que el respirador funcione correctamente. El respirador administra \(\text{O}_2 \) al 100 % si hay disponible una fuente de suministro de oxígeno. Si no hay ninguna disponible, la válvula de seguridad queda abierta. El respirador muestra el tiempo transcurrido sin ventilación mecánica. No es posible ajustar o deshabilitar esta alarma. | • Examine al paciente.
• Compruebe las fuentes de suministro de aire y oxígeno.
• Consiga una fuente de ventilación alternativa si fuera preciso. |
Tabla 6-6. Alaramas no técnicas y sugerencias (continuación)

<table>
<thead>
<tr>
<th>Mensaje de alarma</th>
<th>Significado</th>
<th>Qué hacer</th>
</tr>
</thead>
</table>
| SIN SUMIN. O₂ | La presión del suministro de oxígeno es inferior a la presión mínima necesaria para que el respirador funcione correctamente. El respirador administra aire al 100 % si hay disponible una fuente de suministro de aire. Si no hay ninguna disponible, la válvula de seguridad queda abierta. El respirador muestra el tiempo transcurrido sin ventilación mecánica. No es posible ajustar o deshabilitar esta alarma. | - Examine al paciente.
- Compruebe las fuentes de suministro de aire y oxígeno.
- Consiga una fuente de ventilación alternativa si fuera preciso. |
| P_COMP | Presión objetivo ≥ (P_Peak - 5 cmH₂O). | En TC: |
| | | - Comprobar si hay fugas y config. tipo de tubo/ID. |
| | | En PAV+: |
| | | - Limite la presión objetivo a P_Peak - 5 cmH₂O. |
| ERROR DE PROCEDIMIENTO | Se ha conectado al paciente antes de que se completara el proceso de inicio del respirador. La ventilación de seguridad pasa a estar activa. | - Consiga una fuente de ventilación alternativa si fuera preciso. |
| | | - Complete el proceso de inicio del respirador. |
| OCLUSIÓN SEVERA | El circuito del paciente está seriamente ocluido. El respirador entra en el modo de ciclo de estado de oclusión. Aparece en pantalla el tiempo transcurrido sin ventilación mecánica. | - Examine al paciente. |
| | | - Consiga una fuente de ventilación alternativa si fuera preciso. |
| | | - Compruebe que el circuito del paciente no contiene taponamientos de líquido, no sufre dobleces y no tiene ningún filtro obstruido. |
| | | - Si el problema persiste, deje de utilizar el respirador y consiga asistencia técnica. |
Los siguientes apartados proporcionan información detallada de las distintas alarmas.

Tabla 6-6. Alarmas no técnicas y sugerencias (continuación)

<table>
<thead>
<tr>
<th>Mensaje de alarma</th>
<th>Significado</th>
<th>Qué hacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUMEN NO ADMINISTRADO (alarma de datos de pacientes)</td>
<td>Presión objetivo de la inspiración > (P<sub>PEAK</sub> - PEEP - 3 cmH₂O), cuando el tipo espontáneo es VS o el tipo mandatorio es VC+.</td>
<td>Verif. paciente y config. de P<sub>PEAK</sub>.</td>
</tr>
<tr>
<td>INICIO PAV DEMASIADO LARGO (se produce únicamente cuando la opción PAV+ se encuentra en uso)</td>
<td>No es posible evaluar la resistencia y/o la compliancia durante el inicio de PAV+.</td>
<td>Comprobar si hay fugas, taquipnea y config. de V<sub>Tl</sub> y P<sub>PEAK</sub>.</td>
</tr>
<tr>
<td>R y C PAV NO EVALUADO (se produce únicamente cuando la opción PAV+ se encuentra en uso)</td>
<td>No es posible evaluar la resistencia y/o la compliancia durante un estado estacionario de PAV+.</td>
<td>Asegúrese de que no haya fugas y compruebe si se ha producido taquipnea y los parámetros del ID del tubo, de V<sub>Tl</sub> y de P<sub>PEAK</sub>.</td>
</tr>
<tr>
<td>PROX INOPERATIVO</td>
<td>Se ha producido un fallo de funcionamiento con el sensor de flujo proximal o las vías neumáticas están ocluidas.</td>
<td>Sustituya el sensor de flujo proximal o purgue sus vías neumáticas. No afecta a los datos de los sensores de flujo de administración o del flujo espiratorio del respirador.</td>
</tr>
</tbody>
</table>
6.5.9 Alarma de PÉRDIDA ALIM. CA

La alarma de PÉRDIDA ALIM. CA indica que el interruptor está en la posición de encendido y que el respirador recibe corriente eléctrica de la batería. Dada esta situación, podría ser necesario recurrir en breve a una fuente de alimentación eléctrica alternativa para mantener el respirador en funcionamiento. El respirador anuncia una alarma de BATERÍA BAJA de prioridad media cuando la batería dispone de menos de diez minutos de autonomía. El respirador anuncia una alarma de BATERÍA BAJA de prioridad alta cuando la batería dispone de menos de cinco minutos de autonomía.

El compresor es un dispositivo de CC, en el que la alimentación de CA se convierte en alimentación de CC y cuenta con una batería principal y una de duración prolongada (en el caso de adquirirse la batería de duración prolongada). Si se pierde la alimentación de CA, el compresor no puede volver a su funcionamiento normal con alimentación de CC, pero sí que puede suministrar aire, siempre que el nivel de carga de las baterías sea suficiente.

6.5.10 Alarma de APNEA

La alarma de APNEA indica que ni el respirador ni el paciente han activado una respiración durante el intervalo de apnea seleccionado por el operador (T_A). El intervalo de T_A abarca el tiempo transcurrido desde el inicio de una inspiración hasta el inicio de la próxima, y está basado en el criterio de detección inspiratoria del respirador. Solo es posible definir el intervalo de T_A por medio de los ajustes de ventilación de apnea.

La alarma de APNEA se restablece automáticamente cuando el paciente inicia dos respiraciones seguidas, y tiene por objeto garantizar que el impulso respiratorio del paciente es lo suficientemente fuerte y estable para reanudar el proceso de ventilación normal. Para que las respiraciones sean iniciadas por el paciente (y no por autociclado), los volúmenes espirados deben ser de, al menos, la mitad de V_T (esto evita que se reanude la ventilación normal si se produce una desconexión).
6.5.11 **Alarma de DESCONEXIÓN DEL CIRCUITO**

La alarma de DESCONEXIÓN DEL CIRCUITO indica que el circuito del paciente se ha desconectado del respirador o del lateral del circuito en “Y” o que se ha producido una fuga considerable. Los métodos a través de los cuales se detectan las desconexiones del circuito varían en función del tipo de respiración. El tiempo, la presión, el flujo, el volumen administrado, el volumen espirado y el parámetro de DSENS pueden utilizarse en los algoritmos de detección de desconexión del circuito. Consulte Desconexión, p. 10-47, para conocer más a fondo los métodos de detección de DESCONEXIÓN DEL CIRCUITO.

La sensibilidad de la alarma de DESCONEXIÓN DEL CIRCUITO es ajustable por medio del parámetro de DSENS. Durante una situación de DESCONEXIÓN DEL CIRCUITO, el respirador pasa al estado de inactividad y administra un flujo base de oxígeno para detectar su reconexión.

Cuando el respirador detecta la reconexión del circuito del paciente, la alarma de DESCONEXIÓN DEL CIRCUITO se restablece automáticamente y la ventilación normal se reanuda sin que sea necesario restablecer manualmente la alarma (por ejemplo, tras una succion).

Al desconectarse el circuito del paciente se ve interrumpida la administración de gas y la monitorización del paciente. El aviso de desconexión del circuito del paciente es de importancia clave, especialmente en situaciones en las que el paciente es incapaz de respirar espontáneamente. El respirador no pasa al estado de ventilación de apnea cuando detecta una desconexión del circuito para evitar cambiar de modo durante un procedimiento de succion rutinario.

Nota:

Al utilizar un sistema de catéter de succion cerrada, el procedimiento de succion puede ejecutarse con los modos, tipos de respiración y parámetros existentes. Para reducir la posibilidad de sufrir hipoxemia durante el procedimiento, eleve la concentración de oxígeno con el control de O2 elevado. Consulte Para ajustar la cantidad de O2 elevado suministrado durante dos minutos, p. 3-38.

6.5.12 **Alarma de PÉRDIDA DE ALIMENTACIÓN**

Esta alarma avisa al operador de que el sistema no recibe corriente eléctrica o que la batería no tiene autonomía suficiente para garantizar el funcionamiento del respirador o del compresor. La alarma se anunciará mientras el interruptor del respirador se encuentre en posición de encendido y tiene una duración de al menos 120 segundos.
6.5.13 Alarma de ALERTA DEL DISPOSITIVO

La alarma de ALERTA DEL DISPOSITIVO indica que no se ha realizado correctamente una prueba de segundo plano o un autotest de encendido. En función de la prueba que haya fallado, el respirador anunciará la alarma y seguirá administrando ventilación según los parámetros en uso, o administrará ventilación según los parámetros modificados o pasará al estado de respirador no operativo. La alarma de ALERTA DEL DISPOSITIVO se activa en función de los procedimientos de autotest del respirador y avisa al profesional sanitario de una condición anormal que requiere asistencia técnica. Consulte Sistema de diagnóstico de segundo plano, p. 10-75.

6.5.14 Alarma de Presión máxima del circuito (\(\uparrow P_{PEAK}\))

La alarma de \(\uparrow P_{PEAK}\) indica que la presión medida actual de las vías respiratorias es igual o superior al límite definido. El límite de \(\uparrow P_{PEAK}\) se halla activo durante todas las fases y tipos de respiración para proporcionar protección redundante al paciente (por ejemplo, para detectar restricciones de flujo de aire en el extremo inferior del dispositivo de detección de la presión). El límite de \(\uparrow P_{PEAK}\) se halla activo en todos los modos de ventilación normales. Los valores predeterminados de nuevo paciente de la alarma de \(\uparrow P_{PEAK}\) se configuran independientemente en función de si se trata de pacientes pediátricos, adultos o neonatales. El límite de \(\uparrow P_{PEAK}\) no se halla activo durante una alarma de OCLUSIÓN SEVERA.

La alarma de \(\uparrow P_{PEAK}\) trunca la inspiración y lleva al respirador a la fase de espiración. Además, el límite no puede ser inferior a

- \(\text{PEEP} + 7 \text{ cmH}_2\text{O}\), o
- \(\text{PEEP} + P_i + 2 \text{ cmH}_2\text{O}\), o
- \(\text{PEEP} + P_{SUPP} + 2 \text{ cmH}_2\text{O}\)

ni tampoco puede ser inferior o igual al de \(\downarrow P_{PEAK}\).

El límite de \(\uparrow P_{PEAK}\) no se puede deshabilitar. El respirador efectúa paulatinamente cambios en el límite de \(\uparrow P_{PEAK}\) para permitir la notificación instantánea de una situación de presión máxima del circuito.

El límite mínimo de \(\uparrow P_{PEAK}\) (7 cmH2O) equivale a los picos de presión más bajos que no se producen a causa de una autoactivación prevista durante una respiración mandatoria. El límite máximo de \(\uparrow P_{PEAK}\) (100 cmH2O) se halla seleccionado porque es la presión máxima necesaria para inflar pulmones de baja compliancia.
El respirador permite que la presión del circuito aumente de acuerdo a un perfil de activación calculado durante la fase inicial de respiraciones PC y PS sin activar la alarma de \(P_{PEAK} \). Este perfil de activación ayuda a evitar falsas alarmas a causa de una posible sobrecarga de presión transitoria en las vías respiratorías al seleccionar valores agresivos para el porcentaje de tiempo de rampa. Es improbable que se produzca en la carina una breve sobrecarga de presión medida en el circuito del paciente.

6.5.15 Alarma de Porcentaje máximo de O2 administrado (\(\uparrow O_2\% \))

La alarma de porcentaje de \(O_2 \) indica que el porcentaje de \(O_2 \) medido es similar o mayor que el porcentaje de error superior al parámetro de porcentaje de \(O_2 \) durante al menos 30 segundos para descartar falsas alarmas a causa de variaciones en la administración transitoria del porcentaje de \(O_2 \). La alarma de porcentaje de \(O_2 \) detecta fallos en la administración de gas o en el monitor de oxígeno del respirador. El respirador anuncia una alarma de porcentaje de \(O_2 \) al cabo de 30 segundos. Aunque el respirador determine automáticamente los límites de alarma de porcentaje de \(O_2 \), es posible deshabilitar el sensor de oxígeno (el porcentaje de error es un 12 \% superior al parámetro de porcentaje de \(O_2 \), un 7 \% superior tras la primera hora de funcionamiento y un 5 \% adicional y superior también durante los primeros cuatro minutos tras una disminución del parámetro).

El respirador ajusta automáticamente el límite de la alarma de porcentaje de \(O_2 \) cuando el porcentaje de \(O_2 \) sufre una alteración debido a una administración de \(O_2 \) al 100 \%, una ventilación de apnea, una oclusión, una desconexión del circuito o a una alarma de SIN SUMINISTRO DE AIRE/O2. El respirador coteja el límite de la alarma de \(O_2 \) con el porcentaje de oxígeno medido en intervalos de un segundo.

6.5.16 Alarma de Volumen espirado máximo por minuto (\(\uparrow V_{E TOT} \))

La alarma de \(V_{E TOT} \) indica que el volumen espirado total por minuto de las respiraciones espontáneas y mandatorias es igual o superior al parámetro de la alarma. La alarma de \(V_{E TOT} \) pasa a estar efectiva en el mismo momento en que se cambia el parámetro, para así garantizar la notificación instantánea de volúmenes corrientes elevados prolongados.

La alarma de \(V_{E TOT} \) puede utilizarse para detectar cambios en el patrón de respiración de un paciente o en la compliancia o resistencia. La alarma de \(V_{E TOT} \) puede utilizarse asimismo para detectar volúmenes corrientes demasiado grandes que puedan provocar hiperventilación o hipocapnia.
6.5.17 **Alarma de Volumen corriente espirado máximo (↑V_{TE})**

La alarma de ↑V_{TE} indica que el volumen corriente espirado máximo de las respiraciones espontáneas y mandatorias es igual o superior al parámetro definido de la alarma de ↑V_{TE}. La alarma de ↑V_{TE} se actualiza cada vez que hay disponible un nuevo valor medido.

La alarma de ↑V_{TE} puede detectar un aumento del volumen corriente espirado (a causa de una mayor compliancia o una menor resistencia) y evitar estados de hiperventilación durante la ventilación de control de presión o el mantenimiento de la presión. Apague la alarma de ↑V_{TE} para evitar falsas alarmas (la hiperventilación a causa de un aumento de la compliancia no es relevante durante la ventilación basada en volumen, ya que tanto el médico como el algoritmo de compensación por compliancia del respirador fijan el volumen corriente).

6.5.18 **Alarma de Volumen corriente inspirado máximo (↑V_{TI})**

La alarma de volumen corriente inspirado máximo indica que el volumen inspirado del paciente excede el límite definido. Cuando se produce esta situación, la respiración se detiene y la alarma suena. El respirador muestra valores supervisados de volumen corriente inspirado en el apartado de datos del paciente de la pantalla de la GUI. Cuando el tipo de ventilación es NIV, no existe alarma de volumen corriente máximo inspirado ni parámetros disponibles, aunque el volumen corriente inspirado supervisado (V_{TI}) podría aparecer en el apartado de datos del paciente de la pantalla de la GUI.

6.5.19 **Alarma de Frecuencia respiratoria máxima (↑f_{TOT})**

La alarma de ↑f_{TOT} indica que la frecuencia respiratoria medida es igual o superior al parámetro de la alarma de ↑f_{TOT}. La alarma de ↑f_{TOT} se actualiza cada vez que hay disponible una nueva frecuencia respiratoria total medida.

La alarma de ↑f_{TOT} puede detectar estados de taquipnea, que podrían indicar que el volumen corriente es demasiado bajo o que el ritmo de respiración del paciente ha aumentado. El respirador efectúa paulatinamente cambios en el límite de ↑f_{TOT} para garantizar la notificación instantánea de una situación de frecuencia respiratoria máxima.
6.5.20 Alarma de INSPIRACIÓN DEMASIADO LARGA

La alarma de INSPIRACIÓN DEMASIADO LARGA, que se halla activa únicamente cuando el tipo de ventilación es INVASIVO, indica que el tiempo inspiratorio de una respiración espontánea excede el siguiente límite temporal:

(1,99 + 0,02 x PBW) segundos (circuitos adultos y pediátricos)
(1,00 + 0,10 x PBW) segundos (circuitos neonatales)

en el que PBW es el parámetro en uso del peso corporal previsto en kg.

Cuando el respirador anuncia una alarma de INSPIRACIÓN DEMASIADO LARGA, el respirador da por finalizada la fase de inspiración y pasa a la de espiración. La alarma de INSPIRACIÓN DEMASIADO LARGA se aplica únicamente a las respiraciones espontáneas y no es posible ni ajustarla ni deshabilitarla.

Dado que las fugas (en el circuito del paciente, alrededor del mango del tubo endotraqueal o en los tubos torácicos) y las discordancias entre el paciente y el respirador pueden poner en peligro la detección precisa de la espiración, la alarma de INSPIRACIÓN DEMASIADO LARGA puede hacer las veces de método de reserva para terminar la fase inspiratoria de un modo seguro. Si la alarma de INSPIRACIÓN DEMASIADO LARGA hace aparición frecuentemente, compruebe que no haya fugas en el sistema y asegúrese de que los parámetros de ESENS y de porcentaje de tiempo de rampa están debidamente definidos.

6.5.21 Alarma de Presión del circuito baja (\(\downarrow P_{PEAK}\))

ADVERTENCIA:

Al no permitir el algoritmo de control de la presión del tipo VC+ que la presión inspiratoria objetivo sea inferior a PEEP + 3 cmH₂O, el mero intento de ajustar el límite de alarma de \(\downarrow P_{PEAK}\) al mismo nivel o por debajo del mismo hará que la alarma se desconecte.

La alarma de \(\downarrow P_{PEAK}\) indica que la presión máxima medida de las vías respiratorias durante la respiración en curso es inferior o igual al nivel de alarma definido durante una inspiración no invasiva o de tipo VC+.

La alarma de \(\downarrow P_{PEAK}\) se halla activa en respiraciones mandatorias y espontáneas, y está presente únicamente cuando el tipo de ventilación es NIV o el tipo mandatorio es VC+. Es posible desconectar la alarma de \(\downarrow P_{PEAK}\) durante una inspiración de tipo VC+. La alarma de \(\downarrow P_{PEAK}\) puede desconectarse en cualquier momento durante una inspiración NIV. El valor del límite de la alarma de \(\downarrow P_{PEAK}\) no puede ser igual o mayor que el límite de la alarma de \(\uparrow P_{PEAK}\).
En VC+, cada vez que el valor de PEEP cambie, ΔP_{PEAK} se ajustará automáticamente a su valor de nuevo paciente, PEEP + 4 cmH$_2$O cuando PEEP \geq 16 cmH$_2$O o PEEP + 3,5 cmH$_2$O cuando PEEP < 16 cmH$_2$O.

Ninguna alarma depende de ΔP_{PEAK}, y la alarma de ΔP_{PEAK} no depende a su vez de otras alarmas.

6.5.22 **Alarma de Porcentaje mínimo de O$_2$ administrado ($\downarrow O_2\%$)**

La alarma de porcentaje de $\downarrow O_2$ indica que el porcentaje de O$_2$ durante cualquier fase de la respiración se encuentra al mismo nivel o por debajo del porcentaje de error inferior al parámetro de porcentaje de O$_2$, o bien que es inferior o igual a 18 %, durante al menos 30 segundos. Aunque el respirador define automáticamente los límites de alarma de porcentaje de $\downarrow O_2$, reemplace (si fuera preciso hacerlo) o des habilite el sensor de oxígeno para evitar falsas alarmas. El porcentaje de error es un 12 % inferior al parámetro durante la primera hora de funcionamiento del respirador tras un restablecimiento, un 7 % inferior tras la primera hora de funcionamiento y un 5 % adicional e inferior también durante los primeros cuatro minutos tras un aumento del parámetro.

El respirador ajusta automáticamente el límite de la alarma de porcentaje de $\downarrow O_2$ cuando el porcentaje de O$_2$ sufre una alteración debido a una ventilación de apnea, una desconexión del circuito o a una alarma de SIN SUMINISTRO DE AIRE/O$_2$.

La alarma de porcentaje de $\downarrow O_2$ se deshabilita durante una situación de válvula de seguridad abierta (SVO). El respirador coteja la alarma de porcentaje de $\downarrow O_2$ con el porcentaje de oxígeno medido en intervalos de un segundo.

La alarma de porcentaje de $\downarrow O_2$ puede detectar fallos en la administración de gas o en el monitor de oxígeno del respirador, y puede garantizar también la correcta administración de oxígeno al paciente. El respirador anuncia una alarma de porcentaje de $\downarrow O_2$ al cabo de 30 segundos para descartar falsas alarmas de variaciones en la administración transitoria del porcentaje de O$_2$. El porcentaje de O$_2$ medido por el sensor de oxígeno se muestra en el apartado de datos del paciente. Consulte *Datos vitales del paciente*, p. 3-40 para incluir el porcentaje de O$_2$ en caso de que no se muestre en pantalla.
6.5.23 Alarma de volumen corriente espirado mandatorio bajo ($V_{TE\,MAND}$)

La alarma indica que el volumen corriente espirado mandatorio medido es inferior o igual al parámetro de la alarma de $V_{TE\,MAND}$. La alarma de $V_{TE\,MAND}$ se actualiza cuando hay disponible un nuevo valor medido de volumen corriente espirado mandatorio.

La alarma de $V_{TE\,MAND}$ puede detectar una obstrucción, una fuga durante una ventilación de volumen o un cambio en la compliancia o en la resistencia durante una ventilación basada en la presión (es decir, cuando se alcanza la misma presión pero el volumen corriente disminuye). Existen alarmas independientes para los volúmenes corrientes espirados mandatorios y espontáneos que se usan en SIMV, SPONT y BiLevel. El respirador efectúa paulatinamente cambios en la alarma de $V_{TE\,MAND}$ para garantizar la notificación instantánea de una situación de volumen corriente espirado bajo.

6.5.24 Alarma de volumen corriente espirado espontáneo bajo ($V_{TE\,SPONT}$)

La alarma de $V_{TE\,SPONT}$ indica que el volumen corriente espirado espontáneo medido es inferior o igual al parámetro de la alarma de $V_{TE\,SPONT}$. La alarma se actualiza cada vez que hay disponible un nuevo valor medido de volumen corriente espirado espontáneo.

La alarma de $V_{TE\,SPONT}$ puede detectar una fuga en el circuito del paciente o cambios en el impulso respiratorio del paciente durante una única respiración. La alarma de $V_{TE\,SPONT}$ toma como base la respiración en curso en lugar de una respiración promedio para detectar así posibles cambios a la mayor brevedad. Existen alarmas independientes para los volúmenes corrientes espirados mandatorios y espontáneos que se usan en SIMV y BiLevel, siempre y cuando esta opción de software se halle instalada. El respirador efectúa paulatinamente cambios en el límite de la alarma de $V_{TE\,SPONT}$ para garantizar la notificación instantánea de una situación de volumen corriente espirado bajo.

6.5.25 Alarma de Volumen total espirado bajo por minuto ($V_{E\,TOT}$)

La alarma de $V_{E\,TOT}$ indica que el volumen medido por minuto (en respiraciones mandatorias y espontáneas) es igual o inferior al parámetro de la alarma de $V_{E\,TOT}$. La alarma $V_{E\,TOT}$ se actualiza con cada nuevo cálculo para el volumen espirado por minuto.
La alarma de $V_{E\, TOT}$ puede detectar una fuga o una obstrucción en el circuito del paciente, cambios en la compliancia o en la resistencia o cambios en el patrón de respiración del paciente. La alarma de $V_{E\, TOT}$ puede utilizarse asimismo para detectar volúmenes corrientes demasiado pequeños que puedan provocar hipoventilación o hipoxia (desaturación de oxígeno).

El respirador efectúa paulatinamente cambios en el límite de la alarma de $V_{E\, TOT}$ para garantizar la notificación instantánea de volúmenes corrientes prolongados bajos.

6.5.26 Alarma de ERROR DE PROCEDIMIENTO

El respirador anuncia una alarma de ERROR DE PROCEDIMIENTO si, al encenderse (ya sea colocando el interruptor en la posición de encendido o volviendo a contar con suministro eléctrico tras un corte de al menos cinco minutos), el respirador detecta a un paciente conectado antes de que se haya completado su proceso de inicio.

El respirador anunciará una alarma de prioridad alta y ejecutará el modo PCV de seguridad hasta que no se confirme la configuración del respirador. Consulte Parámetros de la PCV de seguridad, p. 10-73.

La alarma de ERROR DE PROCEDIMIENTO requiere confirmación de la configuración del respirador una vez se restablezca el suministro eléctrico, en caso de que se conecte un paciente nuevo al respirador. El modo PCV de seguridad es un modo de ventilación de emergencia que administra ventilación en base a la configuración que se muestra en pantalla hasta que se obtiene confirmación de la configuración del sistema, y no está preparado para administrar ventilación a largo plazo al paciente.

6.5.27 Alarma de OCLUSIÓN SEVERA

La alarma de oclusión severa se produce cuando el flujo de gas del sistema de respiración del respirador se encuentra seriamente restringido. El respirador entra entonces en el modo de ciclo de estado de oclusión (OSC), en el que el respirador intenta administrar periódicamente una respiración basada en la presión mientras supervisa las fases de inspiración y espiración de la respiración en busca de una oclusión severa. Si no detecta ninguna oclusión, el respirador contempla el restablecimiento de la situación de oclusión, apaga la alarma de oclusión y continúa administrando ventilación utilizando los mismos parámetros que antes de producirse la situación de oclusión. El respirador indica que se ha detectado una oclusión.
6.6 Datos del paciente monitorizados

Los datos del paciente monitorizados aparecen en el banner de datos del paciente de la parte superior de la pantalla de la GUI, justo encima de las formas de onda. Consulte Áreas de la GUI, p. 4-3. Donde sea aplicable, se indicarán los ajustes preestablecidos.

Consulte Datos vitales del paciente, p. 3-40, para cambiar los parámetros de los datos del paciente que aparecen en pantalla o el orden en que se muestran.

Si algún valor de los datos del paciente parpadean constantemente, significa que aparece recortado con respecto a su límite absoluto definido. Si los valores se muestran entre paréntesis "()", significa que aparecen recortados con respecto a sus límites variables. Los límites variables se basan en varios parámetros del respirador y del paciente. De ocurrir tales fenómenos, revise los campos afectados por los mismos para cerciorarse de que sus valores son correctos.

Los guiones (--) aparecen cuando un valor de los datos del paciente no es aplicable de acuerdo a las combinaciones de modo y tipo de respiración.

Nota:
Cuando un valor de los datos del paciente parpadea, se debe a que el valor mostrado es superior o inferior a su límite absoluto o porque ha sido “ajustado” al mismo. Cuando un valor de datos aparece entre paréntesis es debido a que su exactitud es cuestionable. Si no aparece ningún valor en pantalla es porque el respirador se encuentra en un estado en que no es posible medirlos.

Los siguientes apartados contienen descripciones de todos los parámetros de los datos del paciente que se muestran en pantalla.

Nota:
Todos los datos de volumen del paciente que aparecen en pantalla representan volúmenes pulmonares expresados bajo condiciones BTPS.

6.6.1 Volumen total espirado por minuto ($V_{E\TOT}$)

Suma compensada por BTPS y compliancia de los volúmenes de gas espirados de respiraciones tanto mandatorias como espontáneas durante el intervalo anterior de un minuto de duración. Un parámetro de fábrica.
6.6.2 **Volumen espirado espontáneo por minuto** \((V_{E\,SPONT}) \)

Suma compensada por BTPS y compliancia de los volúmenes espirados espontáneos durante el minuto anterior. Un parámetro de fábrica.

6.6.3 **Volumen corriente espirado** \((V_{TE}) \)

El volumen de gas espirado por el paciente durante la respiración mandatoria o espontánea anterior. El valor de \(V_{TE} \) que aparece en pantalla está compensado tanto por compliancia como por BTPS, y se actualiza durante la siguiente inspiración. Un parámetro de fábrica.

6.6.4 **Volumen proximal espirado por minuto** \((V_{E\,TOTY}) \)

Suma compensada por BTPS y compliancia de los volúmenes espirados espontáneos durante el minuto anterior.

6.6.5 **Volumen corriente espirado proximal** \((V_{TE\,Y}) \)

El volumen corriente espirado de una respiración previa medida por el sensor de flujo proximal (solo para pacientes neonatales). \(V_{TE\,Y} \) se actualiza al comienzo de la siguiente inspiración.

6.6.6 **Volumen corriente espirado espontáneo** \((V_{TE\,SPONT}) \)

Volumen espirado de la última respiración espontánea, y se actualiza al comienzo de la siguiente inspiración tras una respiración espontánea.

6.6.7 **Volumen corriente espirado mandatorio** \((V_{TE\,MAND}) \)

Volumen espirado de la última respiración mandatoria, y se actualiza al comienzo de la siguiente inspiración tras una respiración mandatoria. Si el modo SPONT está activado y el respirador no ha administrado respiraciones mandatorias en un periodo superior a los dos minutos (por ejemplo, por inspiración manual), el indicador de datos del paciente de \(V_{TE\,MAND} \) se ocultará y no volverá a aparecer hasta que el valor se actualice. Un parámetro de fábrica.
6.6.8 **Volumen espirado en mL/kg**

Se trata del volumen espirado del paciente mostrado en mL/kg PBW.

6.6.9 **Volumen corriente inspirado (VTI)**

Volumen de gas inspirado compensado por BTPS y compliancia de todas las respiraciones NIV o basadas en la presión, y actualiza al comienzo de la siguiente fase espiratoria. VTI aparece en pantalla cuando los datos están disponibles. Un parámetro de fábrica.

6.6.10 **Volumen corriente inspirado proximal (VTIY)**

El volumen corriente inspirado de una respiración mandatoria o espontánea medida por el sensor de flujo proximal (solo para pacientes neonatales). VTIY se actualiza al comienzo de la siguiente fase espiratoria y se muestra cuando los datos están disponibles.

6.6.11 **Volumen administrado en mL/kg**

Se trata del volumen de gas administrado mostrado en mL/kg PBW.

6.6.12 **Relación I:E**

Se trata de la relación entre el tiempo inspiratorio y el tiempo espiratorio de la respiración anterior, independientemente del tipo de respiración. Se actualiza al comienzo de la siguiente inspiración. Cuando la relación I:E es ≥ 1:1, aparece mostrada como XX:1. De lo contrario, se muestra como 1:XX. Un parámetro de fábrica.

Nota:
Debido a limitaciones de ajuste de la relación I:E en ventilación PC, los datos mostrados y los parámetros configurados pueden no corresponderse con precisión.

6.6.13 **Presión media del circuito (PMEAN)**

Se trata de la presión media del circuito durante un ciclo de respiración completo, incluyendo sus fases inspiratorias y espiratorias, independientemente de si es mandatorio o espontáneo. El valor mostrado puede ser positivo o negativo. Un parámetro de fábrica.
6.6.14 **Presión máxima del circuito (**P_{PEAK}**)

Se trata de la presión máxima del circuito en “Y” del paciente durante la respiración anterior, incluyendo sus fases inspiratorias y espiratorias. Un parámetro de fábrica.

6.6.15 **Presión inspiratoria final (**$P_{\text{I END}}$**)

Presión al final de la fase de inspiración de la respiración actual. Un parámetro de fábrica.

6.6.16 **Presión espiratoria final (**PEEP**)

Se trata de la presión del final de la fase espiratoria de la respiración anterior, y se actualiza al comienzo de la siguiente inspiración. Durante la pausa espiratoria, el valor mostrado incluye PEEP pulmonares activas. Un parámetro de fábrica.

6.6.17 **PEEP intrínseca (**PEEP_i**)

PEEP_i es una estimación de la presión por encima del nivel PEEP al final de una espiración. PEEP_i se determina durante una maniobra de pausa espiratoria.

6.6.18 **PEEP intrínseca basada en PAV (**$\text{PEEP}_{i \text{PAV}}$**)

$\text{PEEP}_{i \text{PAV}}$ es una estimación de PEEP intrínseca, y se actualiza al final de una respiración PAV+ espontánea.

6.6.19 **PEEP total (**PEEP_TOT**)

PEEP_TOT es la presión estimada del circuito en “Y” durante la maniobra de pausa espiratoria.

6.6.20 **Presión de meseta (**P_{PL}**)

P_{PL} es la presión medida y mostrada durante una maniobra de pausa inspiratoria.

6.6.21 **Frecuencia respiratoria total (**f_{TOT}**)

El número total de respiraciones/min mandatorias o espontáneas suministradas al paciente. Un parámetro de fábrica.
6.6.22 **Compliancia pulmonar basada en PAV (C_{PAV})**

En una respiración PAV+, C_{PAV} es el cambio del volumen pulmonar respecto a un cambio aplicado en la presión de las vías respiratorias del paciente, se mide en condiciones de flujo cero y se actualiza tras cada cálculo realizado con éxito. C_{PAV} se muestra en la pantalla de análisis de onda.

6.6.23 **Resistencia del paciente basada en PAV (R_{PAV})**

En una respiración PAV+, R_{PAV} es el cambio de la presión pulmonar respecto a un cambio aplicado en el flujo pulmonar, y se actualiza tras cada cálculo realizado con éxito. R_{PAV} se muestra en la pantalla de análisis de gráficas.

6.6.24 **Elastancia pulmonar basada en PAV (E_{PAV})**

En una respiración PAV+, E_{PAV} es lo contrario a C_{PAV} y se actualiza cada vez que un cálculo se realiza con éxito.

6.6.25 **Índice de taquipnea espontánea (f/ V_T)**

Indica la capacidad del paciente para respirar de forma espontánea. Los valores elevados suelen representar que el paciente está respirando rápidamente pero con volúmenes corrientes bajos. Los valores bajos suelen representar justo lo contrario. Un parámetro de fábrica.

6.6.26 **Relación de tiempo inspiratorio espontáneo (T_I/T_{TOT})**

En el modo SPONT, se trata del porcentaje de una respiración espontánea consumida por la fase inspiratoria. Se actualiza cada vez que se realiza con éxito una respiración espontánea. Un parámetro de fábrica.

6.6.27 **Tiempo inspiratorio espontáneo (T_{I,SPONT})**

La duración de la fase inspiratoria de una respiración espontánea, y se actualiza al final de cada respiración espontánea. T_{I,SPONT} se calcula únicamente cuando el modo de respiración admite respiraciones espontáneas y estas son iniciadas por el paciente. Un parámetro de fábrica.
6.6.28 Resistencia de las vías aéreas total basada en PAV (R_{TOT})

En una respiración PAV+, R_{TOT} es el cambio de la presión pulmonar respecto a un cambio aplicado en el flujo total de las vías respiratorias, y se actualiza tras cada cálculo realizado con éxito. Si el valor R_{PAV} aparece entre paréntesis tal y como se describe al principio de este apartado, el valor R_{TOT} aparecerá también entre paréntesis.

6.6.29 Compliancia estática (C_{STAT}) y Resistencia estática (R_{STAT})

C_{STAT} es una estimación de la elasticidad de los pulmones del paciente expresada en mL/cmH\(_2\)O. Se calcula durante una respiración mandatoria.

R_{STAT} es la resistencia inspiratoria total a lo largo del sistema respiratorio y de las vías aéreas artificiales, y se muestra al comienzo de la siguiente inspiración tras la maniobra de pausa inspiratoria. Se trata de una estimación de lo restrictivas que son las vías respiratorias del paciente en base a la disminución de la presión en un flujo determinado, y se expresa en cmH\(_2\)O/L/s. R_{STAT} se calcula durante una respiración mandatoria VC con una forma de onda de flujo cuadrada.

C_{STAT} se calcula por medio de la siguiente ecuación:

\[
C_{STAT} = \frac{V_{pt}}{P_{ckt} - PEEP} - C_{ckt}
\]

- \(C_{STAT}\) Compliancia estática
- \(P_{ckt}\) La presión del circuito del paciente medida a la conclusión del intervalo de 100 ms que define la meseta pausa-mecánica
- \(V_{pt}\) Volumen espiratorio total (circuit del paciente y de respiración)
- \(PEEP\) La presión del circuito del paciente medida al final de la espiración
- \(C_{ckt}\) Compliancia del circuito de respiración durante la maniobra de pausa (derivada de SST)
Datos del paciente monitorizados

\[R_{STAT} = \frac{1 + \frac{C_{ckt}}{C_{STAT}}}{V_{pt}} \langle P_{PEAK} - P_{PL} \rangle \]

\(R_{STAT} \) Resistencia estática
\(C_{STAT} \) Compliancia estática
\(C_{ckt} \) Compliancia del circuito de respiración durante la maniobra de pausa (derivada de SST)
\(V_{pt} \) Flujo administrado al paciente durante los últimos 100 ms de formas de onda
\(P_{PL} \) La presión media del circuito del paciente por encima del intervalo de 100 ms que define la meseta pausa-mecánica
\(P_{PEAK} \) Presión máxima del circuito

Durante la pausa, las últimas gráficas seleccionadas se muestran congeladas en pantalla para determinar el momento en que se estabiliza la presión inspiratoria. \(C_{STAT} \) y \(R_{STAT} \) se muestran al comienzo de la siguiente inspiración una vez concluida la pausa inspiratoria y bajo el siguiente formato:

\(C_{STAT} \) xxx

O

\(R_{STAT} \) yyy

Se emplea un formato especial si el software determina variables en las ecuaciones o los valores de \(C_{STAT} \) o \(R_{STAT} \) resultantes se encuentran fuera de los límites establecidos:

- Los paréntesis () indican valores de \(C_{STAT} \) o \(R_{STAT} \) cuestionables derivados de variables también cuestionables.

- Si hay valores de \(C_{STAT} \) o \(R_{STAT} \) que parpadean, ello es debido a que se encuentran fuera de los límites establecidos.

- \(R_{STAT} \) ------ indica que no se ha podido medir la resistencia porque la respiración no era de tipo VC mandatorio con forma de onda de flujo cuadrada.
6.6.30 **Compliancia dinámica** (C_{DYN})

C_{DYN} es la estimación dinámica de la compliancia estática de cada una de las respiraciones mandatorias administradas.

6.6.31 **Resistencia dinámica** (R_{DYN})

R_{DYN} es la estimación dinámica de la resistencia estática de cada una de las respiraciones mandatorias administradas.

6.6.32 **C_{20}/C**

C_{20}/C es la relación de compliancia del último 20 % de inspiración respecto a la compliancia de toda la inspiración.

6.6.33 **Flujo espiratorio final** (EEF)

Se trata de la medición del flujo espiratorio final de una respiración aplicable.

6.6.34 **Flujo espontáneo máximo** (PSF)

Se trata de la medición del flujo espontáneo inspiratorio máximo de una respiración espontánea aplicable.

6.6.35 **Porcentaje de O₂ mostrado**

El porcentaje de oxígeno en el gas administrado al paciente, medido en el flujo de salida del respirador del filtro inspiratorio. Tiene como objeto cotejar el porcentaje de O₂ definido para la determinación de la alarma, y no servir a modo de medición del oxígeno administrado al paciente. El % de O₂% se puede mostrar siempre que se active el monitor de O₂. Si el monitor está desactivado, se muestran guiones (--). Si tiene lugar una alerta del dispositivo relacionada con el monitor de O₂, aparecerá un 0 parpadeante.
7 Mantenimiento preventivo

7.1 Generalidades

Este capítulo contiene información sobre el mantenimiento del respirador Serie 980 de Puritan Bennett™. Contenido del capítulo:

- Cómo realizar los procedimientos de mantenimiento preventivo rutinarios, incluida la frecuencia de mantenimiento
- Cómo limpiar, desinfectar o esterilizar el respirador y los componentes principales
- Cómo guardar el respirador durante largos períodos de tiempo
- Cómo desechar las piezas usadas

7.2 Tiempo de funcionamiento del respirador

El respirador dispone de un contador que registra el número de horas de funcionamiento desde su fabricación. Existe un contador adicional que hace un seguimiento del número de horas que han transcurrido desde que se realizó la última actividad de mantenimiento preventivo. La GUI y la pantalla de estado muestran el número de horas que faltan para que venza el plazo para realizar el siguiente mantenimiento preventivo.

7.3 Intervalos de mantenimiento preventivo

¡ADVERTENCIA:
Para garantizar el correcto funcionamiento del respirador, respete los intervalos de mantenimiento preventivo tal y como se indican en las siguientes tablas. Consulte Frecuencia de mantenimiento preventivo por parte del operador, p. 7-2 y Consulte Frecuencia del mantenimiento preventivo de servicio, p. 7-22.
Tabla 7-1. Frecuencia de mantenimiento preventivo por parte del operador

<table>
<thead>
<tr>
<th>Parte</th>
<th>Frecuencia</th>
<th>Mantenimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuito del paciente: ramales inspiratorio y espiratorio</td>
<td>Varias veces al día o tan frecuentemente como lo exija la directiva del centro sanitario.</td>
<td>• Compruebe los dos ramales en busca de acumulación de agua.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vacíe y limpie.</td>
</tr>
<tr>
<td>Vial de condensado, colectores de agua y bolsa de drenaje</td>
<td></td>
<td>Verifíquelos y vacíelos si es necesario.</td>
</tr>
<tr>
<td>Calibración del sensor de oxígeno</td>
<td></td>
<td>En la pantalla de configuración del respirador, toque la pestaña Más parámet. Para calibrar el sensor de oxígeno, toque Calibrar en el área del sensor de oxígeno de la pantalla. Consulte Comprobación de la calibración del sensor de oxígeno, p. 4-34 para obtener información sobre las pruebas de calibración del sensor de oxígeno.</td>
</tr>
<tr>
<td>Cubeta del filtro de entrada de aire</td>
<td></td>
<td>• Sustituya la cubeta si está rota.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Si hay signos visibles de humedad, deje de utilizar el respirador y póngase en contacto con el personal del servicio técnico.</td>
</tr>
</tbody>
</table>
Tabla 7-1. Frecuencia de mantenimiento preventivo por parte del operador (continuación)

<table>
<thead>
<tr>
<th>Parte</th>
<th>Frecuencia</th>
<th>Mantenimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro inspiratorio reutilizable</td>
<td>• Antes de cada uso</td>
<td>• Inspecciónelo y reemplácelo en caso de que esté agrietado, cuarteado o dañado. Esterilícelo siempre que se sustituya el circuito o que se cambie de paciente, o de acuerdo con la directiva del centro sanitario. Esterilícelo antes de desecharlo sin destruirlo o deseche el filtro de acuerdo con la directiva del centro sanitario.</td>
</tr>
<tr>
<td></td>
<td>• A los 15 días de uso continuo en el ramal inspiratorio (reemplazar)</td>
<td>• Realice un ATC para comprobar la resistencia del ramal espiratorio.</td>
</tr>
<tr>
<td></td>
<td>• Anualmente o después de 50 ciclos de autoclave (reemplazar)</td>
<td>• Tenga cuidado cuando cambie el filtro inspiratorio para evitar dañarlo y reducir al mínimo la posible introducción de partículas.</td>
</tr>
<tr>
<td></td>
<td>• Cuando se sospeche que hay un exceso de resistencia</td>
<td></td>
</tr>
<tr>
<td>Filtro espiratorio reutilizable</td>
<td>• Antes de cada uso</td>
<td>• Inspecciónelo y reemplácelo en caso de que esté agrietado, cuarteado o dañado. Esterilícelo siempre que se sustituya el circuito o que se cambie de paciente, o de acuerdo con la directiva del centro sanitario. Esterilícelo antes de desecharlo sin destruirlo o deseche el filtro de acuerdo con la directiva del centro sanitario.</td>
</tr>
<tr>
<td></td>
<td>• A los 15 días de uso continuo en el ramal espiratorio (reemplazar)</td>
<td>• Realice un ATC para comprobar la resistencia del filtro espiratorio y el ramal espiratorio.</td>
</tr>
<tr>
<td></td>
<td>• Anualmente o después de 50 ciclos de autoclave (reemplazar)</td>
<td>• Tenga cuidado cuando cambie el filtro bacteriano espiratorio para evitar dañarlo y reducir al mínimo la posible introducción de partículas.</td>
</tr>
<tr>
<td></td>
<td>• Cuando se sospeche que hay un exceso de resistencia</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 7-1. Frecuencia de mantenimiento preventivo por parte del operador (continuación)

<table>
<thead>
<tr>
<th>Parte</th>
<th>Frecuencia</th>
<th>Mantenimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro inspiratorio desechable</td>
<td>A los 15 días de uso continuo</td>
<td>Deseche el filtro de acuerdo con la directiva del centro sanitario.</td>
</tr>
<tr>
<td>(desechar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtro espiratorio desechable</td>
<td>A los 15 días de uso continuo</td>
<td>Deseche el filtro de acuerdo con la directiva del centro sanitario.</td>
</tr>
<tr>
<td>(desechar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batería</td>
<td>Cuando se transfiera la batería a o desde otro respirador</td>
<td>Desinféctela limpiándola con un paño húmedo utilizando una de las soluciones que aparecen en la lista siguiente. Consulte Agentes de limpieza de superficies, p. 7-6 para ver los agentes de limpieza aprobados.</td>
</tr>
<tr>
<td>Batería</td>
<td>Cada tres (3) años</td>
<td>Reemplazar</td>
</tr>
<tr>
<td>EVQ</td>
<td>Según se desee, o si falla la prueba cruzada del sensor de flujo de ATC.</td>
<td>Consulte Limpieza y desinfección de los componentes, p. 7-7 y Desinfección del conjunto del sensor de flujo espiratorio (EVQ), p. 7-10.</td>
</tr>
<tr>
<td>(NO ESTERILICE el conjunto del sensor de flujo espiratorio.)</td>
<td>Cada 100 ciclos de desinfección. El ciclo de desinfección se define como el proceso de desinfección tal como se describe en Desinfección del conjunto del sensor de flujo espiratorio (EVQ) (7.5.1) en la página 7-10.</td>
<td>Reemplazar. Deseche el sensor de flujo de acuerdo con la directiva del centro sanitario. Realice la calibración del sensor de flujo espiratorio y el ATC.</td>
</tr>
<tr>
<td>Filtro de aire de entrada del compresor</td>
<td>Cada 250 horas.</td>
<td>Lávelo con una solución jabonosa suave y enjuáguelo cuidadosamente. Déjelo secar al aire.</td>
</tr>
<tr>
<td>Puerta/adaptador neonatal</td>
<td>Cuando esté visiblemente sucio o según proceda</td>
<td>Desinfecte según las indicaciones de la Tabla 7-3.</td>
</tr>
</tbody>
</table>

Precaución:
Utilice los procedimientos y agentes de esterilización, desinfección y limpieza especificados para cada parte concreta tal y como se indica. Siga los procedimientos de limpieza indicados con anterioridad.
7.4 Limpieza de las superficies exteriores

Es probable que las superficies de la GUI, la BDU y la base del compresor se ensucien, por lo que deberán limpiarse periódicamente.

Para limpiar la GUI, la BDU o la base del compresor

1. Humedezca un paño suave con uno de los desinfectantes que se enumeran o utilice Sani Cloths (PDI, Inc.). Consulte la tabla *Agentes de limpieza de superficies* que figura a continuación.

2. Limpie la GUI, la BDU y la base del compresor eliminando cualquier tipo de suciedad o de sustancia extraña.

3. Seque todos los componentes en profundidad.

4. Si fuera necesario, aspire los orificios de ventilación de la GUI y la BDU con un aspirador protegido contra descargas electrostáticas (ESD) para eliminar el polvo.
Tabla 7-2. Agentes de limpieza de superficies

<table>
<thead>
<tr>
<th>Parte</th>
<th>Procedimiento</th>
<th>Comentarios/Precauciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Limpie con un paño humedecido con uno de los agentes de limpieza que aparecen en la lista siguiente o equivalente. Utilice un paño húmedo y agua para eliminar los residuos químicos cuando sea necesario.</td>
<td>No permita que entre líquido o spray en las aberturas del respirador o en las conexiones de cable. No intente esterilizar el respirador exponiéndolo a óxido de etileno (ETO). No utilice aire presurizado para limpiar o secar el respirador, incluidos los orificios de ventilación de la GUI. No sumerja el respirador ni vierta soluciones de limpieza sobre el respirador o en su interior.</td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Solución de detergente suave para lavavajillas</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Alcohol isopropílico (solución al 70 %)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Lejía (solución al 10 %)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Solución de limpieza de cristales (alcohol isopropílico y amoníaco)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Amoniaco (solución al 15 %)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Peróxido de hidrógeno (solución al 3 %)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Limpiador Formula 409® (Clorox Company)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Desinfectante de superficies CaviCide® (Metrex Research Corporation)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Germicida Control III® (Maril Products Inc.)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Cidex Plus 28 (3,4 %)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Cidex OPA (0,55 %)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Virox (spray o toallitas) (Virox Technologies Inc.)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Mr. Muscle Window & Glass (SC Johnson)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>Sani Cloths (PDI, Inc.)</td>
<td></td>
</tr>
<tr>
<td>Parte exterior del respirador (incluida la pantalla táctil y el brazo flexible)</td>
<td>[2-Propanol, isopropanol, alcohol isopropílico]</td>
<td>N/A</td>
</tr>
<tr>
<td>Rejillas de ventilación del respirador</td>
<td>Aspire los orificios de la parte trasera de la GUI y la BDU para eliminar el polvo.</td>
<td></td>
</tr>
</tbody>
</table>

1. Los productos químicos indicados son los equivalentes genéricos de Mr. Muscle Window & Glass
7.5 Limpieza y desinfección de los componentes

ADVERTENCIA:
Para evitar la contaminación microbiana y posibles problemas de rendimiento, no limpie, desinfecte ni reutilice los componentes para un solo paciente (SPU) o desechables. Deseche los componentes atendiendo a los reglamentos locales o del centro sanitario.

Entre los riesgos asociados a la reutilización de componentes para un solo paciente se incluyen, aunque sin limitarse a ellos, contaminación microbiana cruzada, fugas, pérdida de la integridad de las piezas y aumento del descenso de la presión. A la hora de limpiar componentes reutilizables, no utilice cepillos duros o instrumentos que puedan dañar la superficie de estos componentes.

Tabla 7-3. Agentes de limpieza de componentes y procedimientos de desinfección

<table>
<thead>
<tr>
<th>Parte</th>
<th>Agente y procedimiento de limpieza</th>
<th>Comentarios/Precauciones</th>
</tr>
</thead>
</table>
| EVQ | Antes de la desinfección, póngalo en remojo con detergente enzimático EMpower Dual Enzymatic Solution (Metrex Inc.). Realice una desinfección de alto nivel con desinfectante químico líquido con cualquiera de los siguientes agentes:
 - Cidex (2,5 %)
 - Metricide 28 (2,5 %)
 - Cidex OPA (0,55 %)
 - Metricide OPA Plus (0,6 %)
 Siga las instrucciones del fabricante
 Consulte *Desinfección del conjunto del sensor de flujo espiratorio (EVQ)*, p. 7-10 para obtener instrucciones específicas. | No deje caer el conjunto del EVQ ni lo maneje bruscamente durante el proceso de desinfección o almacenamiento. |
Tabla 7-3. Agentes de limpieza de componentes y procedimientos de desinfección (continuación)

<table>
<thead>
<tr>
<th>Parte</th>
<th>Agente y procedimiento de limpieza</th>
<th>Comentarios/Precauciones</th>
</tr>
</thead>
</table>
| Puerta/adaptador neonatal | Antes de la desinfección, póngalo en remojo con detergente enzimático EMpower Dual Enzymatic Solution (Metrex Inc.). Realice una desinfección de alto nivel con desinfectante químico líquido con cualquiera de los siguientes agentes:
• Cidex (2,5 %)
• Metricide 28 (2,5 %)
• Cidex OPA (0,55 %)
• Metricide OPA Plus (0,6 %)
Siga las instrucciones del fabricante. | N/A |
| Tubos del circuito del paciente reutilizables | Desinfecte de acuerdo a las instrucciones de uso del fabricante. | |
| Tubos del circuito del paciente desechables | Deséchelos | Deséchelos de acuerdo con el protocolo del centro sanitario. |
| Colectores de agua integrados del circuito de respiración | Desinfecte de acuerdo a las instrucciones de uso del fabricante. | |
| | • Inspeccione el colector de agua en busca de grietas y reemplácelo en caso de que esté dañado.
• Realice un ATC para comprobar si existen fugas cuando se vuelva a instalar el circuito o cuando se instalen nuevos componentes. | |
Para limpiar y desinfectar las piezas

1. Lave las piezas en agua templada utilizando una solución jabonosa suave.
2. Enjuague bien las piezas en agua limpia y templada (se puede utilizar agua del grifo) y séquelas.

Tabla 7-3. Agentes de limpieza de componentes y procedimientos de desinfección (continuación)

<table>
<thead>
<tr>
<th>Parte</th>
<th>Agente y procedimiento de limpieza</th>
<th>Comentarios/Precauciones</th>
</tr>
</thead>
</table>
| Componentes del circuito de respiración| Desinfecte de acuerdo a las instrucciones de uso del fabricante. | • Compruebe si hay cortes y rasguños en los componentes y reemplácelos en caso de que estén dañados.
• Realice un ATC para comprobar si existen fugas cuando se vuelva a instalar el circuito o cuando se instale un componente nuevo. |
| **Bolsa de drenaje y tubos desechables (una sola unidad)** | Deséchala cuando esté completamente llena o cuando se sustituya el circuito del paciente. | N/A |
| **Cubeta del filtro de entrada de aire** | En caso de que sea necesario, límpie la cubeta con una solución jabonosa suave. | • Evite exponer la cubeta del filtro de entrada del aire a disolventes aromáticos, especialmente cetonas.
• Sustitúyala en caso de que haya roturas o cuarteos visibles. |
| **Batería** | Límpiela con un paño húmedo utilizando uno de los agentes de limpieza enumerados. Consulte Agentes de limpieza de superficies, p. 7-6. | No sumerja la batería en líquido o permita que entre en contacto con líquidos. |
| **Filtro del respirador de enfriamiento** | Límpielo cada 250 horas o cuando sea necesario. Lávelo con una solución jabonosa suave, enjuáguelo y déjelo secar al aire. | N/A |
| **Otros accesorios** | Siga las instrucciones de uso del fabricante. | N/A |
3. Limpie o desinfecte las piezas siguiendo los procedimientos enumerados para cada componente. Consulte *Agentes de limpieza de componentes y procedimientos de desinfección*, p. 7-7, para obtener una lista de agentes de limpieza y desinfección.

4. Una vez que los componentes estén limpios o desinfectados, examínelos para comprobar si tienen alguna grieta u otro tipo de daño.

5. Deseche las piezas dañadas de acuerdo con la directiva del centro sanitario.

Nota:
Los pasos 1 a 3 anteriores no se aplican al EVQ. Consulte *Desinfección del conjunto del sensor de flujo espiratorio (EVQ)*, p. 7-10 para las instrucciones de desinfección.

Siempre que haya que reemplazar o volver a instalar un componente, realice un ATC antes de ventilar a un paciente.

7.5.1 Desinfección del conjunto del sensor de flujo espiratorio (EVQ)

Nota:
No es necesaria la desinfección del EVQ de forma rutinaria, pero debe desinfectarse según se desee, o si no se supera la prueba cruzada del sensor de flujo del ATC. Consulte *Agentes de limpieza de componentes y procedimientos de desinfección*, p. 7-7 para obtener una lista de desinfectantes adecuados.

Nota:
Siga el protocolo de control de infecciones de su centro sanitario para el manejo, almacenamiento y eliminación de desechos potencialmente biocontaminados.

Precaución:
Para evitar dañar el filamento de revestimiento caliente, no introduzca los dedos ni objetos en el puerto central cuando desinfecte el EVQ.

El EVQ contiene el sistema electrónico del sensor de flujo espiratorio, el diafragma de la válvula espiratoria, el precinto del filtro espiratorio y el filtro del sensor de presión. El sistema electrónico del sensor de flujo espiratorio está compuesto por el filamento de revestimiento caliente y el termistor. Al estar protegido por el filtro espiratorio, no es obligatorio ni necesario sustituirlo o desinfectarlo con regularidad. Sin embargo, puede retirarse y desinfectarse según se desee, o si no se supera la prueba cruzada del sensor de flujo del ATC. La vida útil es de 100 ciclos de desinfección.
Precaución:
Para evitar daños en el elemento del sensor del flujo espiratorio
- No toque el filamento de revestimiento caliente o el termistor del puerto central.
- No agite con fuerza líquidos a través del puerto central mientras está sumergido.
- No introduzca con energía aire comprimido o cualquier otro fluido a través de la cavidad central.
- No lo deje caer ni lo maneje bruscamente durante el proceso de desinfección o almacenamiento.

ADVERTENCIA:
Si se daña el filamento de revestimiento caliente o el termistor del sensor de flujo del puerto central, se puede producir un funcionamiento incorrecto del sistema de espirometría del respirador.

Figura 7-1. EVQ

1 Vista superior
2 Vista inferior
Figura 7-2. Componentes del EVQ

1. Filamento de revestimiento caliente y termistor
2. Superficie de sellado del diafragma
3. Contactos eléctricos
4. Arandela del filtro

Extracción

ADVERTENCIA:
Antes de proceder a la limpieza y desinfección, retire y desche los componentes desechables del conjunto del sensor de flujo espiratorio.

Para retirar el EVQ
1. Suba el seguro del filtro espiratorio y abra la tapa del filtro espiratorio.
2. Colocando el dedo pulgar en el puerto de espiración de plástico y los cuatro (4) dedos restantes debajo del EVQ, tire hasta desencajarlo. Para evitar que se produzcan daños en los elementos del sensor de flujo, no introduzca los dedos en el puerto central.
Para retirar los componentes desechables del EVQ

1. Retire y deseche el diafragma de la válvula espiratoria, el precinto del filtro de la válvula espiratoria y el filtro del sensor de presión. Apriete el precinto del filtro espiratorio entre dos dedos para extraerlo.

Figura 7-4. Extracción del diafragma de la válvula espiratoria

Figura 7-5. Extracción del precinto del filtro espiratorio
2. Eliminación de los elementos retirados de acuerdo al protocolo del centro sanitario. Siga las ordenanzas reguladoras locales relativas a la eliminación de desechos potencialmente biocontaminados.

Desinfección

ADVERTENCIA:
Desinfecte el EVQ mediante un proceso de autoclave de vapor o esterilícearlo con óxido de etileno. Cualquiera de estos procesos podría provocar un funcionamiento incorrecto del sistema de espirometría del respirador una vez se vuelva a instalar en el respirador.

ADVERTENCIA:
Utilice únicamente los desinfectantes descritos. Consulte *Agentes de limpieza de componentes y procedimientos de desinfección*, p. 7-7. El uso de desinfectantes no recomendados por Covidien podría dañar los componentes del sensor electrónico o la carcasa de plástico, provocando un funcionamiento erróneo del sistema de espirometría del respirador.
Limpieza y desinfección de los componentes

ADVERTENCIA:
Siga las recomendaciones del fabricante relativas a los desinfectantes para garantizar la protección del personal (como guantes, campana extractora, etc.) para evitar que se produzcan lesiones.

1. Ponga en remojo el EVQ en una solución enzimática. Consulte Frecuencia de mantenimiento preventivo por parte del operador, p. 7-2. El propósito de este paso de puesta en remojo consiste en acabar con cualquier biopelícula que esté presente. Siga las instrucciones del fabricante relativas a la duración del proceso de remojo.

Precaución:
No utilice ningún tipo de cepillo para frotar el EVQ puesto que podrían producirse daños en los componentes del sensor de flujo.

2. Enjuague con agua limpia desionizada.

3. Prepare el desinfectante químico de acuerdo con las instrucciones del fabricante o siguiendo el protocolo del centro sanitario. Consulte Agentes de limpieza de componentes y procedimientos de desinfección, p. 7-7 para obtener información sobre los agentes desinfectantes.

4. Sumérjalo en la solución desinfectante, orientado de la forma que se muestra, y gírelo para eliminar las posibles burbujas de aire que pueda haber en las cavidades. Déjelo sumergido durante el período de tiempo mínimo indicado por el fabricante o de acuerdo con el protocolo del centro sanitario.

Figura 7-7. Método de inmersión
5. Al final del proceso de inmersión para la desinfección, elimine y drene el líquido desinfectante. Asegúrese de que todas las cavidades están completamente drenadas.

Enjuague

ADVERTENCIA:
Realice el proceso de enjuague según las instrucciones del fabricante. Evite el contacto de la piel con agentes desinfectantes para evitar posibles lesiones.

1. Enjuague el EVQ utilizando agua limpia desionizada del mismo modo que se ha utilizado durante el proceso de desinfección.

2. Realice el proceso de drenaje y repita el enjuague tres veces más con agua limpia desionizada.

3. Después de enjuagarlo con agua desionizada, sumérjalo en una pila con alcohol isopropílico limpio durante aproximadamente 15 segundos. Agítelo y gírelo lentamente para vaciar las bolsas de aire.

Secado

1. Séquelo en una cabina de aire caliente a baja temperatura diseñada para este fin. Covidien recomienda el uso de una cabina de secado por convección para este proceso, con una temperatura que no exceda los 60 ºC (140 ºF).

Precaución:
Coloque y maneje con cuidado los elementos del sensor de flujo en el secador para evitar que se produzcan daños.

Inspección

Consulte Componentes del EVQ, p. 7-12 cuando inspeccione el EVQ.

1. Inspeccione la carcasa de plástico, la superficie de sellado del diafragma, el anillo del filtro y la ranura del sello situados en la parte inferior para comprobar si existen daños, deterioros o contaminación a simple vista.

2. Inspeccione los contactos eléctricos para comprobar si existen revestimientos o material contaminante. Límpielos con un paño suave si es necesario.

3. Inspeccione el filamento de revestimiento caliente y el termistor situados en el puerto central para comprobar si existen daños o contaminación. **NO INTENTE LIMPIARLOS.** Si hay contaminación, enjuáguelo de nuevo con agua desionizada. Si con el enjuague no se consiguen resultados satisfactorios o el filamento de revestimiento caliente o el termistor están dañados, sustituya el EVQ.
7.5.2 Reensamblaje del EVQ

En la siguiente ilustración se muestra el kit de reprocesamiento:

Figura 7-8. Kit de reprocesamiento del EVQ

1. Después de secar el EVQ, retire el filtro del sensor de presión del kit de reprocesamiento e instale el diámetro grande en la arandela del filtro con un movimiento giratorio hasta que se quede a ras del cuerpo de plástico de la válvula, tal y como se muestra en la imagen. El extremo estrecho se queda hacia afuera.

Figura 7-9. Instalación del filtro del sensor de presión

2. Retire el precinto del filtro espiratorio del kit y gire el conjunto para que la parte inferior se quede hacia arriba.

3. Instale el precinto en el hueco con la parte plana hacia afuera, alejada del hueco. Consulte Instalación del precinto del filtro espiratorio, p. 7-18.
4. Extraiga el diafragma del kit e instálelo. El talón exterior del precinto descansa en la ranura exterior.

Figura 7-11. Instalación del diafragma

1 Lado plano del precinto

1 Talón del diafragma situado en la ranura del EVQ
5. Inspeccione con cuidado la colocación del componente y el conjunto completo.

7.5.3 Sustitución del EVQ

1. Sustituya el EVQ en cualquier momento si está agrietado o dañado por el uso o si se produce un funcionamiento erróneo durante un ATC o un ATG.

2. Sustituya el conjunto si se descubren daños en el filamento de revestimiento caliente y en el termistor situados en el puerto central.

Para instalar el EVQ en el respirador

1. Con la tapa del filtro espiratorio abierta, introduzca el conjunto directamente debajo de la válvula de espiración y tire hacia arriba hasta que se encaje. Consulte *Instalación del EVQ*, p. 7-19. Para evitar que se produzcan daños en el filamento de revestimiento caliente, no meta los dedos en ninguna abertura.

2. Instale el filtro espiratorio deslizándolo por las ranuras de la tapa y orientando el puerto **Desde el paciente** del filtro a través del orificio de la puerta.

3. Cierre la tapa del filtro espiratorio y baje el seguro de dicho filtro.

Figura 7-12. Instalación del EVQ

4. Calibre sensor de flujo.
7.5.4 Almacenamiento

1. Pruebe previamente el EVQ antes de almacenarlo instalándolo en el respirador y realizando un ATC para comprobar la integridad del sistema de respiración. Consulte *Para ejecutar el ATC*, p. 3-46.

2. Después de realizar el ATC, coloque el conjunto y colóquelo en una bolsa protectora o en un recipiente similar.

7.6 Esterilización de componentes

Para esterilizar las piezas

1. Esterilice de acuerdo a las instrucciones de uso de los componentes o el procedimiento de esterilización por vapor descrito. Consulte *Parámetros de esterilización*, p. 7-20 y Consulte *Procedimientos de esterilización de componentes*, p. 7-21.

2. Una vez que los componentes estén esterilizados, examínelos para comprobar si tienen alguna grieta u otro tipo de daño.

3. Deseche las piezas dañadas de acuerdo con la directiva del centro sanitario.

Tabla 7-4. Parámetros de esterilización

<table>
<thead>
<tr>
<th>Esterilización en autoclave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se consigue una esterilización eficaz mediante procesos de autoclave de vapor a 132 °C (170 °F) durante 15 minutos para ciclos de desplazamiento por gravedad. También se pueden utilizar métodos de esterilización de prevacío de elementos envueltos (132 °C durante 4 minutos). Consulte los parámetros del programa del fabricante del sistema de prevacío o siga las instrucciones del fabricante para el esterilizador de vapor.</td>
</tr>
</tbody>
</table>

1. Desmonte el componente.

2. Limpie el componente y, a continuación, desinféctelo mediante un proceso de autoclave de vapor*.

3. Envuelva todos los componentes en muselina o en un papel equivalente para realizar el proceso de desinfección en autoclave.

4. Coloque las piezas envueltas en el autoclave de vapor y esterilícelas.

5. Compruebe las piezas esterilizadas para verificar si se han producido daños y deséchelas si están dañadas.

6. Vuelva a montar el componente.

7. Instale el componente en el respirador.

8. Realice el ATC.

*Si se realiza un proceso de esterilización de prevacío, siga las instrucciones del fabricante del sistema para su uso (IFU).
7.7 Mantenimiento preventivo realizado por el personal de servicio

Covidien recomienda que las actividades relativas al mantenimiento preventivo que se resumen en la tabla que aparece a continuación sean realizadas por personal de servicio técnico cualificado. En el Manual de mantenimiento del respirador Serie 980 de Puritan Bennett™ se describe toda la información.

Tabla 7-5. Procedimientos de esterilización de componentes

<table>
<thead>
<tr>
<th>Parte</th>
<th>Procedimiento</th>
<th>Comentarios/Precauciones</th>
</tr>
</thead>
</table>
| Filtros inspiratorio y espiratorio reutilizables | Esterilice en autoclave de acuerdo a las instrucciones de uso del fabricante. | • No los desinfecte químicamente ni los exponga a gas de óxido de etileno.
• Compruebe la resistencia del filtro utilizando el ATC del respirador u otros medios antes del uso.
• Siga las recomendaciones del fabricante sobre la reutilización del filtro. |
| Vial de condensado del filtro espiratorio | Esterilice en autoclave de acuerdo a las instrucciones de uso del fabricante. | • Inspeccione el vial de condensado en busca de grietas tras el procesamiento.
• Sustituya el vial de condensado en caso de que esté dañado. |
| Tubos de la bolsa de drenaje reutilizables (pieza corta del tubo conectada a la bolsa de drenaje) y abrazadera | Limpie y desinfecte el tubo reutilizable en autoclave; limpie la abrazadera. Consulte Agentes de limpieza de superficies, p. 7-6 para ver los agentes de limpieza aprobados. | N/A |

Siempre que haya que reemplazar o volver a instalar un componente, realice un ATC antes de ventilar a un paciente.
Durante el inicio del respirador, y en modo Servicio, la GUI y la pantalla de estado indican cuándo quedan 500 horas antes de que deba realizarse el mantenimiento preventivo.

<table>
<thead>
<tr>
<th>Frecuencia</th>
<th>Parte</th>
<th>Mantenimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cada 6 meses</td>
<td>Respirador en su totalidad</td>
<td>Realice un autotest largo (ATG). Compruebe el sistema de alarmas. Consulte Prueba de las alarmas, p. 6-10.</td>
</tr>
<tr>
<td></td>
<td>Baterías principales y de duración prolongada</td>
<td>Realice una prueba de la batería (como parte del ATG y realice una prueba independiente de la batería en modo Servicio).</td>
</tr>
<tr>
<td>Cada 12 meses</td>
<td>Respirador en su totalidad</td>
<td>Realice una prueba de verificación. Esto incluye realizar una prueba de seguridad eléctrica y la inspección del respirador en busca de daños mecánicos e ilegibilidad de la etiqueta.</td>
</tr>
<tr>
<td>Cuando el respirador se traslade a otra ubicación con una diferencia de altitud de unos 304 m</td>
<td>Transductor de presión atmosférica.</td>
<td>Realice una calibración del transductor de presión atmosférica.</td>
</tr>
<tr>
<td>Cada 3 años, o cuando no se supera la prueba de batería, o cuando el ATG indica que la carga de la batería se ha agotado</td>
<td>Batería principal</td>
<td>Sustituya las baterías principales (respirador y compresor). La duración real del sistema de batería depende de su historial de uso y de las condiciones ambientales.</td>
</tr>
<tr>
<td></td>
<td>Baterías de duración prolongada</td>
<td>Sustituya las baterías de duración prolongada (respirador y compresor). La duración real del sistema de batería depende de su historial de uso y de las condiciones ambientales.</td>
</tr>
</tbody>
</table>
7.8 Comprobaciones de seguridad

El personal del servicio técnico formado por Covidien debería realizar un autotest largo (ATG) en el respirador después de ponerlo en funcionamiento en los intervalos especificados en la tabla anterior. Consulte el Manual de mantenimiento del respirador Serie 980 de Puritan Bennett™ para obtener detalles sobre cómo realizar un ATG.

<table>
<thead>
<tr>
<th>Frecuencia</th>
<th>Parte</th>
<th>Mantenimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cada 10000 horas de funcionamiento</td>
<td>Filtro inspiratorio interno</td>
<td>Reemplazar. No intente esterilizarlo ni reutilizarlo.</td>
</tr>
<tr>
<td></td>
<td>Kit de 10000 horas de la BDU, n/p 10097275</td>
<td>Instálelo. Consulte el Manual de mantenimiento del respirador Serie 980 de Puritan Bennett™ para obtener información sobre las pruebas que se han de realizar después de la instalación del kit de mantenimiento preventivo 10000 horas.</td>
</tr>
<tr>
<td></td>
<td>Kit de 10000 horas del compresor, n/p 10097258</td>
<td>Instálelo. Consulte el Manual de mantenimiento del respirador Serie 980 de Puritan Bennett™ para obtener información sobre las pruebas que se han de realizar después de la instalación del kit de mantenimiento preventivo 10000 horas.</td>
</tr>
</tbody>
</table>
| Cada año o cuando sea necesario | Sensor de oxígeno | • Sustituya el sensor de oxígeno según sea necesario.
| | | • La vida útil del sensor depende del entorno de funcionamiento. Cuanto mayor sea la temperatura de funcionamiento o los niveles de O₂%, más corta será la vida útil del sensor. |
7.9 **Inspección y calibración**

La inspección y la calibración del respirador deberían ser realizadas por el personal del servicio técnico formado por Covidien en los intervalos especificados en la tabla anterior.

7.10 **Documentación**

Cualquier miembro del servicio técnico formado por Covidien debe introducir manualmente la fecha y la hora del trabajo realizado y la naturaleza de la reparación o del mantenimiento preventivo realizado en el registro utilizando un teclado de la GUI.

Para documentar manualmente una actividad de servicio o de mantenimiento preventivo

1. Entre en el modo Servicio.
2. Seleccione la pestaña *Regs*.
3. Seleccione la pestaña *Reg. servicio*.
4. Seleccione *Añadir entrada* y, con los botones situados a la derecha de cada línea, finalice la entrada.
5. Toque *Aceptar* cuando haya terminado.

7.11 **Almacenamiento durante períodos prolongados**

Para almacenar el respirador

1. Limpie la unidad en profundidad.
2. Extraiga las baterías y demás accesorios.

Para volver a poner el respirador en funcionamiento

1. Vuelva a colocar las baterías.
2. Recargue las baterías antes de ventilar a un paciente. Si las baterías tienen más de tres (3) años, utilice baterías nuevas.
3. Realice un ATG y un ATC antes de ventilar a un paciente.
8 Resolución de problemas

8.1 Descripción general

Este capítulo contiene información sobre los registros del respirador en el respirador serie 980 de Puritan Bennett™.

ADVERTENCIA:
Para evitar una posible descarga eléctrica, no intente corregir ningún problema eléctrico del respirador mientras este esté conectado a la alimentación de CA.

8.2 Categorías de los problemas

En el *manual del usuario del respirador serie 980 de Puritan Bennett™*, la resolución de problemas se limita a responder a las alarmas del respirador y a revisar los distintos registros del respirador. Para obtener información detallada sobre las alarmas, incluida la forma de actuar ante las mismas, consulte el *Capítulo 6*, para tratar las alarmas individuales que pueden activarse durante el uso del respirador. Un técnico biomédico cualificado que haya asistido a clases de formación de Covidien para el respirador serie 980 de Puritan Bennett™ deberá consultar el *Manual de mantenimiento del respirador serie 980 de Puritan Bennett™ para obtener información detallada sobre la reparación y los códigos de diagnóstico del respirador.*

8.3 Cómo obtener mantenimiento para el respirador

Para obtener mantenimiento para el respirador, llame al servicio de atención al cliente de Covidien en el número 1.800.255.6774 y siga las indicaciones que le den.

8.4 Eliminación de piezas usadas

Siga las ordenanzas reguladoras y las instrucciones de reciclaje locales relativas a la eliminación y reciclaje de componentes de aparatos. Deseche todas las piezas dañadas que se hayan extraído del respirador durante los procedimientos de mantenimiento de acuerdo con el protocolo de su centro sanitario. Esterilice las piezas contaminadas antes de desecharlas sin destruirlas.
8.5 Registros del respirador

El respirador dispone de distintos registros que almacenan información relativa a diferentes eventos y que se puede recuperar posteriormente cuando se gestione el tratamiento de un paciente. Se puede acceder a algunos de los registros durante la ventilación pero otros registros solo están disponibles para el personal de Covidien cuando el respirador se encuentra en modo servicio. El Manual de mantenimiento del respirador serie 980 de Puritan Bennett™ ofrece más información sobre los registros disponibles para el personal de servicio cualificado.

Cuando se selecciona la opción Nuevo paciente durante la configuración del respirador, se borran los datos del paciente, la configuración del respirador y los registros de alarmas, pero la información sigue disponible para su revisión por parte del personal del servicio técnico tras la selección del Nuevo paciente cuando el respirador está configurado.

- **Registro de alarmas** — El registro de alarmas graba información de hasta 1000 alarmas que se hayan producido, tanto si se han restablecido como si se han restablecido automáticamente, su nivel de prioridad y los mensajes de análisis. Se puede acceder al registro de alarmas durante la ventilación normal y cuando el respirador está en modo Servicio. Cuando se detecta una alarma, se intensifica, se restablece o se restablece automáticamente, se anota una entrada en el registro con la fecha y la hora de la misma. También se anota una entrada cuando comienza, finaliza o se cancela un intervalo de sonido en pausa. Si se han activado una o más alarmas desde la última vez que se consultó el registro de alarmas, aparece un icono triangular en la GUI que indica que hay elementos sin leer. El registro de alarmas se almacena en una memoria permanente (NVRAM) y puede volver a consultarse después de que el respirador se apague y vuelva a encender. Si el respirador entra en BUV por cualquier motivo, esto también se almacena en el registro de alarmas. El registro de alarmas se borra configurando el respirador para un nuevo paciente.

- **Registro de ajustes** — El registro de configuración almacena los cambios realizados en la configuración del respirador para el análisis posterior de la gestión del paciente y el respirador. Se registran la hora y la fecha, en la configuración antigua y la nueva, y los restablecimientos de alarmas. Puede almacenarse un máximo de 500 modificaciones de la configuración en el registro. El registro de configuración se borra cuando el respirador se configura para un nuevo paciente. Se puede acceder al registro de configuración durante la ventilación normal y cuando el respirador está en modo servicio.

- **Registro de datos del paciente** — Este registro graba cada minuto (hasta 4.320 entradas de datos sobre pacientes) indicando la fecha y la hora en cada entrada, el nombre de la información del paciente y el valor de la información del paciente durante el funcionamiento del respirador. Se borra cuando el respirador se configura para un nuevo paciente. El registro de datos del paciente contiene tres pestañas:
 - **Datos vitales del paciente** — El registro contiene la misma información que el médico ha configurado en el banner de datos del paciente en la parte superior de la GUI. Si los parámetros de los datos del paciente en el banner cambian, estos cambios se reflejan la próxima vez que se visualice el registro de datos del paciente.
- **Datos adicionales del paciente – 1** — Este registro corresponde a los parámetros de datos del paciente establecidos en la página 1 del banner de datos adicionales del paciente. Aquí se almacenan un total de 15 parámetros, que incluyen la fecha y hora de la entrada (registrada a cada minuto), el nombre de los datos del paciente y el valor de los datos del paciente durante el funcionamiento del respirador.

- **Datos adicionales del paciente – 2** — Este registro corresponde a los parámetros de datos del paciente establecidos en la página 2 del banner de datos adicionales del paciente. Aquí se almacenan un total de diez (10) parámetros, que incluyen la fecha y hora de la entrada (registrada a cada minuto), el nombre de los datos del paciente y el valor de los datos del paciente durante el funcionamiento del respirador.

- **Registro de diagnósticos** — Se puede acceder al Registro de diagnósticos durante los modos de ventilación normal y el de servicio y contiene pestañas para el Registro de diagnósticos del sistema (por defecto), el Registro de comunicación del sistema y el Registro de diagnósticos EST/SST. El registro de diagnósticos contiene pestañas para los siguientes registros:

 - **Registro de diagnóstico del sistema** — El Registro de diagnósticos del sistema contiene la fecha y la hora en la que tuvieron lugar los eventos, el tipo de evento, los códigos de diagnóstico asociados con los fallos o errores que tuvieron lugar, el tipo de error que tuvo lugar y cualquier nota que se haya añadido. Consulte el *Manual de mantenimiento del respirador serie 980 de Puritan Bennett™* (10078090) para ver la información específica contenida en el Registro de diagnósticos del sistema. El registro de diagnósticos se borra cuando el respirador se configura para un nuevo paciente.

 - **Registro de comunicación del sistema** — Este registro contiene información generada por el software de comunicación del respirador. Consulte el *Manual de mantenimiento del respirador serie 980 de Puritan Bennett™* (10078090) para ver la información específica contenida en el Registro de comunicación del sistema.

 - **Registro del diagnóstico EST/SST** — El Registro de diagnósticos EST/SST muestra la hora, fecha, el tipo de prueba/evento, código del sistema (consulte el *Manual de mantenimiento del respirador serie 980 de Puritan Bennett™*), tipo y notas.

- **Registro de estado de el EST/SST** — El Registro del estado de el EST/SST muestra la hora, la fecha, el tipo de prueba/evento y el estado de la prueba (apto no apto).

- **Registro general de eventos** — El Registro general de eventos contiene información relativa al respirador que no se puede encontrar en ningún otro registro. Incluye fecha y hora del compresor encendido y apagado, cambios en el volumen de la alarma, el momento en el que el respirador ha entrado y ha salido del modo de espera, las pulsaciones de las teclas de la GUI, las maniobras mecánicas respiratorias, la calibración del O₂, la conexión del paciente, el O₂ elevado y las notificaciones de advertencia. El Registro general de eventos puede mostrar hasta 256 entradas y no se borra hasta que se configura un nuevo paciente.
• **Registro de servicio** — Solo se puede acceder al registro de servicio durante los modos de ventilación normal y de servicio y contiene la naturaleza y el tipo de mantenimiento realizado, los números de referencia específicos del evento de mantenimiento (por ejemplo, números de identificación del sensor y el accionador), la introducción manual y automática del número de serie y la hora y fecha en la que tuvo lugar el evento de mantenimiento. No se borra hasta que se configure un nuevo paciente.

Para ver los registros del respirador

1. Toque el icono del portapapeles en la zona del ícono de acceso permanente de la GUI. Aparece la pantalla del registro con las pestañas correspondientes a los distintos registros.

2. Pulse la pestaña del registro que desee visualizar.

3. Visualice la información de cada parámetro deseado.

Figura 8-1. Pantalla de registro

Los registros del respirador se guardan entrando en el modo servicio y descargándolos a través del puerto de Ethernet. Consulte el *Manual de mantenimiento del respirador serie 980 de Puritan Bennett™* para obtener las instrucciones que indican cómo se pueden descargar los registros del respirador.
8.6 Códigos de diagnóstico

Consulte el registro de diagnóstico para comprobar los códigos generados durante la ventilación del paciente. Para obtener más información sobre los códigos de diagnóstico, consulte el *Manual de mantenimiento del respirador serie 980 del Puritan Bennett™* o póngase en contacto con el servicio de asistencia técnica de Covidien.
Resolución de problemas

Página dejada en blanco intencadamente
9 Accesorios

9.1 Generalidades

Este capítulo incluye los accesorios que se pueden utilizar con el respirador Serie 980 de Puritan Bennett™. Consulte Accesorios y opciones, p. 9-3 para los números de pieza de los componentes que pueden obtenerse a través de Covidien.

En el sistema del respirador pueden utilizarse los siguientes accesorios normalmente disponibles de la lista de los fabricantes:

- **Filtros** — DAR/Covidien y Puritan Bennett
- **Sistemas de humidificación calentados** — Hudson RCI/Teleflex y Fisher & Paykel
- **Circuitos del paciente** — Circuitos de respiración normalmente disponibles con ISO estándar. La conexión de 15 mm/22 mm está indicada para pacientes adultos, pediátricos y neonatales. Entre los fabricantes se incluyen Fisher & Paykel, DAR y Hudson RCI/Teleflex.
- **Máscaras** — ResMed, Respironics y Fisher & Paykel
- **Sistemas de monitorización del paciente** — Consulte pág. 5-21 para obtener información sobre los sistemas que pueden utilizarse con el respirador
- **Interfaces nasales** — Hudson RCI/Teleflex, Fisher & Paykel y Argyle
- **Filtro de aire comprimido y colector de agua** — Covidien

ADVERTENCIA:
El respirador Serie 980 de Puritan Bennett™ contiene ftalatos. Si se utiliza tal y como se indica, la posible exposición a trazas de ftalatos es muy limitada. No existe evidencia clínica de que dicho grado de exposición aumente los riesgos clínicos. Sin embargo, a fin de minimizar el riesgo de exposición a ftalatos en niños y mujeres embarazadas o en período de lactancia, este producto debe emplearse únicamente como se indica.
9.2 Información general sobre accesorios

El brazo de soporte del circuito del paciente (brazo flexible) puede sujetarse al asa del respirador tanto en la parte derecha como izquierda. Los brazos flexibles utilizados en el sistema del respirador Serie 840 de Puritan Bennett™ también se pueden utilizar en el sistema del respirador 980 de Puritan Bennett™.

Figura 9-1. Respirador con accesorios
Consulte \textit{Respirador con accesorios}, p. 9-2 y la figura anterior para obtener información sobre las piezas que se incluyen en la siguiente tabla.

\begin{itemize}
\item \textbf{Nota:}
En ocasiones los números de pieza cambian. Si tiene dudas sobre los números de pieza, póngase en contacto con el representante local de Covidien.
\item \textbf{Nota:}
El respirador se ha diseñado con un procedimiento de autest corto semiautomatizado o ATC (en inglés SST, Semi-automated Short self Rest) que, además de otras pruebas, mide la distensibilidad, la resistencia y las fugas del conjunto del circuito de respiración (filtro inspiratorio, circuito de respiración, cámara del humidificador [según proceda], filtro espiratorio y sensor de flujo espiratorio). Consulte \textit{ATC (autotest corto)}, página 3-44. Cuando el ATC se ejecuta conforme a las instrucciones proporcionadas en \textit{ATC (autotest corto) (3.9.1)}, un conjunto del circuito de respiración del respirador que supere el ATC para un determinado tipo de paciente (adulto, pediátrico o neonatal) permitirá que el respirador pueda funcionar dentro de las especificaciones para ese tipo de paciente. Consulte la \textit{Tabla 11-4}, para obtener información sobre los intervalos acceptables de distensibilidad y resistencia.
\end{itemize}

\textbf{Tabla 9-1. Accesorios y opciones}

<table>
<thead>
<tr>
<th>Número de elemento</th>
<th>Descripción del accesorio u opción</th>
<th>Número de pieza</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulmón de prueba</td>
<td>10005490</td>
</tr>
<tr>
<td>2</td>
<td>Tubos de la bolsa de drenaje (paquete de 10)</td>
<td>4-048493-00</td>
</tr>
<tr>
<td>3</td>
<td>Bolsa de drenaje (paquete de 25)</td>
<td>4-048491-00</td>
</tr>
<tr>
<td>4</td>
<td>Abrazadera del tubo de la bolsa de drenaje (paquete de 5)</td>
<td>4-048492-00</td>
</tr>
<tr>
<td>Número de elemento</td>
<td>Descripción del accesorio u opción</td>
<td>Número de pieza</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>5</td>
<td>Filtro espiratorio para pacientes Pediátrico–Adulto</td>
<td>10063033</td>
</tr>
<tr>
<td></td>
<td>Sistema de filtración de espiración Pediátrico–Adulto (caja de 12)</td>
<td>10043551</td>
</tr>
<tr>
<td>6</td>
<td>FRU 980, Sensor de flujo espiratorio</td>
<td>10097468</td>
</tr>
<tr>
<td>7</td>
<td>Colector de agua existente en el aire suministrado a través de la toma de la pared</td>
<td>10086051</td>
</tr>
<tr>
<td>8</td>
<td>Cable de alimentación 10 A, RA, Reino Unido</td>
<td>10087159</td>
</tr>
<tr>
<td></td>
<td>Cable de alimentación 10 A, RA, UE</td>
<td>10087155</td>
</tr>
<tr>
<td></td>
<td>Cable de alimentación 10 A, RA, Japón</td>
<td>10087157</td>
</tr>
<tr>
<td></td>
<td>Cable de alimentación 10 A, RA, Gran Bretaña</td>
<td>10087152</td>
</tr>
<tr>
<td></td>
<td>Cable de alimentación 10 A, RA, Suiza</td>
<td>10087154</td>
</tr>
<tr>
<td></td>
<td>Cable de alimentación 10 A, RA, EE, UU.</td>
<td>10081056</td>
</tr>
<tr>
<td></td>
<td>Cable de alimentación 10 A, RA, Israel</td>
<td>10087156</td>
</tr>
<tr>
<td></td>
<td>Cable de alimentación 10 A, RA, Brasil</td>
<td>10087160</td>
</tr>
<tr>
<td></td>
<td>Cable de alimentación 10 A, RA, China</td>
<td>10087153</td>
</tr>
<tr>
<td>Número de elemento</td>
<td>Descripción del accesorio u opción</td>
<td>Número de pieza</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>9</td>
<td>Conjunto de manguera de aire; Noruega, Suecia, Finlandia, Dinamarca, Grecia y Francia</td>
<td>4-074696-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de aire; Canadá</td>
<td>4-074709-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de aire; Italia, Suiza, España, Bielorrusia y Kazajistán</td>
<td>4-074706-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de aire; Japón e Israel</td>
<td>10001777</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de aire; Polonia, Portugal, Sudáfrica</td>
<td>4-074703-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de aire; Suiza</td>
<td>4-074707-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de aire; Estados Unidos y América Latina</td>
<td>4-006541-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de aire; Alemania, Luxemburgo, Austria, Países Bajos, Bélgica, Croacia, Turquía, Rusia, Eslovenia, Serbia, Bulgaria y Rumanía</td>
<td>4-074714-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de aire; Reino Unido, Irlanda, Suiza, Hungría, Eslovaquia y República Checa</td>
<td>4-074713-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Noruega, Suecia, Finlandia, Dinamarca, Grecia y Francia</td>
<td>4-074697-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Canadá</td>
<td>4-074710-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Italia, Suiza, España, Bielorrusia y Kazajistán</td>
<td>4-074705-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Japón e Israel</td>
<td>10001766</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Polonia, Portugal y Sudáfrica</td>
<td>4-074705-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Suiza</td>
<td>4-074708-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Estados Unidos y América Latina</td>
<td>4-001474-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Alemania, Luxemburgo, Austria, Países Bajos, Bélgica, Croacia, Turquía, Rusia, Eslovenia, Serbia, Bulgaria y Rumanía</td>
<td>4-074715-00</td>
</tr>
<tr>
<td></td>
<td>Conjunto de manguera de oxígeno; Reino Unido, Irlanda, Suiza, Hungría, Eslovaquia y República Checa</td>
<td>4-074698-00</td>
</tr>
<tr>
<td></td>
<td>Para los países no identificados, póngase en contacto con su representante local de Covidien para obtener los números de pieza de las mangueras flexibles de aire y oxígeno correspondientes.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Soporte del cilindro para aire comprimido y gas O₂</td>
<td>10086050</td>
</tr>
<tr>
<td>Número de elemento</td>
<td>Descripción del accesorio u opción</td>
<td>Número de pieza</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>11</td>
<td>Conjunto del brazo flexible</td>
<td>4-032006-00</td>
</tr>
<tr>
<td>12</td>
<td>Base del compresor</td>
<td>10085981</td>
</tr>
<tr>
<td>13</td>
<td>Batería de iones de litio recargable</td>
<td>10086042</td>
</tr>
<tr>
<td>14</td>
<td>Soporte de humidificador</td>
<td>10086049</td>
</tr>
<tr>
<td>15</td>
<td>Abrazadera de bolsa de drenaje</td>
<td>10087137</td>
</tr>
<tr>
<td>16</td>
<td>Filtro antibacteriano inspiratorio, reutilizable (Re/Flex)</td>
<td>4-074600-00</td>
</tr>
<tr>
<td></td>
<td>Filtro antibacteriano inspiratorio, desechable (caja de 12) (DAR)</td>
<td>351U5856</td>
</tr>
<tr>
<td>17</td>
<td>Vial de condensado, reutilizable</td>
<td>10063031</td>
</tr>
<tr>
<td>18</td>
<td>Tapón de drenaje del vial de condensado</td>
<td>4-074613-00</td>
</tr>
</tbody>
</table>
Tabla 9-1. Accesorios y opciones (continuación)

<table>
<thead>
<tr>
<th>Número de elemento</th>
<th>Descripción del accesorio u opción</th>
<th>Número de pieza</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Conjunto, circuito del paciente, filamento doble calentado para adulto, para F&P MR850 (Medtronic/DAR)</td>
<td>304514300</td>
</tr>
<tr>
<td></td>
<td>Cable adaptador: 111/1149</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Conjunto, circuito del paciente, un cable calentado, adulto, desechable, para F&P MR850 (Medtronic/DAR)</td>
<td>304514402Z</td>
</tr>
<tr>
<td></td>
<td>Cable adaptador: 111/1146</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Circuito de respiración del respirador, adulto, sistema calentado doble, desechable (Fisher & Paykel)²</td>
<td>RT280</td>
</tr>
<tr>
<td>19</td>
<td>Circuito de respiración del respirador, adulto, doble calentado, sin colectores de agua, desechable (Hudson RCI/Teleflex)²</td>
<td>870-35 KIT</td>
</tr>
<tr>
<td>19</td>
<td>Conjunto, circuito del paciente, un colector de agua, ramal inspiratorio calentado, pediátrico, desechable para F&P MR850 (Medtronic/DAR)</td>
<td>30658987</td>
</tr>
<tr>
<td></td>
<td>Cable adaptador: 111/1146</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Conjunto, circuito del paciente, cable doble calentado, pediátrico, desechable, para F&P MR850 (Intersurgical)²</td>
<td>5505850</td>
</tr>
<tr>
<td>19</td>
<td>Circuito de respiración del respirador, pediátrico, doble calentado, desechable (Hudson RCI/Teleflex)²</td>
<td>780-24</td>
</tr>
<tr>
<td>19</td>
<td>Conjunto, circuito del paciente, neonatal, un cable calentado, desechable, uso en incubadora, para F&P MR850 (Medtronic/DAR)</td>
<td>30759910</td>
</tr>
<tr>
<td></td>
<td>Cable adaptador: 111/1146</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Conjunto, circuito del paciente, neonatal, un solo cable calentado, desechable, no para uso en incubadora, para F&P MR850 (Medtronic/DAR)</td>
<td>307/8682</td>
</tr>
<tr>
<td></td>
<td>Cable adaptador: 111/1146</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Circuito de respiración del respirador, neonatal, tubo inspiratorio calentado, desechable (Hudson RCI/Teleflex)²</td>
<td>780-06</td>
</tr>
<tr>
<td>19</td>
<td>Circuito de respiración del respirador, neonatal, sistema calentado doble, desechable Fisher & Paykel (Fisher & Paykel)²</td>
<td>RT265</td>
</tr>
<tr>
<td>20</td>
<td>Junta tórica, vial de condensado, reutilizable</td>
<td>10085527</td>
</tr>
<tr>
<td>21</td>
<td>Sistema de filtración de espiración neonatal, desechable, con vial de condensado</td>
<td>4-076900-00</td>
</tr>
<tr>
<td>22</td>
<td>Sensor de monitorización de flujo proximal (desechable, 10/caja)</td>
<td>10047078</td>
</tr>
<tr>
<td>No se muestra</td>
<td>Kit de reprocesamiento del módulo de la válvula espiratoria (6/cartón)</td>
<td>10086048</td>
</tr>
</tbody>
</table>
Tabla 9-1. Accesorios y opciones (continuación)

<table>
<thead>
<tr>
<th>Número de elemento</th>
<th>Descripción del accesorio u opción</th>
<th>Número de pieza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opciones de hardware</td>
<td></td>
</tr>
<tr>
<td>No se muestra</td>
<td>Circuito de prueba estándar de primera calidad, 21 pulgadas (para realizar el ATG)</td>
<td>4-018506-00</td>
</tr>
<tr>
<td>No se muestra</td>
<td>Opción de monitorización de flujo proximal</td>
<td>10084331</td>
</tr>
<tr>
<td>No se muestra</td>
<td>980, unidad flash USB</td>
<td>PT00011076</td>
</tr>
<tr>
<td></td>
<td>Opciones de software</td>
<td></td>
</tr>
<tr>
<td>No se muestra</td>
<td>Software NeoMode 2.0</td>
<td>10086743</td>
</tr>
<tr>
<td>No se muestra</td>
<td>Actualización del software NeoMode 2.0</td>
<td>10096526</td>
</tr>
</tbody>
</table>

1. El sistema de filtración reutilizable no incluye vial de condensado. Hay que pedir el vial de condensado reutilizable por separado.
2. Los números de pieza indicados reflejan los números de pieza del fabricante del circuito de respiración y están sujetos a cambios. Consulte al fabricante del circuito de respiración para obtener detalles exactos del circuito para tenerlos en cuenta a la hora de realizar pedidos.
10 Teoría del funcionamiento

10.1 Descripción general

En este capítulo se proporcionan detalles específicos de las funciones respiratorias del respirador serie 980 de Puritan Bennett™. El capítulo está organizado de la siguiente forma.

<table>
<thead>
<tr>
<th>Número de sección</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Descripción general</td>
<td>p. 10-1</td>
</tr>
<tr>
<td>10.2</td>
<td>Principios teóricos</td>
<td>p. 10-3</td>
</tr>
<tr>
<td>10.3</td>
<td>Tecnología aplicable</td>
<td>p. 10-3</td>
</tr>
<tr>
<td>10.4</td>
<td>Inspiración: detección e inicio</td>
<td>p. 10-5</td>
</tr>
<tr>
<td>10.5</td>
<td>Espiración: detección e inicio</td>
<td>p. 10-9</td>
</tr>
<tr>
<td>10.6</td>
<td>Compliancia y compensación de BTPS</td>
<td>p. 10-13</td>
</tr>
<tr>
<td>10.7</td>
<td>Administración de respiraciones mandatorias</td>
<td>p. 10-16</td>
</tr>
<tr>
<td>10.8</td>
<td>Administración de respiraciones espontáneas</td>
<td>p. 10-22</td>
</tr>
<tr>
<td>10.9</td>
<td>Modo A/C</td>
<td>p. 10-31</td>
</tr>
<tr>
<td>10.10</td>
<td>Modo SIMV</td>
<td>p. 10-33</td>
</tr>
<tr>
<td>10.11</td>
<td>Modo espontáneo (SPONT)</td>
<td>p. 10-38</td>
</tr>
<tr>
<td>10.12</td>
<td>Ventilación de apnea</td>
<td>p. 10-40</td>
</tr>
<tr>
<td>10.13</td>
<td>Detección de la oclusión y la desconexión</td>
<td>p. 10-45</td>
</tr>
<tr>
<td>10.14</td>
<td>Mecánica respiratoria</td>
<td>p. 10-49</td>
</tr>
<tr>
<td>10.15</td>
<td>Configuración del respirador</td>
<td>p. 10-56</td>
</tr>
<tr>
<td>10.16</td>
<td>Red de seguridad</td>
<td>p. 10-72</td>
</tr>
<tr>
<td>10.17</td>
<td>Autotest de encendido (POST)</td>
<td>p. 10-77</td>
</tr>
<tr>
<td>10.18</td>
<td>Autotest corto (SST)</td>
<td>p. 10-78</td>
</tr>
<tr>
<td>10.19</td>
<td>Autotest largo (EST)</td>
<td>p. 10-78</td>
</tr>
</tbody>
</table>
ADVERTENCIA:
The respirador ofrece diversas opciones de ventilación. Durante el tratamiento del paciente, el médico debe seleccionar cuidadosamente el modo de ventilación y los parámetros que se usarán con dicho paciente, basándose en su criterio clínico, la situación y las necesidades de cada paciente, y los beneficios, las limitaciones y las características de cada opción de administración respiratoria. Dado que la situación del paciente cambia con el tiempo, evalúe periódicamente los modos y parámetros elegidos a fin de determinar si estos son o no los mejores para las necesidades actuales del paciente.

Los suministros de gas a los que está conectado el respirador pueden administrar un flujo de 200 L/min con la adecuada presión de suministro entre 35 psig y 87 psig (241,8 kPa a 599,8 kPa). Estos suministros pueden ser aire comprimido de una fuente externa (pared o botella), aire u oxígeno. (Hay disponible un compresor opcional para utilizarlo como fuente externa de aire).

Las mangueras de aire y oxígeno se conectan directamente a la parte trasera de la unidad neumática (BDU). El flujo de cada gas es medido por una válvula de solenoide proporcional (PSOL) para conseguir la mezcla deseada en el módulo de mezcla. El flujo a través de cada PSOL es controlado por sensores de flujo independientes para garantizar la precisión de la mezcla. Los gases mezclados fluyen a continuación hasta el módulo inspiratorio.

El gas mezclado en el módulo inspiratorio es medido por la PSOL de administración respiratoria y controlado por el sensor de flujo de administración respiratoria para garantizar que el gas se administra al paciente según la configuración especificada por el operador. Los volúmenes corriente administrados se corren según las condiciones respiratorias estándar (BTPS) para garantizar la interpretación coherente del médico. El módulo inspiratorio incorpora además la válvula de seguridad, que se abre para ventilar el exceso de presión y permite que el paciente respire aire de la habitación (si es capaz) en caso de fallo de funcionamiento sérico.

Al respirador se puede conectar un compresor opcional capaz de administrar flujos de 140 L/min (BTPS) y volúmenes minuto de hasta un máximo de 40 L/min (BTPS). La mezcla del gas tiene lugar en el acumulador, protegido por una válvula de alivio. Se trata de una válvula unidireccional que permite una entrada de flujo inverso en el sistema de suministro de gas hasta un máximo de 100 mL/min en condiciones normales.
El aire y el O2 atraviesan las válvulas de solenoide proporcionales (PSOLS), los sensores de flujo y las válvulas unidireccionales y se mezclan en el módulo de mezcla (según la concentración de O2 establecida por el operador), que también cuenta con una válvula de alivio de presión. Desde ahí, el gas fluye a través de otra PSOL hasta el sistema neumático inspiratorio, por donde pasa por una válvula de seguridad, a través de una válvula unidireccional, un filtro bacteriano interno, un filtro bacteriano externo, a través del humidificador, si se utiliza uno, y, por último, al paciente por medio del circuito respiratorio conectado.

Durante la espiración, el gas fluye por el ramal espiratorio del circuito respiratorio, a través de un vial de condensado, un filtro antibacteriano, un sensor de flujo espiratorio y una válvula de espiración; por último, sale por el puerto de salida. La válvula de espiración controla activamente la PEEP a la vez que minimiza las sobrecargas de presión y alivia las presiones excesivas.

Los transductores de presión del sistema neumático inspiratorio (PI) y el compartimento espiratorio (PE) supervisan las presiones para controlar de forma precisa la administración respiratoria.

10.2 Principios teóricos

Esta teoría del funcionamiento se describe principalmente desde un punto de vista clínico, abordando la forma en la que el respirador responde a las diferentes entradas del paciente, e incluye una descripción general de los componentes del respirador y la forma en la que funcionan juntos para gestionar la administración de respiración.

10.3 Tecnología aplicable

El control del respirador se consigue mediante las unidades de procesamiento central (CPU) de la administración respiratoria (BD) y la interfaz gráfica de usuario (GUI). La CPU de la BD gestiona todas las funciones de administración respiratoria y proporciona pruebas de control en segundo plano de los subsistemas necesarios para la administración respiratoria. La CPU de la GUI controla la pantalla principal, los dispositivos de entrada del operador y el sistema de alarma. La pantalla de estado, una pantalla LCD no interactiva de pequeño tamaño situada en la unidad de administración respiratoria (BDU), está controlada por su propio procesador. Consulte *Pantalla de estado*, p. 2-29, para obtener más información.

El respirador incluye interfaces USB, Ethernet y HDMI. La interfaz USB admite acciones como transferir de datos a un monitor externo a través de una conexión serie mediante protocolo USB y guardar capturas de pantalla en un dispositivo de almacenamiento de memoria o unidad flash. Consulte *Para configurar los puertos Com.*, p. 5-4 para obtener información sobre la transferencia serie-mediante-USB.
El personal de mantenimiento cualificado utiliza la interfaz Ethernet para acceder a los registros del respirador y realizar la instalación de opciones de software, y la interfaz HDMI proporciona la posibilidad de mostrar la pantalla GUI en un dispositivo de visualización de video externo.

Los sensores de presión y flujo tanto en el módulo inspiratorio como en el espiratorio administran los procesos de respiración. Las señales de los sensores se utilizan como retroalimentación para los controladores de la válvula de espiración y la PSOL de la administración respiratoria. Otros sensores de flujo y presión se utilizan en el módulo de mezcla para controlar la composición del gas respiratorio. Asimismo, la temperatura del gas se mide para compensar la temperatura en las lecturas de flujo. La presión atmosférica se mide en el módulo inspiratorio y se utiliza para la compensación de BTPS. Las señales del sensor se filtran mediante filtros antisolapamiento y se muestrean con convertidores de A/D. Los filtros de paso bajo adicionales precondicionan las señales que luego se utilizan con fines de control y visualización.

El control de bucle cerrado se usa para mantener una presión y formas de onda de flujo constantes frente a las condiciones cambiantes del paciente/sistema. Esto se consigue utilizando el resultado como señal de retroalimentación que se compara con la entrada configurada por el operador. La diferencia entre las dos se utiliza para dirigir el sistema hacia el resultado deseado. Por ejemplo, los modos de control de la presión utilizan la presión de las vías aéreas para controlar el flujo de gas del respirador. Consulte la figura a continuación. Este diagrama muestra un esquema de un sistema de control de la retroalimentación general. La entrada es un valor de referencia (por ej., presión inspiratoria preconfigurada por el operador) que se compara con el valor de salida real (por ej., valor instantáneo de la presión de las vías aéreas). La diferencia entre esos dos valores es la señal de error. La señal de error se pasa al controlador (por ej., el algoritmo de control de software). El controlador convierte la señal de error en una señal que puede impulsar el accionador (por ej., loc controladores del hardware y las válvulas) para ocasionar un cambio en la variable manipulada (por ej., flujo inspiratorio).
10.4 Inspiración: detección e inicio

Cuando se produce la inspiración con el respirador es lo que se conoce como triggering. Las respiraciones se administran al paciente en función de los parámetros del respirador que haya introducido el facultativo y vienen determinadas por las medidas de presión, flujo o tiempo o la acción de operador. El respirador utiliza los siguientes métodos para accionar una inspiración:

- Trigger por presión (P-TRIG)
- Trigger por flujo (V-TRIG)
- Trigger de tiempo
- Iniciada por el operador

Si el respirador detecta un descenso de presión en el circuito en "Y", o cuando se produce una reducción en el flujo base medido en la válvula de espiración, se dice que el paciente acciona (trigger) la respiración. Las respiraciones mandatorias accionadas por el paciente se conocen como ASIST o respiraciones mandatorias iniciadas por el paciente.

Todas las respiraciones espontáneas están iniciadas por el paciente, pero también se pueden accionar por una reducción de la presión del circuito o del flujo de base medido, lo que indica que el paciente está iniciando una inspiración.

Otro término, autociclado, se utiliza para describir una situación en la que el respirador acciona una respiración en ausencia de esfuerzo respiratorio del paciente. El autociclado puede estar causado por parámetros de la sensibilidad del respirador inadecuados, agua en el circuito del paciente o fugas de gas en el circuito del paciente.

10.4.1 Trigger por presión

Si se elige trigger por presión (P-TRIG), el respirador realiza la transición a la inspiración cuando la presión en el circuito en "Y" del paciente cae por debajo de la presión espiratoria final positiva (PEEP) menos el nivel de sensibilidad establecido por el operador (PSENS). Consulte la figura a continuación. Cuando el paciente inicia el esfuerzo inspiratorio y respira gas del circuito (evento 5, el intervalo A-B de la figura, a continuación), la presión cae por debajo de la PEEP. Cuando la presión cae por debajo de
la PEEP menos P_{SENS} (evento 6), el respirador administra una respiración ASIST. El intervalo de tiempo de reducción de presión entre los eventos A y B determina el nivel de agresividad del esfuerzo inspiratorio del paciente. Un intervalo de tiempo corto significa un esfuerzo respiratorio agresivo. El intervalo A-B también se ve afectado por P_{SENS}. Un parámetro de P_{SENS} más pequeño significa un intervalo de tiempo A-B más corto. (El ajuste P_{SENS} mínimo está limitado por el autociclado, y los criterios de ciclado incluyen algoritmos de filtrado que minimizan la probabilidad de autociclado).

Figura 10-1. Inspiración utilizando sensibilidad por presión

1. Espiración
2. Inspiración
3. Evento A: (el paciente inspira)
4. Evento B: comienza la inspiración accionada por el paciente
5. Intervalo A-B
6. Sensibilidad por presión establecida por el operador

10.4.2 Trigger de flujo

Si se elige trigger de flujo (V_{TRIG}), la BDU proporciona un flujo de gas constante a través del circuito respiratorio del respirador (llamado flujo de base) durante la espiración. El flujo de base es 1,5 L/min superior al valor seleccionado para la sensibilidad por flujo (V_{SENS}). Consulte **Inspiración utilizando la sensibilidad por flujo**, p. 10-8 donde el gráfico superior representa el flujo espiratorio y el inferior el flujo inspiratorio].
El sensor de flujo de administración de respiración del respirador mide el flujo de base administrado al circuito y el sensor de flujo espiratorio mide el flujo que entra en la válvula de espiración. El respirador controla el flujo del paciente al medir la diferencia entre las mediciones del flujo inspirado y el flujo espirado. Si el paciente no está inspirando, cualquier diferencia en los flujos medidos se debe a fugas en el sistema respiratorio o una imprecisión del sensor de flujo. El profesional sanitario puede compensar las fugas en el sistema respiratorio aumentando \(V_{SENS} \) hasta un valor igual al \(V_{SENS} \) deseado + el flujo de fuga.

Cuando el paciente comienza el esfuerzo inspiratorio e inspira desde el flujo de base, se mide un menor flujo espiratorio, mientras el flujo administrado permanece constante. Consulte la figura siguiente (evento A). Cuando el paciente continúa inspirando, aumenta la diferencia entre la administración y las mediciones del sensor de flujo espiratorio. El respirador inicia una inspiración cuando la diferencia entre las dos mediciones de flujo es superior o igual al valor de sensibilidad por flujo establecido por el operador. Inspiración utilizando la sensibilidad por flujo, (evento B).

Como sucede con el trigger por presión, el retraso entre el comienzo del esfuerzo del paciente y la administración de gas real depende de:

- la velocidad a la que se reduce el flujo espirado (es decir, la agresividad del esfuerzo inspiratorio). Cuanto más agresivo sea el esfuerzo inspiratorio, más corto es el intervalo, y
- el valor de la sensibilidad por flujo. Cuanto más pequeño es el valor, más corto es el retraso.

Durante el trigger de flujo hay presente una sensibilidad por presión de reserva de 2 cmH₂O para detectar el trigger de respiración en caso de que falle el trigger de flujo.
10.4.3 Triggers de tiempo

El respirador mide el intervalo de tiempo para cada respiración y fase de respiración. Si el respirador está en modo de asistida /controlada (A/C), en el que administra respiraciones sobre la base del parámetro de frecuencia respiratoria, se administra una CONT la respiración mandatoria iniciada por el respirador tras el intervalo de tiempo adecuado. La duración de la respiración en segundos \(T_b \) es \(60/f \).

Figura 10-3. Actividad respiratoria durante inspiración accionada por tiempo

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Actividad respiratoria (CONT)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Actividad respiratoria (ASIST)</td>
<td></td>
</tr>
</tbody>
</table>
10.4.4 Triggers iniciados por el operador

Si el operador pulsa la tecla Inspiración manual, se administra una IM (inspiración manual). El respirador no administrará una IM en las siguientes circunstancias:

- Durante una inspiración activa, ya sea mandatoria o espontánea
- Durante la fase restringida de espiración
- Durante condiciones de desconexión del circuito y estado de oclusión (OSC)

Consulte Inspiración manual, p. 10-21 más adelante en este capítulo para obtener información sobre la fase restringida de espiración.

10.5 Espiración: detección e inicio

Cuando se produce la espiración, es lo que se conoce como ciclado. Las respiraciones mandatorias las puede ciclar el respirador por volumen o por tiempo o el paciente por presión. Las respiraciones espontáneas las puede ciclar el paciente por flujo o por presión o el respirador por tiempo. Una espiración ciclada por el paciente depende de mediciones como la tasa de flujo inspiratorio o la presión de las vías aéreas. El respirador utiliza los tres (3) métodos descritos a continuación para detectar la espiración:

- Método de presión de vías aéreas (respiraciones espontáneas)
- Método de porcentaje de flujo máximo (respiraciones espontáneas)
- Método de ciclado por tiempo (respiraciones mandatorias)

10.5.1 Método de presión de las vías aéreas

Si la sensibilidad espiratoria (E_{SENS}) está establecida a un valor demasiado bajo para la combinación de paciente y respirador, un esfuerzo espiratorio forzado podría causar que la presión del circuito (P_{PEAK}) aumentara hasta su límite. El respirador controla la presión del circuito durante toda la fase inspiratoria, e inicia una espiración cuando la presión es igual al valor objetivo de presión inspiratoria (P_I) + un valor incremental. Esta transición a la espiración se produce durante la respiración espontánea basada en la presión y en el volumen de soporte (VS).
Nota:
El valor incremental permitido por encima de la presión objetivo es 1,5 cmH₂O una vez ha transcurrido una porción del tiempo de inspiración (Tₙ). Antes de Tₙ, el valor incremental es más alto para permitir las sobrecargas de presión transitorias. Durante los primeros 200 ms de inspiración, la presión incremental es el 10 % de la presión objetivo, o hasta 8 cmH₂O, lo que sea mayor. Desde los 200 ms hasta Tₙ, la presión incremental se reduce de forma lineal desde el valor inicial hasta 1,5 cmH₂O.

Figura 10-4. Espiración mediante el método de presión de las vías aéreas

1. **Presión objetivo**
2. **Presión objetivo + valor incremental (n)**
3. **Iniciar respiración**
4. **200 ms**
5. **Tₙ**

10.5.2 Método de porcentaje de flujo máximo

Para los tipos de respiración espontánea incluidas PS (mantenimiento de presión), TC (compensación del tubo) y VS (volumen de soporte), el respirador captura el valor del flujo inspiratorio máximo administrado y, a continuación, controla que la reducción del flujo inspiratorio hasta el valor del flujo actual en relación con el flujo máximo (expresado como porcentaje) es menor o igual que el valor ESENS establecido. El respirador entonces cicla desde la inspiración a la espiración.

Consulte *Espiración mediante el método de porcentaje de flujo máximo*, p. 10-11 para ver un ejemplo de espiración utilizando el método de porcentaje de flujo máximo.
10.5.3 Método de ciclado por tiempo

En la ventilación por presión, el tiempo inspiratorio establecido (T_I) define la duración de la fase inspiratoria. En la ventilación por volumen, T_I depende del parámetro de volumen corriente (V_T), el flujo máximo (V_{MAX}), el patrón de flujo y el tiempo de meseta (T_{PL}). El respirador cicla a la espiración cuando transcurre el T_I establecido (ventilación por presión) o el T_I calculado (ventilación por volumen).
10.5.4 Métodos de reserva

Existen cuatro métodos de reserva para evitar la duración o la presión excesiva durante la inspiración.

- **Límite de tiempo** — Para pacientes adultos y pediátricos, el método de límite de tiempo finaliza la inspiración y comienza la espiración cuando la duración de una inspiración espontánea es mayor o igual a \[(1,99 \, s + 0,02 \times \text{PBW (kg)} \, s]\].

- **Límite de presión máxima del circuito** — Durante cualquier tipo de inspiración, la inspiración termina y comienza la espiración cuando la presión de las vías aéreas controlada \((P_{\text{CIRC}})\) es mayor o igual que el límite de presión máxima del circuito.

- **Límite de presión máxima del respirador** — El respirador realiza la transición desde la inspiración a la espiración si se alcanza el límite de presión máxima del respirador \((P_{\text{VENT}})\) de 110 cmH₂O.

- **Límite de volumen corriente inspirado máximo** — El límite de volumen corriente inspirado máximo finaliza la inspiración y comienza la espiración durante respiraciones de VC+, VS, con compensación del tubo (TC) o proporcionalmente asistidas (PAV+), si el volumen administrado es mayor o igual a \(\frac{\text{V}_{\text{T}}}{2}\).

Nota:

El respirador no genera presión subatmosférica de las vías aéreas durante la espiración.
10.6 **Compliancia y compensación de BTPS**

10.6.1 **Compensación de la compliancia en respiraciones controladas por volumen**

La compensación de la compliancia tiene en cuenta el volumen de gas que no se administra realmente al paciente durante la inspiración. Este gas se conoce como el volumen de compliancia o volumen compresible, V_C. V_C es el gas perdido para presurizar el circuito respiratorio e incluye los volúmenes del circuito del paciente, cualquier accesorio como humidificadores y colectores de agua y pasajes internos de gas del respirador.

![Figura 10-6. Patrón de flujo cuadrado](VEN_10247_A)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flujo (eje y)</td>
</tr>
<tr>
<td>2</td>
<td>$V_{\text{MAX real}}$</td>
</tr>
<tr>
<td>3</td>
<td>$V_{\text{MAX establecido}}$</td>
</tr>
<tr>
<td>4</td>
<td>Volumen de compliancia (V_C)</td>
</tr>
<tr>
<td>5</td>
<td>V_f establecido</td>
</tr>
<tr>
<td>6</td>
<td>T_i</td>
</tr>
</tbody>
</table>
En el respirador, un algoritmo iterativo calcula automáticamente el volumen de compliancia. Hay una relación máxima de tubo y compliancia del paciente para reducir la posibilidad de un sobreinflado debido a una estimación errónea de la compliancia del paciente. La relación máxima viene determinada por el tipo de circuito del paciente seleccionado y el peso corporal previsto (PBW):

\[
Factor = \frac{C_{pt\ ckt}}{C_{pt}}
\]

Factor
Factor de volumen de compliancia
\(C_{pt}\)
Compliancia del paciente
\(C_{pt\ ckt}\)
Compliancia del circuito del paciente
El volumen de compliancia se calcula como

\[V_C = C_{pt\ \ckt}(P_{wye} - P) \]

\(V_C \)	Volumen de compliancia
\(P_{wye} \)	Presión en el circuito en "Y" del paciente al final de la inspiración actual
\(C_{pt\ \ckt} \)	Compliancia del circuito del paciente
\(P \)	Presión al final de la espiración actual

Sin compensación de la compliancia automatizada, los médicos deben calcular \(V_C \) para estimar la pérdida de volumen en el circuito del paciente y aumentar el ajuste VT en esa cantidad. Aumentar el volumen corriente con un solo incremento para compensar el volumen de compliancia solo proporciona una compensación parcial y requiere un esfuerzo y conocimientos extra por parte del facultativo. Además, \(P_{wye} \) y \(P \) pueden cambiar con el tiempo.

En el respirador, un algoritmo iterativo calcula automáticamente el volumen de compliancia y lo compensa. La compensación de la compliancia no cambia el tiempo inspiratorio (T.I). Se consigue aumentando el flujo (aumentando la amplitud del patrón de flujo seleccionado). Al mantener T.I constante se mantiene la relación I:E original.

Existe un volumen de compliancia máximo para reducir la posibilidad de sobreinflado debido a un cálculo erróneo del volumen de compliancia del paciente. El volumen de compliancia máximo está determinado por el tipo de circuito de paciente seleccionado y el peso corporal previsto (PBW) y se resume en esta ecuación:

\[V_{comp,\ max} = \text{Factor} \times \text{volumen corriente} \]

donde:

\[V_{comp,\ max} = \text{volumen de compliancia máximo} \]

Factor = interpolación lineal de los valores de la siguiente tabla para tipos de circuito adultos, pediátricos y neonatales. El factor se calcula como:

\[\text{MIN} (10, \text{MAX} (2.5, 1.0 + (2.0/0.3 \times \text{kg PBW}))) \]
Nota:
Los cálculos de compensación de la compliancia también se realizan durante la espiración para garantizar la precisión de la espirometría.

Si la compliancia del paciente se reduce por debajo de los límites de la compensación de la compliancia, el respirador depende del parámetro de alarma P_{PEAK} para interrumpir la respiración y cambiar a espiración.

10.6.2 Compensación de BTPS en respiraciones basadas en volumen

Los volúmenes y los flujos se compensan por BTPS, es decir, el respirador informa de ellos a la presión barométrica existente, a $37 \, ^\circ C (98,6 \, ^\circ F)$ y completamente saturado con vapor de agua.

10.7 Administración de respiraciones mandatorias

El respirador ofrece tres tipos de respiración mandatoria: control de volumen (VC), que basa la administración de respiración en el volumen corriente inspiratorio administrado; control de presión (PC), que basa la administración de respiración en el logro del mantenimiento de una presión objetivo durante un periodo establecido de tiempo y volumen control plus (VC+), que consiste en una respiración controlada por la presión basada en un volumen corriente objetivo. VC+ se puede utilizar en situaciones en las que los pulmones del paciente se vuelven más distensibles debido al tratamiento, ya que reduce la presión objetivo (reduciendo las fuerzas en los alvéolos) para conseguir el volumen corriente objetivo.

Tabla 10-1. Factores de volumen de compliancia

<table>
<thead>
<tr>
<th>Tipo de circuito de pacientes adultos</th>
<th>Tipo de circuito de pacientes pediátricos</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBW (kg)</td>
<td>Factor</td>
</tr>
<tr>
<td>≤ 10</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>4,6</td>
</tr>
<tr>
<td>30</td>
<td>3,4</td>
</tr>
<tr>
<td>60</td>
<td>2,75</td>
</tr>
<tr>
<td>≥ 150</td>
<td>2,5</td>
</tr>
</tbody>
</table>
El respirador administra las respiraciones mandatorias que son asistidas (si están iniciadas por el paciente o ASIST) o controladas (si están iniciadas por el respirador o CONT) o iniciadas por el operador (IM). En el modo A/C, el periodo de respiración (T_b) se calcula utilizando la frecuencia respiratoria (f) de acuerdo con la ecuación

$$T_b = \frac{60}{f}$$

Si, durante el T_b, se detecta el esfuerzo del paciente, se inicia una respiración de ASIST y se inicia un nuevo periodo de respiración. Si no se detecta un esfuerzo del paciente antes de que transcurra el T_b, la siguiente respiración que se administra es una CONT y se inicia un periodo de respiración nuevo.

Consulte Intervalo y resolución de la configuración del respirador, p. 11-8, para obtener más información sobre los parámetros de VC+:

- Tiempo espiratorio (T_E)
- Relación I:E
- Tiempo inspiratorio (T_I)
- % de tiempo de rampa
- Volumen objetivo o corriente (V_T)

Los tipos de respiración VC y PC no requieren inicialización. La respiración VC se basa en el logro de un volumen objetivo administrado y respiración PC se basa en el logro de una presión objetivo determinada. Las respiraciones de VC+, no obstante, pasan por una rutina de inicio.

10.7.1 Control de volumen (VC)

Control de volumen es el esquema que controla el flujo con el fin de suministrar un volumen predeterminado (definido por el médico) al paciente. Hay dos formas de onda básicas para administrar este volumen: la “cuadrada” que garantiza un flujo constante durante el tiempo de inspiración o la “rampa descendente” cuya pendiente y valor inicial se determinan para proporcionar el objetivo de volumen requerido. Forma de onda ideal utilizando un patrón de flujo cuadrado y Forma de onda ideal utilizando un patrón de flujo de rampa descendente. El tiempo de inspiración se determina indirectamente por las características de la onda de flujo seleccionada.
Figura 10-8. Forma de onda ideal utilizando un patrón de flujo cuadrado

Figura 10-9. Forma de onda ideal utilizando un patrón de flujo de rampa descendente
10.7.2 Control de presión (PC)

El control de la presión es el esquema de control por el cual se controla la presión en el circuito respiratorio en “Y” para alcanzar un nivel constante (definido por el médico) durante la inspiración, y un nivel de PEEP durante la espiración. Consulte Onda de forma ideal utilizando ventilación de control de presión en la página 19. Este nivel se mantiene durante un tiempo dado por el tiempo de inspiración establecido, seguido por una espiración regulada por la válvula de espiración hasta que se alcanza el nivel de PEEP. Como el flujo no está predeterminado, el volumen suministrado varía dependiendo de la respuesta pulmonar del paciente.

Figura 10-10. Onda de forma ideal utilizando ventilación de control de presión

1 Presión (cmH₂O) 5 PEEP
2 Flujo (L/min) 6 Fase de inspiración
3 Volumen (mL) 7 Fase de espiración
4 Presión objetivo

10.7.3 VC+

Las respiraciones de VC+ requieren inicialización y deben pasar por una rutina de inicio.
Inicio de VC+

Durante el inicio de VC+, el respirador administra al menos una respiración (respiración de prueba) para determinar la presión objetivo necesaria para administrar el volumen deseado (establecido). Durante el tiempo que el respirador está administrando la respiración de prueba, la zona de mensajes de la GUI muestra el mensaje “Inicio de VC+”.

Nota:
Para permitir el funcionamiento óptimo del inicio y el funcionamiento de la VC+ en el respirador es importante no bloquear el tubo mientras el paciente está recibiendo succion u otro tratamiento que requiera la desconexión del respirador. El respirador cuenta con un algoritmo de detección de la desconexión que suspende la ventilación mientras el paciente está desconectado.

Tras el inicio de VC+, el respirador realizará los ajustes en la presión objetivo para administrar el volumen establecido (V_T). Para alcanzar pronto el volumen deseado en poco tiempo, los ajustes de presión máxima permitida para un paciente adulto o pediátrico serán más grandes durante las primeras cinco respiraciones tras el inicio o un cambio en V_T o $V_{T\text{SUPP}}$. Los valores de los ajustes de la presión máxima permitida están resumidos a continuación.

<table>
<thead>
<tr>
<th>Condiciones</th>
<th>Cambio máximo en presión objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PBW ≥ 25 kg</td>
</tr>
<tr>
<td>Menos de cinco respiraciones después: inicio de VC+ o cambio en V_T</td>
<td>± 10,0 cmH$_2$O</td>
</tr>
<tr>
<td>Cinco respiraciones o más después del inicio de VC+</td>
<td>± 3,0 cmH$_2$O</td>
</tr>
</tbody>
</table>

Consulte *Resumen de las alarmas no técnicas*, p. 6-20, para obtener más información acerca de las alarmas de VC+:

- **VOLUMEN NO ADMINISTRADO**
- **VOLUMEN CORRIENTE INSPIRADO MÁXIMO (V_{TI})**
- **PRESIÓN DEL CIRCUITO BAJA (P_{PEAK})**
- **V_T LIMITADO POR COMPLIANCIA**

Durante VC+, la presión objetivo inspiratoria no puede ser inferior a PEEP + 3 cmH$_2$O y no puede exceder $P_{PEAK} - 3$ cmH$_2$O.
10.7.4 % de tiempo de rampa

Si se selecciona PC o VC+ como tipo mandatorio, ajuste el parámetro % de tiempo de rampa para una administración óptima de flujo a los pulmones. Los pacientes con una impedancia elevada (baja compliancia y alta resistencia) pueden beneficiarse de un % de tiempo de rampa inferior mientras que los pacientes con una baja impedancia pueden tolerar mejor un ajuste de tiempo de rampa más agresivo. El parámetro de % de tiempo de rampa especifica la velocidad a la que la presión inspiratoria llega al 95 % de la presión objetivo. El parámetro de tiempo de rampa se aplica a las respiraciones PS (incluido el parámetro 0 cmH₂O), PC, o respiraciones VC+. Para satisfacer la demanda de flujo de un paciente que respira activamente, observe las curvas simultáneas de presión-tiempo y flujo-tiempo y ajuste el % de tiempo de rampa para mantener una rampa suave de presión hasta el valor objetivo. Un parámetro de % de tiempo de rampa que llegue al valor objetivo mucho antes del final de la inspiración puede causar que el respirador suministre un exceso de flujo al paciente. Se debe valorar para cada paciente si este exceso de suministro es clínicamente beneficioso. Por lo general, el % de tiempo de rampa óptimo para pacientes con una respiración suave es menor o igual a la predeterminada (50 %), mientras que el % de tiempo de rampa óptimo para pacientes que respiran de forma más agresiva puede ser del 50 % o más.

ADVERTENCIA:
En determinadas circunstancias clínicas (como rigidez pulmonar o un paciente pequeño con poca fuerza inspiratoria), un aumento en el parámetro % de tiempo de rampa por encima del 50 % podría causar una sobrecarga de presión transitoria y la transición prematura a la espiración u oscilaciones de presión durante la inspiración. Valore exhaustivamente el estado del paciente antes de establecer un % de tiempo de rampa por encima del parámetro predeterminado del 50 %.

10.7.5 Inspiración manual

Cuando se pulsa, la tecla Inspiración manual administra una respiración IM al paciente, utilizando los parámetros de administración de respiraciones establecida. El respirador no permitirá una inspiración manual durante la fase restringida de espiración ni cuando el respirador está en proceso de administración de una respiración, ya sea mandatoria o espontánea. Todos los intentos de inspiración manual están registrados en el registro general de eventos.
La fase restringida de espiración es el periodo de tiempo durante la fase de espiración en el que no se permite un trigger de inspiración. La fase restringida de espiración se define como los primeros 200 ms de espiración o el periodo en el que el flujo espiratorio es \(\leq 50 \% \) del flujo espiratorio máximo o el periodo en el que el flujo espiratorio disminuye a \(\leq 0,5 \text{ L/min} \) (el que tarde más tiempo). La fase restringida de espiración termina después de que hayan transcurrido cinco (5) s independientemente de la tasa de flujo espiratorio medida.

10.8 Administración de respiraciones espontáneas

Los modos que permiten las respiraciones espontáneas son SIMV, SPONT y BiLevel. El parámetro de tipo de respiración espontánea determina el tipo de asistencia de presión que se aplicará a las respiraciones espontáneas del paciente (PS, TC, VS o PAV+).

Tras seleccionar el tipo de respiración espontánea, elija el nivel de mantenimiento de presión (\(P_{SUPP} \)) para PS, volumen de soporte (\(V_{T SUPP} \)) para VS o porcentaje de soporte de TC y PAV+ (si está instalada la opción PAV+) y especifique el % de tiempo de rampa y \(E_{SENS} \), cuando estén disponibles. Los cambios en la fase de parámetro del tipo de respiración espontánea se implementan al inicio de la siguiente inspiración.

Nota:

En cualquier respiración espontánea administrada, ya sea INVASIVE o NIV, siempre se aplica una presión inspiratoria objetivo de al menos 1,5 cmH\(_2\)O.

Durante la respiración espontánea, el centro de control respiratorio del paciente activa rítmicamente los músculos inspiratorios. El parámetro del tipo de soporte permite seleccionar la presión de asistencia que suplemente la capacidad de generación de presión del paciente.
Tabla 10-3. Características de la administración de respiraciones espontáneas

<table>
<thead>
<tr>
<th>Característica</th>
<th>Implementación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detección inspiratoria</td>
<td>P_{SENS} o V_{SENS} en función del tipo de trigger seleccionado.</td>
</tr>
<tr>
<td>Presión o flujo durante la inspiración</td>
<td>La presión se eleva de acuerdo al % de tiempo de rampa seleccionado y el parámetro de PBW, con una presión objetivo igual a la presión efectiva + PEEP. P_{SUPP} Presión efectiva (cmH$_2$O)</td>
</tr>
<tr>
<td>Tipo espontáneo = PS y $P_{\text{SUPP}} < 5$ cmH$_2$O</td>
<td>0 1,5 1,2 2,9 3,6 4,3</td>
</tr>
<tr>
<td>Presión o flujo durante la inspiración</td>
<td>La presión se eleva de acuerdo al % de tiempo de rampa seleccionado y el parámetro de PBW, con una presión objetivo igual a $P_{\text{SUPP}} + $ PEEP.</td>
</tr>
<tr>
<td>Tipo espontáneo = PS y $P_{\text{SUPP}} \geq 5$ cmH$_2$O</td>
<td></td>
</tr>
<tr>
<td>Presión o flujo durante la inspiración</td>
<td>La presión se eleva de acuerdo al % de tiempo de rampa seleccionado y el parámetro de PBW, con una presión objetivo igual a la presión determinada durante la respiración de prueba o la presión objetivo determinada por la evaluación del volumen administrado de la respiración anterior. Si desea más información acerca de VS, consulte Volumen de soporte (VS), p. 10-24.</td>
</tr>
<tr>
<td>Tipo espontáneo = VS</td>
<td></td>
</tr>
<tr>
<td>Compensación del tubo (TC)</td>
<td>La compensación del tubo proporciona presión de asistencia inspiratoria programable durante las respiraciones espontáneas sin asistencia. Con esto se ayuda al paciente a superar la resistencia al flujo de la vía aérea artificial. La presión se programa para ayudar al paciente a superar parcial o totalmente la resistencia de la vía aérea artificial. El respirador continuamente calcula el diferencial de presión y ajusta la presión de compensación en consonancia. Si desea más información acerca de TC, consulte Compensación del tubo, p. 10-26.</td>
</tr>
<tr>
<td>Perfil de flujo inspiratorio</td>
<td>El perfil de flujo inspiratorio está determinado por la demanda del paciente y el parámetro del % de tiempo de rampa. A medida que el parámetro de % de tiempo de rampa aumenta del mínimo al máximo, el tiempo para alcanzar la presión objetivo se reduce. El flujo máximo disponible es de 30 L/min para tipos de circuitos neonatales, 80 L/min para tipos de circuitos pediátricos y hasta 200 L/min para tipos de circuitos adultos sin Leak Sync.</td>
</tr>
</tbody>
</table>
10.8 Presión de soporte (PS)

La presión de soporte es un tipo de respiración espontánea, similar a PC, por la que la presión se controla para alcanzar un valor constante, predeterminado por el médico, cuando se detecta esfuerzo inspiratorio del paciente. Este valor objetivo se mantiene hasta la detección del final de la inspiración. En consecuencia, el control de la válvula de espiración inicia la espiración, llevando la presión hasta el nivel PEEP.

10.8.2 Volumen de soporte (VS)

El volumen de soporte es un tipo de respiración espontánea con mantenimiento de presión disponible cuando se selecciona el modo SPONT. El volumen de soporte objetivo \(V_{T_{SUPP}} \) es el volumen objetivo para respiraciones con mantenimiento de presión.
Consulte *Intervalo y resolución de la configuración del respirador*, p. 11-8, para obtener más información acerca de los parámetros de VS:

- Sensibilidad espiratoria (E_{SENS})
- % de tiempo de rampa
- Volumen de soporte objetivo ($V_{T\,SUPP}$)

Descripción técnica

Las respiraciones de volumen de soporte (VS) son respiraciones accionadas por el paciente con presión de soporte. El algoritmo de VS varía la presión inspiratoria de cada respiración para administrar el volumen corriente objetivo establecido por el operador ($V_{T\,SUPP}$). Si el volumen administrado en una respiración está por encima o por debajo del volumen objetivo establecido, VS aumenta o disminuye la presión para la siguiente respiración, según sea necesario, para administrar más o menos volumen. A medida que mejora el estado del paciente, y se permite más control del paciente de la ventilación espontánea, el algoritmo de VS reduce la cantidad de presión inspiratoria necesaria para administrar el volumen objetivo. Y al contrario, el VS aumenta la presión inspiratoria si la fuerza respiratoria del paciente se deteriora.

En ausencia de fugas o cambios en la resistencia o la compliancia del paciente, volumen de soporte alcanza y mantiene un volumen corriente estable de una respiración a otra en un plazo de cinco (5) respiraciones desde la inicialización o el inicio del VS.

Durante VS, la presión objetivo inspiratoria no puede ser inferior a $PEEP + 1.5\,cmH_2O$ y no puede exceder $\frac{2}{3}P_{PEAK} - 3\,cmH_2O$.

Inicio de VS

Durante el inicio, el respirador administra una respiración (respiración de prueba) para determinar la presión objetivo necesaria para administrar el volumen deseado (establecido). Durante el tiempo que el respirador está administrando la respiración de prueba, la zona de mensajes de la GUI muestra el mensaje “Inicio de VS”.

Nota:

Para permitir el funcionamiento óptimo del inicio y el funcionamiento del VS en el respirador, es importante no bloquear el tubo mientras el paciente está recibiendo succión u otro tratamiento que requiera la desconexión del respirador. El respirador cuenta con un algoritmo de detección de la desconexión que suspende la ventilación mientras el paciente está desconectado.
Tras el inicio de VS, el respirador realiza ajustes en la presión objetivo para administrar el volumen establecido (V_T^{SUPP}). Para alcanzar el volumen deseado en poco tiempo, los ajustes de presión máxima permitida para un paciente adulto o pediátrico serán mayores durante las primeras cinco respiraciones tras el inicio o un cambio en V_T^{SUPP}. Los valores de los ajustes de la presión máxima permitida para cada paciente están resumidos en la tabla a continuación.

Tabla 10-4. Ajustes de presión máxima

<table>
<thead>
<tr>
<th>Condiciones</th>
<th>Cambio máximo en presión objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PBW ≥ 25 kg</td>
</tr>
<tr>
<td>Menos de cinco respiraciones después: Inicio de VS o cambio en V_T^{SUPP}</td>
<td>± 10,0 cmH₂O</td>
</tr>
<tr>
<td>Cinco respiraciones o más después del inicio de VS</td>
<td>± 3,0 cmH₂O</td>
</tr>
</tbody>
</table>

Consulte *Resumen de las alarmas no técnicas*, p. 6-20, para obtener más información acerca de las alarmas de VS:
- VOLUMEN NO ADMINISTRADO
- V_T LIMITADO POR COMPLIANCIA
- VOLUMEN CORRIENTE INSPIRADO MÁXIMO (V_{TI})

Datos del paciente monitorizados

Consulte *Intervalo, resolución y precisión de los datos del paciente*, p. 11-19, para obtener los detalles sobre los datos del parámetro de volumen corriente espontáneo inspirado del paciente disponible durante las respiraciones de VS.

10.8.3 Compensación del tubo

La compensación del tubo (TC) es un tipo de respiración espontánea con mantenimiento de presión disponible en los modos SIMV, SPONT y BiLevel. Cuando TC está activado, los músculos respiratorios del paciente no necesitan trabajar tanto para llevar los gases a los pulmones, como si no se contara con la presión de asistencia que proporciona la función de TC. Esto es especialmente importante para aquellos pacientes cuyos sistemas respiratorios ya estén funcionando mal y tendrían que realizar un esfuerzo muscular aún mayor para superar el aumento de la resistencia al flujo a través de la vía aérea artificial.
La compensación del tubo proporciona presión de asistencia inspiratoria programable durante las respiraciones espontáneas sin asistencia. Con esto se ayuda al paciente a superar la resistencia al flujo de la vía aérea artificial. La presión está programada para variar de acuerdo con resistencia al flujo a través de la vía aérea artificial. El respirador continuamente calcula el diferencial de presión y ajusta la presión de compensación en consonancia.

La compensación del tubo también incluye una protección de seguridad, comprobaciones de seguridad y comprobaciones lógicas que evitan que el operador introduzca determinados parámetros incompatibles, como un tamaño grande de vía aérea emparejada a un reducido peso corporal previsto.

Si el tipo de humidificador se ha cambiado después de ejecutar SST con TC, el volumen se puede ajustar al mismo tiempo para evitar una reducción en la precisión de la distensión de la compensación.

Descripción técnica

La compensación del tubo es una mejora del modo espontáneo que asiste las respiraciones espontáneas de los pacientes que no tienen soporte de tipos de respiración específicos basados en presión (como PS, VS y PAV+) al administrar presión positiva proporcional a la presión resistiva basada en el flujo desarrollada en la vía aérea artificial. La TC reduce la sensación de respirar a través de una vía aérea artificial, porque el algoritmo de TC ordena al respirador que desarrolle solo la cantidad correcta de presión positiva para compensar (cancelar) la presión negativa que se ha desarrollado en la vía aérea artificial durante la fase inspiratoria. El grado de descarga lo puede establecer el médico entre 10 y 100 % en incrementos del 5 %.

La compensación del tubo puede dar soporte a todas las respiraciones espontáneas para pacientes con pesos corporales previstos ≥ 7,0 kg (15,4 lb) y para tubos endotraqueales o de traqueostomía con un diámetro interno (ID) de ≥ 4,5 mm.

La TC se puede utilizar en SPONT, BiLevel (si esta opción está instalada) o SIMV, modos todos ellos que permiten respiraciones espontáneas sin soporte. Si se ha seleccionado BiLevel, TC da soporte a las respiraciones espontáneas en ambos niveles de presión.

La compensación del tubo comprueba la tasa de flujo cada 5 ms, utilizando una tabla de consulta interna que contiene la relación entre el flujo y la presión de la vía aérea artificial, que se emplea para calcular la cantidad de presión necesaria para superar total o parcialmente la resistencia de la vía aérea artificial. Basándose en la configuración de TC y la medición del flujo instantánea, las válvulas PSOL del respirador se ajustan continuamente, ajustando la presión del circuito para hacer coincidir los requisitos cambiantes de compensación entre la presión y el tubo.
Alarma de compensación del tubo

Consulte *Resumen de las alarmas no técnicas*, p. 6-20, para obtener más información sobre las alarmas $\uparrow P_{\text{COMP}}$, $\uparrow P_{\text{VENT}}$ y $\uparrow V_{\text{T}}$ asociadas con la TC.

Datos del paciente monitorizados

Consulte *Intervalo, resolución y precisión de los datos del paciente*, p. 11-19, para obtener más información sobre los parámetros del volumen corriente inspirado (V_{T}) del paciente monitorizados asociado con la TC.

Diámetro interno (ID) del tubo

El respirador utiliza valores de “límites flexibles” para el diámetro interno (ID) de tubo estimado basado en el PBW. Los límites flexibles son ajustes del respirador que han alcanzado sus límites superiores o inferiores recomendados. A la hora de ajustar el tamaño del tubo, si el diámetro interno no coincide con un peso corporal previsto válido, aparece el botón *Continuar*. Configurar el respirador más allá de dichos límites inferiores exige que el operador acepte el mensaje tocando *Continuar* antes de seguir ajustando el tamaño del tubo. El límite a partir del cual el ID del tubo no se puede ajustar se denomina límite estricto, y el respirador emite un tono de entrada no válida cuando se alcanza el límite estricto.

ADVERTENCIA:
Se podría producir un soporte ventilatorio superior al esperado, que causara daños desconocidos, si el tipo de tubo especificado o el ID del tubo es menor que tipo de tubo o el ID de tubo real.

Parámetros/directrices del respirador

El cálculo de los parámetros que se van a utilizar con la compensación del tubo resulta más fácil si se comprende lo siguiente: los parámetros del respirador, los datos empleados para la determinación de los valores de compensación y el rendimiento o la precisión especificada de la función de TC.

El parámetro para $\uparrow P_{\text{PEAK}}$ debe tener en cuenta la compensación del tubo calculada. La presión objetivo (compensación) en el conector en “Y” del paciente se obtiene del dato conocido de resistencia aproximada de la vía aérea del tubo ET o de traqueostomía que se utilice. Se muestra la presión de compensación en cmH$_2$O para los tamaños de tubo y los flujos de gas disponibles. Consulte *Presión objetivo tubo ET frente a flujo*, p. 10-29 y *Presión objetivo tubo de traqueostomía frente a flujo*, p. 10-30. La compensación estimada se debe añadir al valor de la PEEP para el cálculo y el parámetro de $\uparrow P_{\text{PEAK}}$.
Rendimiento especificado

El rendimiento utilizando TC es: ± (0,5 + 10 % del real) julios/litro (trabajo residual durante la inspiración al 100 % de nivel de soporte (% Supp)). El trabajo se calcula en todo el intervalo inspiratorio. En términos de ventilación, el trabajo de resistencia se calcula mediante la ecuación siguiente:

\[
W = \frac{k \times \int (P_{END} - P_{TR}) \times V dt}{\dot{V} dt}
\]

<table>
<thead>
<tr>
<th>W</th>
<th>Trabajo [J/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{END}</td>
<td>Presión espiratoria final</td>
</tr>
<tr>
<td>P_{TR}</td>
<td>Presión traqueal</td>
</tr>
<tr>
<td>K</td>
<td>Constante de conversión (0,098) [J/cmH₂O x L]</td>
</tr>
</tbody>
</table>

Las siguientes cifras indican las presiones en flujos de estado constante para tubos ET y tubos de traqueostomía, respectivamente, al 100 % de nivel de soporte en el circuito en "Y" para tamaños entre 4,5 mm y 10 mm.

Figura 10-11. Presión objetivo tubo ET frente a flujo

![Gráfica](VEN_10249_A)

1. Presión (cmH₂O)
2. Flujo (L/min)
10.8.4 Ventilación proporcional asistida (PAV™+)

PAV+ es otro tipo de respiración espontánea, que se encuentra disponible solo si se instala la opción PAV+. Para obtener una descripción detallada de la teoría de funcionamiento, Consulte el apéndice C en este manual.
10.9 Modo A/C

Cuando el respirador está en modo *asistida-controlada (A/C)*, solo se administran respiraciones mandatorias. Estas respiraciones mandatorias pueden ser PC, VC o VC+. Consulte *Administración de respiraciones mandatorias*, p. 10-16, para obtener una explicación más detallada de las respiraciones VC+. Como en el caso de cualquier respiración mandatoria, los métodos de trigger pueden ser P-TRIG, V-TRIG, trigger de tiempo o iniciado por el operador. Si el respirador detecta que el paciente inicia una respiración, se administra una ASIST o *respiración asistida*. De lo contrario, las respiraciones CONT (*respiraciones controladas*) se administran a la frecuencia respiratoria establecida. La longitud del periodo de respiración se define como

\[T_b = \frac{60}{f} \]

donde:

- \(T_b\) = periodo de respiración (s)
- \(f\) = frecuencia respiratoria establecida (respiraciones por minuto)

La longitud de la fase inspiratoria está determinada por los parámetros actuales de administración de la respiración. Al final de la fase inspiratoria, el respirador entra en la fase espiratoria según se haya determinado a partir de la siguiente ecuación:

\[T_E = T_b - T_I \]

donde:

- \(T_E\) = longitud de las fases espiratorias
- \(T_I\) = longitud de las fases inspiratorias, incluyendo el tiempo de meseta, \(T_{PL}\)

La figura que se muestra a continuación ilustra la administración de la respiración A/C cuando no se detecta ningún esfuerzo inspiratorio del paciente (todas las inspiraciones son CONT).

Figura 10-13. No se detecta ningún esfuerzo inspiratorio del paciente
La figura siguiente muestra la administración de respiración A/C cuando se detecta esfuerzo inspiratorio del paciente. El respirador permite administrar respiraciones ASIST a una tasa mayor o igual que la frecuencia respiratoria establecida.

Figura 10-14. Se detecta esfuerzo inspiratorio del paciente

La figura que se muestra a continuación ilustra la administración de respiración A/C cuando se administran respiraciones ASIST y CONT.

Figura 10-15. Respiraciones CONT y ASIST combinadas

Si se realizan cambios en la frecuencia respiratoria, solo se implementan durante la espiración. El nuevo periodo de respiración depende de la nueva frecuencia respiratoria, que se basa en el inicio de la respiración actual y sigue estas reglas:

- No se cambia el tiempo inspiratorio de la respiración actual.
- No se administra una inspiración nueva hasta que hayan transcurrido al menos 200 ms de espiración.
- El tiempo máximo t hasta que se administra la primera CONT para la nueva frecuencia respiratoria es 3,5 veces el tiempo inspiratorio actual o la duración del nuevo periodo respiratorio (lo que sea más largo), pero t no es más largo que el periodo respiratorio antiguo.
- Si el paciente genera una ASIST después de que el respirador reconozca el cambio de tasa y antes del tiempo t, la tasa nueva comienza con la ASIST.
10.9.1 Cambio al modo A/C

El cambio al modo A/C desde cualquier otro modo causa que el respirador implemente una CONT y establezca el tiempo de inicio en el comienzo del siguiente periodo de respiración A/C. Tras esta CONT, y antes de que comience el siguiente periodo de A/C, el respirador responde a los esfuerzos inspiratorios del paciente administrando respiraciones mandatorias.

La primera respiración A/C (respiración CONT) se implementa respetando estas reglas:

- La respiración no se administra durante una inspiración.
- La respiración no se administrará durante la fase restringida de espiración.
- El respirador se asegura de que transcurra un intervalo de apnea al menos cinco (5) s después del comienzo de la espiración.
- Cualquier otro evento programado (como por ejemplo una maniobra mecánica respiratoria o cualquier maniobra de pausa) se cancela y se vuelve a programar en el siguiente intervalo.

El momento en el que administra la primera CONT del nuevo modo A/C depende del modo y del tipo de respiración que haya activos cuando se solicita el cambio de modo.

10.10 Modo SIMV

El modo de ventilación mandatoria intermitente sincronizada (SIMV) es un modo de ventilación mixta que permite tanto las respiraciones mandatorias como las espontáneas utilizando el trigger por presión o flujo. Las respiraciones mandatorias pueden ser PC, VC o VC+ y las respiraciones espontáneas tienen mantenimiento de presión con PS o TC. SIMV garantiza una respiración mandatoria en cada periodo de respiración SIMV, que será ASIST o CONT. Las respiraciones IM están permitidas en SIMV y se administran a la tasa seleccionada para el tipo Mandatoria. Consulte la figura siguiente que muestra las dos partes del periodo respiratorio SIMV.

![Figura 10-16. Intervalos mandatorios y espontáneos](VEN_10765_B)

1. T_b = periodo respiratorio SIMV (incluye T_m y T_s)
2. T_m = intervalo mandatorio (reservado para una respiración ASIST)
3. T_s = intervalo espontáneo (se administra CONT si no se administra ASIST durante T_m)
La primera parte del periodo es el intervalo mandatorio \((T_m)\) que se reserva para una ASIST. Si se administra una ASIST, el intervalo \(T_m\) finaliza y el respirador cambia a una segunda parte del periodo, el intervalo espontáneo \((T_s)\), que está reservado para la respiración espontánea para el resto del periodo respiratorio. Al final del periodo respiratorio SIMV, se repite el ciclo. Si no se administra una ASIST, el respirador administra una CONT al final del intervalo mandatorio, y posteriormente cambia al intervalo espontáneo. La siguiente figura muestra un periodo respiratorio SIMV en el que se administra una ASIST dentro del intervalo mandatorio. Cualquier esfuerzo de trigger posterior durante el \(T_s\) produce respiraciones espontáneas. Como se muestra, \(T_m\) realiza la transición a \(T_s\) cuando se administra una ASIST.

La siguiente figura muestra un periodo respiratorio SIMV en el que no se administra una ASIST dentro del intervalo mandatorio.

Figura 10-17. ASIST administrada dentro del intervalo mandatorio

Figura 10-18. ASIST no administrada dentro del intervalo mandatorio
En SIMV, las respiraciones mandatorias son idénticas a las del modo A/C si el parámetro de frecuencia respiratoria del respirador es superior a la frecuencia respiratoria natural del paciente. Las respiraciones espontáneas son idénticas a las del modo SPONT si el ajuste de la frecuencia respiratoria del respirador es significativamente inferior a la frecuencia respiratoria natural del paciente. El trigger del paciente debe cumplir los requisitos de presión y sensibilidad por flujo.

El procedimiento para establecer la frecuencia respiratoria en SIMV es el mismo que en el modo A/C. Una vez se ha establecido la frecuencia respiratoria \(f \), el periodo \(T_b \) de SIMV en segundos es:

\[
T_b = \frac{60}{f}
\]

Durante el intervalo mandatorio, si el paciente acciona una respiración de acuerdo con el parámetro actual de sensibilidad por presión o flujo, el respirador administra una ASIST. Cuando se acciona una respiración mandatoria, el \(T_m \) termina, empieza el \(T_s \) y cualquier esfuerzo de accionamiento produce respiraciones espontáneas. Durante el intervalo espontáneo, el paciente puede realizar un número ilimitado de respiraciones espontáneas. Si no se administra ninguna ASIST o IM antes de que acabe el intervalo mandatorio, el respirador administra una CONT y realiza la transición al intervalo espontáneo al comienzo de la CONT.

El algoritmo respiratorio de la SIMV administra una respiración mandatoria en cada intervalo respiratorio, independientemente de la capacidad del paciente para respirar espontáneamente. Una vez se haya administrado una ASIST o una CONT, todos los esfuerzos con éxito del paciente producen respiraciones espontáneas hasta el final del intervalo del ciclo. El respirador administra una respiración mandatoria durante el intervalo mandatorio, independientemente del número de esfuerzos con éxito del paciente que se detecten durante el intervalo espontáneo. (Una IM administrada durante el intervalo mandatorio satisface el requisito de respiración mandatorio y causa que el \(T_m \) realice la transición a \(T_s \).)

El intervalo mandatorio máximo para cualquier parámetro de frecuencia respiratoria en SIMV está definido como el menor de:

- 0,6 veces el periodo de intervalo \((T_b) \), o
- diez s.

No hay valor mínimo para \(T_m \).
En SIMV, el intervalo entre respiraciones mandatorias puede llegar a ser de hasta 1,6 veces el intervalo de periodo de SIMV (sin superar el intervalo del periodo en diez (10) s). En las tasas respiratorias altas y volúmenes corriente demasiado grandes, la respiración superpuesta (la administración de una segunda inspiración antes de que termine la primera espiración) es probable. En la ventilación por volumen, la respiración superpuesta durante la inspiración y la espiración temprana produce hiperinflación y mayores presiones de las vías aéreas, lo que se puede detectar mediante una alarma de límite de presión máxima. En la ventilación de control de la presión (en la que la presión inspiratoria permanece constante), la respiración superpuesta produce volúmenes corriente menores que se pueden detectar mediante las alarmas de volumen corriente bajo y ventilación por minuto.

En el modo SIMV es posible que la frecuencia respiratoria disminuya temporalmente por debajo del parámetro \(f \) (a diferencia del modo A/C, en el que \(f_{TOT} \) siempre es mayor o igual que el parámetro \(f \)). Si el paciente acciona una respiración al comienzo de un periodo respiratorio y no vuelve a accionar otra respiración hasta que haya transcurrido el intervalo mandatorio máximo para la siguiente respiración, se puede producir una frecuencia respiratoria monitorizada inferior al parámetro de frecuencia respiratoria.

Si se produce una respiración espontánea hacia al final del intervalo espontáneo, la inspiración o la espiración pueden estar en curso cuando termina el intervalo de SIMV. No se permiten CONT, ASIST ni IM durante la fase restringida de la espiración. En un caso extremo se podrían omitted una o más respiraciones mandatorias esperadas. Cuando termina la fase espiratoria de la respiración espontánea, el respirador vuelve a sus criterios normales para administrar respiraciones mandatorias.

Si se detecta una IM durante el intervalo mandatorio, el respirador administra la respiración mandatoria que haya especificada en ese momento, cierra el \(T_m \) y pasa al \(T_s \). Si se detecta una IM durante el intervalo espontáneo, el respirador administra la respiración mandatoria que haya especificada en ese momento, pero el tiempo de ciclo SIMV no se reinicia si se administran respiraciones IM durante el \(T_s \).

10.10.1 Cambio al modo SIMV

El cambio al modo SIMV desde cualquier otro modo causa que el respirador implemente una CONT y establezca el tiempo de inicio en el comienzo del siguiente periodo de SIMV. Tras esta CONT, y antes de que comience el siguiente periodo de SIMV, el respirador responde a los esfuerzos inspiratorios con éxito del paciente administrando respiraciones espontáneas. La primera respiración CONT de SIMV se implementa de acuerdo a las siguientes reglas:

- La respiración CONT no se administra durante una inspiración ni la fase restringida de espiración.
• Si el modo actual es A/C, la primera CONT de SIMV se administra después de la fase restringida de espiración más el intervalo más corto de los siguientes, tomando como referencia el comienzo de la inspiración actual o la última. 3,5 T_p, T_A actual o la duración del periodo respiratorio actual.

• Si el modo actual es SPONT y el tipo de respiración actual o último era espontáneo o IM, la primera CONT de SIMV se administra después de la fase restringida de espiración más el intervalo más corto de los siguientes, tomando como referencia el comienzo de la inspiración actual o última. $3,5x T_I$ o T_A actual.

• Si el modo actual es BiLevel en el estado PI, y la respiración actual es mandatoria, el nivel de la PEEP se reducirá a P_L una vez se detecte la fase de espiración.

El tiempo t hasta que transcurra la primera CONT del nuevo modo A/C es el menor de:

- tiempo de transición a la PEEP + 2,5 veces la duración de la fase de administración del gas o
- la duración del intervalo de apnea (T_A) o
- la duración del ciclo de respiración actual

• Si el modo actual es BiLevel en el estado PI, y la respiración actual es espontánea, el nivel de la PEEP se reducirá una vez se detecte la fase de espiración.

El tiempo t hasta que transcurra la primera CONT del modo A/C es el menor de:

- tiempo de transición a la PEEP + 2,5 veces la duración de la inspiración espontánea o
- el tiempo de inicio de la respiración espontánea + la duración del intervalo de apnea (T_A).

• Si el modo actual es BiLevel en el estado PI y la respiración actual es mandatoria, el tiempo t hasta que transcurra la primera CONT del modo A/C es el menor de:

- tiempo de transición a la PEEP + 2,5 veces la duración de la fase de administración del gas o
- la duración del intervalo de apnea (T_A) o
- la duración del ciclo de respiración actual

• Si el modo actual es BiLevel en el estado PI, la respiración actual es espontánea y el tiempo de inicio de la respiración espontánea se ha producido durante P_L, el tiempo t hasta que transcurra la primera CONT del modo A/C es el menor de:

- 3,5 veces la duración de la inspiración espontánea o
- la duración del intervalo de apnea (T_A) o
la duración del ciclo de respiración actual

- Si el modo actual es BiLevel en el estado P_{LR}, la respiración actual es espontánea y el tiempo de inicio de la respiración espontánea se ha producido durante P_{HR}, el tiempo t hasta que transcurra la primera CONT del modo A/C es el menor de:
 - tiempo de transición a la PEEP + 2,5 veces la duración de la inspiración espontánea
 - el tiempo de inicio de la respiración espontánea + la duración del intervalo de apnea (T_A).

Si el comando para cambiar la SIMV se produce después de la fase restringida de la fase exhalación y antes de que haya transcurrido la siguiente respiración o el intervalo de apnea, el respirador administra la primera CONT de SIMV en el momento el que se reconoce el comando.

El punto en el que se implementa la nueva tasa depende en la fase actual del intervalo de SIMV y cuándo se acepta el comando de cambio de tasa. Si el cambio se produce durante el intervalo de respiración mandatoria, el intervalo mandatorio máximo es el de la tasa nueva o la antigua, el que sea menor. Si el paciente genera un esfuerzo inspiratorio con éxito durante el intervalo de respiración espontánea, el respirador responde administrando una respiración espontánea.

Los cambios de frecuencia respiratoria solo se implementan durante la exhalación. El nuevo intervalo de SIMV viene determinado por la nueva frecuencia respiratoria y está referenciado al inicio del periodo de SIMV actual, respetando estas reglas:

- Tiempo inspiratorio (T_i) de la respiración actual no está ni restringido ni ampliado.
- No se administra una inspiración nueva hasta que hayan transcurrido 200 ms de espiración.

El tiempo hasta que comienza el intervalo de SIMV es:

- lo que sea mayor: el nuevo intervalo de periodo de SIMV o 3,5 veces del último T_i,
- pero no puede ser superior al intervalo de periodo SIMV actual.

10.11 Modo espontáneo (SPONT)

En el modo SPONT, el paciente inicia la inspiración de acuerdo con el tipo de trigger, pero se permiten respiraciones IM que se administran con los parámetros de respiración mandatoria especificada es ese momento. En el modo SPONT están disponibles los siguientes tipos de respiración espontánea:

- PS
- VS
• TC
• PAV+ (si está instalada la opción PAV+™)

La fase inspiratoria comienza cuando el respirador detecta el esfuerzo del paciente durante la fase de espiración del respirador. La administración de respiración durante la fase inspiratoria está determinada por el parámetro para la presión del soporte, la PEEP, el % de tiempo de rampa, la sensibilidad espiratoria, excepto si la respiración es una respiración IM.

Si se selecciona la compensación del tubo (TC) o la ventilación proporcional asistida (PAV+) (si la opción PAV+ está instalada) como el tipo espontáneo, la administración de respiración durante la fase inspiratoria viene determinada por los ajustes para el % de soporte (% Supp), la sensibilidad espiratoria, el ID del tubo y el tipo de tubo.

Nota:
Dados los parámetros actuales del respirador, si PAV+ es un tipo de respiración espontánea permitida (excepto si el ID del < tubo es 6 mm), entonces se puede seleccionar PAV+. Si se selecciona, el ID del tubo está establecido al valor predeterminado Nuevo paciente basado en el PBW introducido. Aparece un icono para el ID del tubo.

Si se selecciona volumen de soporte (VS) como el tipo espontáneo, la administración de la respiración durante la fase inspiratoria está determinada por el % de tiempo de rampa, el nivel de volumen de soporte (VT SUPP), la sensibilidad espiratoria y la PEEP.

Las pausas inspiratorias solo son posibles durante las respiraciones IM y las pausas espiratorias no están permitidas durante SPONT.

Los métodos de trigger espiratorios incluyen:
• \(E_{SENS} \) (% de desaceleración del flujo desde el flujo inspiratorio máximo)
• Límite de tiempo basado en el PBW (\(T_1 \) demasiado largo)
• \(\uparrow P_{PEAK} \)
• Límite de volumen corriente inspiratorio (solo para VS)
• Método de ciclado de presión de las vías aéreas
10.11.1 Cambio al modo SPONT

Si el operador cambia al modo SPONT durante una inspiración A/C o SIMV (mandatoria o espontánea), la inspiración se completa, sin que le afecte el cambio de modo. Debido a que el modo SPONT no tiene requisitos especiales de tiempo respiratorio, el respirador entra en la fase y espera a la detección del esfuerzo inspiratorio del paciente, a una inspiración manual o la detección de apnea.

10.12 Ventilación de apnea

Cuando un paciente deja de respirar o deja de recibir ventilación, se denomina apnea. Cuando el respirador detecta apnea, emite una alarma y administra ventilación de apnea de acuerdo con los parámetros establecidos para ella.

10.12.1 Detección de la apnea

El respirador declara la existencia de apnea cuando no se ha administrado ninguna respiración una vez que ha transcurrido el intervalo de apnea seleccionado por el operador, más un pequeño incremento de tiempo (350 ms). Este incremento deja tiempo para que si el paciente ha comenzado a iniciar una respiración, accione la inspiración y evite que el respirador declare la existencia de apnea cuando el intervalo de apnea sea igual al periodo de respiración.

El temporizador de apnea se reestablece siempre que comienza una inspiración, independientemente de si la ha accionado el paciente, el respirador o el operador. El respirador entonces establece un nuevo intervalo de apnea comenzando desde el inicio de la inspiración actual. Para retener la ventilación de apnea se debe administrar otra inspiración antes de que transcurra el intervalo (el intervalo de apnea actual + 350 ms). La detección de la apnea se suspende durante los estados de desconexión, oclusión o válvula de seguridad abierta (SVO).

No se declara la existencia de apnea cuando el parámetro de intervalo de apnea es igual o excede el periodo de respiración. Por ejemplo, si el parámetro de frecuencia respiratoria es 4/min, un intervalo de apnea de 15 s o más significa que no se pueda detectar la apnea. El respirador basa la detección de la apnea en el flujo inspiratorio (no espiratorio) y permite la detección de una desconexión u oclusión durante la ventilación de apnea. La detección de la apnea está diseñada para tener en cuenta las interrupciones en el patrón respiratorio típico debido a otras funciones del respirador que amplían los intervalos inspiratorios o espiratorios (como por ejemplo los cambios de tasa), pero seguir detectando los eventos reales de apnea.
La figura a continuación muestra una ventilación de apnea donde T_A es igual al periodo respiratorio.

Figura 10-19. Intervalo de apnea igual al periodo respiratorio

La figura a continuación muestra una ventilación de apnea con un T_A superior al periodo respiratorio.

Figura 10-20. Intervalo de apnea mayor que el periodo respiratorio
La siguiente figura muestra una ventilación de apnea con un T_A inferior al periodo respiratorio.

Figura 10-21. Intervalo de apnea menor que el periodo respiratorio

1. T_{b0}
2. T_{b1}
3. ASIST
4. La línea discontinua indica una ASIST para evitar la apnea
5. CONT de apnea
6. Intervalo de apnea
7. Apnea T_{b0}
8. Ventilación de apnea
9. T_d ($T_A < T_d$)

10.12.2 Transición a la ventilación de apnea

Cuando se declara la existencia de apnea, el respirador administra ventilación de apnea de acuerdo con los parámetros establecidos para la misma, que muestra en la interfaz gráfica de usuario (GUI). Independientemente del parámetro de intervalo de apnea que se establezca, la ventilación de apnea no puede comenzar hasta que finalice la inspiración de la respiración actual y haya transcurrido la fase restringida de la espiración.

10.12.3 Cambios en los parámetros durante la ventilación de apnea

Todos los parámetros de apnea y no apnea permanecen activos en la GUI durante la ventilación de apnea. Los cambios en los parámetros de apnea y no apnea se implementan de acuerdo con las reglas aplicables. Si la ventilación de apnea está activa, los parámetros nuevos se aceptan, pero no se implementan hasta que comience la ventilación de no apnea. Al permitir los comandos mediante teclas después de la detección de la apnea, es posible ajustar el intervalo de apnea durante la configuración, independientemente de si se ha detectado apnea o no. Durante la ventilación de apnea, la tecla Inspiración manual está activa, pero las teclas de Pausa
espiratoria y Pausa inspiratoria no están activas. El control del aumento de O₂ está activo durante la ventilación de apnea, debido a que es posible que, durante la succión, se detecte apnea.

La frecuencia respiratoria de la apnea debe ser ≥ 60/Tₐ. Adicionalmente, los parámetros de apnea no pueden tener como resultado una relación I:E > 1,00:1.

10.12.4 Restablecimiento de la ventilación de apnea

La ventilación de apnea está prevista como un modo auxiliar de ventilación cuando hay una administración de respiración insuficiente para el paciente durante un período de tiempo determinado. El operador (pulsando la tecla de restablecimiento de la alarma) o el paciente (autoreset) pueden restablecer la ventilación de apnea en ventilación normal. También se puede restablecer cuando se realiza un cambio de tasa que haga que la ventilación de apnea no se pueda aplicar.

Si el paciente recupera el control inspiratorio, el respirador vuelve al modo que haya seleccionado el operador de ventilación de no apnea. El respirador determina si el paciente ha recuperado el control respiratorio monitorizando las inspiraciones accionadas y el volumen espirado. Si el paciente acciona dos inspiraciones consecutivas, y el volumen exhalado es igual o mayor que el 50 % del volumen administrado (incluido cualquier volumen de compliancia), el respirador cambia a ventilación de no apnea. El volumen espirado se monitoriza para evitar el restablecimiento debido a un autociclado causado por fugas importantes en el circuito del paciente.

10.12.5 Ventilación de apnea en SIMV

La siguiente estrategia está diseñada para permitir SIMV evitando la ventilación de apnea si se puede administrar una respiración CONT en su lugar:

- Si transcurre el intervalo de apnea (Tₐ) en cualquier momento durante el intervalo mandatorio, el respirador administra una CONT en lugar de comenzar una ventilación de apnea.
- Si Tₐ transcurre durante el intervalo espontáneo, se inicia la ventilación de apnea.

La figura siguiente muestra una ilustración de cómo está diseñada SIMV para administrar una CONT en lugar de accionar la ventilación de apnea siempre que sea posible.
La forma en la que se implementa un intervalo de apnea nuevo depende de si la ventilación de apnea está activa o no. Si la ventilación de apnea está activa, el respirador acepta e implementa el parámetro nuevo inmediatamente. Durante la ventilación normal (es decir, la ventilación de apnea no está activa), se aplican las siguientes reglas:

- Si el nuevo parámetro de intervalo de apnea es más corto que el intervalo de apnea actual (o ampliado temporalmente), el valor nuevo se implementa en la siguiente inspiración.
- Si el nuevo parámetro de intervalo de apnea es más largo que el intervalo de apnea actual (o ampliado temporalmente), el valor antiguo se amplía para coincidir con el nuevo intervalo inmediatamente.
10.13 Detección de la oclusión y la desconexión

10.13.1 Oclusión

El respirador detecta oclusiones severas en el circuito del paciente a fin de proteger al paciente de presiones excesivas en las vías aéreas o del suministro de poco o ningún gas. Las oclusiones requieren una atención inmediata para resolverlas.

El respirador detecta una oclusión severa si:

- El ramal espiratorio o inspiratorio del circuito respiratorio están ocluidos parcial o completamente (condensación o secreciones acumuladas en un bucle que dependa de la gravedad, tubos acodados o pinzados, etc.).

- El puerto SALIDA del respirador está bloqueado o la resistencia a través del puerto es demasiado alta.

- La válvula de espiración falla en la posición cerrada (detección de oclusión en el puerto Desde el paciente comienza tras 195 ms de espiración).

El respirador no detecta una oclusión severa si:

- La diferencia de presión entre los transductores inspiratorios e espiratorios es igual o menor a 5 cmH₂O.

- La válvula de espiración falla en la posición cerrada y la presión en el ramal espiratorio es inferior a 2 cmH₂O.

- Se ha conectado un tubo de silicona al puerto de SALIDA del respirador (es decir, con fines de monitorización metabólica).

El respirador comprueba si existen oclusiones en el circuito del paciente durante todos los modos de respiración (excepto en el estado de espera y válvula de seguridad abierta) en la administración de cada respiración. Una vez comienza la comprobación del circuito, el respirador detecta una oclusión severa del circuito del paciente en un plazo de 200 ms. El respirador comprueba si existen oclusiones en el puerto de SALIDA durante la fase espiratoria de cada respiración (excepto durante la desconexión y la válvula de seguridad abierta). Una vez comienza la comprobación del puerto de SALIDA, el respirador detecta una oclusión severa en un plazo de 100 ms tras los primeros 200 ms de espiración. Todas las comprobaciones de oclusión están deshabilitadas durante la puesta a cero automática del sensor de presión.

Cuando se detecta una oclusión, suena una alarma y el respirador entra en el estado OSC (ciclo de estado de oclusión) y muestra un mensaje que indica el tiempo que lleva el paciente sin ventilación (cuánto tiempo lleva el respirador en OSC). Esta alarma tiene la capacidad de restablecerse automáticamente, ya que hay oclusiones como las que son debidas a la actividad del paciente (por ejemplo debidas a tubos acodados o pinzados) que se pueden corregir por sí mismas.
Cuando se detecta una oclusión severa, el respirador actúa para minimizar la presión de las vías aéreas. Debido a que cualquier oclusión severa supone un riesgo para el paciente, el respirador lo minimiza mientras muestra el tiempo que lleva el paciente sin soporte respiratorio. Las oclusiones severas se detectan independientemente del modo o de la estrategia de trigger que haya establecidos. Cuando se detecta una oclusión severa, el respirador interrumpe la ventilación normal, anula el silencio de cualquier alarma activa, emite la alarma de oclusión y entra en estado de seguridad (válvula de espiración e inspiración deshabilitada y válvula de seguridad abierta) durante 15 s o hasta que la presión inspiratoria baje a 5 cmH₂O o menos, lo que se produzca primero.

Durante una oclusión severa, el respirador entra en OSC, en el que periódicamente intenta administrar una respiración basada en presión mientras monitoriza las fases de inspiración y espiración en busca de una oclusión severa. Si se corrige la oclusión severa, el respirador detecta la condición corregida si en dos periodos respiratorios de OSC completos no se detecta oclusión. Cuando el respirador administra una respiración de OSC, cierra la válvula de seguridad y espera 500 ms a que esta se cierre por completo, administra una respiración con una presión objetivo de 15 cmH₂O durante 2000 ms, y pasa a la espiración. Esta respiración va seguida de una respiración mandatoria de acuerdo con los parámetros actuales, pero con la PEEP = 0 y O₂% igual a 100 % para tipos de circuitos adultos y pediátricos o a 40 % para tipos de circuitos neonatales. Durante el OSC (y solo durante el OSC), el límite de la alarma \(TP_{PEAK}\) (límite de presión máxima del circuito) está deshabilitado para no interferir con la capacidad del respirador para detectar una oclusión corregida. Cuando el respirador no detecta una oclusión severa, restablece la alarma de oclusión, restablece la PEEP y reinstaura la administración de respiración de acuerdo con los ajustes de ese momento.

La pausa inspiratoria e espiratoria y las inspiraciones manuales se suspenden durante las oclusiones severas. Las oclusiones severas cancelan las maniobras de pausa. Durante una oclusión severa, es posible cambiar los parámetros del respirador. Las oclusiones graves no se detectan cuando el respirador se encuentra en estado de válvula de seguridad abierta (SVO).

Las oclusiones corregidas se detectan en un plazo de 15 s.
10.13.2 Desconexión

El estado de desconexión del circuito se detecta cuando el respirador no puede asegurar que un paciente esté recibiendo suficiente volumen corriente (debido a una fuga importante o al circuito del paciente desconectado). Esto se aplica cuando Leak Sync está deshabilitado.

Cuando se detecta una desconexión, suena una alarma y el respirador indica que se ha detectado una desconexión mostrando un mensaje que indica el tiempo que lleva el paciente sin ventilación.

Los datos del paciente no se muestran durante el estado de desconexión del circuito.

El respirador monitoriza la presión y el flujo espiratorio, el volumen administrado y el volumen espirado para declarar una desconexión mediante cualquiera de estos métodos:

- El respirador detecta una desconexión cuando el transductor de presión espiratorio no mide presión en el circuito ni flujo espirado durante los primeros 200 ms de espiración. El respirador pospone la declaración de una desconexión durante otros 100 ms para permitir que se declare una oclusión primero (si se detecta), ya que es posible que una oclusión satisfaga los criterios de desconexión.

- A pesar de las muchas variaciones de desconexión del circuito y fugas importantes es posible que un paciente genere flujo y presión espiratorios. El respirador entonces utiliza el parámetro de sensibilidad de desconexión (D_{SENS}, el porcentaje del volumen administrado perdido durante la fase espiratoria de la misma respiración para declarar una desconexión) para detectar una desconexión.

- Si la desconexión se produce durante una respiración espontánea, se declara la existencia de desconexión cuando la inspiración se termina en un tiempo inspiratorio máximo (o el parámetro de límite T_{SPONT} cuando el tipo de ventilación es no invasiva [NIV]) y el respirador detecta el aumento de flujo hasta el máximo permisible.

- Si la desconexión se produce en el tubo endotraqueal, el volumen espirado será mucho menor que el volumen administrado para la inspiración anterior. El respirador declara una desconexión si el volumen espirado es inferior al parámetro D_{SENS} durante tres respiraciones consecutivas. El parámetro D_{SENS} ayuda a evitar las detecciones falsas debido a fugas en el circuito o los pulmones del paciente y el requisito de tres respiraciones consecutivas ayuda a evitar las detecciones falsas debido a que el paciente extrae aire en exceso durante las respiraciones controladas por volumen (VC).

- El flujo inferior a un valor se determina utilizando el parámetro D_{SENS} y una presión inferior a 0,5 cmH$_2$O detectada durante diez (10) segundos consecutivos durante la espiración.
ADVERTENCIA:
Cuando el tipo de ventilación es NIV y el parámetro DSENS está DESACTIVADO, el sistema podría no emitir una alarma cuando se producen fugas y algunas condiciones de desconexión.

Una vez el respirador detecta una desconexión del circuito del paciente, este emite una alarma de alta prioridad e interrumpe la administración de respiración, independientemente del modo (incluida apnea) que estuviera activo cuando se detectó la desconexión. Si hay un silencio de alarma activo cuando se produce la desconexión, el silencio de la alarma NO se cancela. El respirador muestra el tiempo que lleva el paciente sin soporte respiratorio. Durante la desconexión, la válvula de espiración se cierra, comienza el flujo de espera (flujo de 10 L/min al 100 % O₂ o 40 % O₂ en NeoMode, si está disponible con Leak Sync deshabilitado y 20 L/min con Leak Sync habilitado) y se deshabilita el trigger de respiración. Aparece un mensaje que muestra cuánto tiempo lleva el paciente sin soporte respiratorio.

El respirador monitoriza el flujo espiratorio y las presiones del circuito para detectar la reconexión. El respirador declara una reconexión si se cumplen cualquiera de los siguientes criterios para el intervalo de tiempo aplicable:

- Detección de flujo inactivo espirado dentro del umbral de reconexión
- Presión inspiratoria e espiratoria por encima o por debajo de los niveles de umbral de reconexión o
- La presión inspiratoria aumenta a un nivel de reconexión

Si se corriga la condición de desconexión, el respirador detecta la condición corregida en menos de un segundo.

El trigger del respirador, la detección de la apnea, la pausa respiratoria e inspiratoria, las inspiraciones manuales y las maniobras programadas o los eventos únicos quedan suspendidos durante una condición de desconexión del circuito del paciente. La espirometría no está monitorizada durante una desconexión y todas las alarmas basadas en los valores de la espirometría están deshabilitadas. Durante una condición de desconexión, es posible cambiar los parámetros del respirador.

Si la alarma de desconexión se restablece automática o manualmente, el respirador restablece la PEEP. Cuando se restablece la PEEP, el respirador reinstaura la administración respiratoria de acuerdo con los parámetros que estaban en vigor antes de detectar la desconexión.
10.13.3 Anuncio de las alarmas de oclusión y desconexión

No es posible declarar una oclusión y una desconexión al mismo tiempo. Por lo tanto, el respirador solo anuncia el primer evento que se declare.

La detección de desconexión del circuito no está activa durante OSC, SVO, o antes de la conexión del paciente.

10.14 Mecánica respiratoria

Consulte *Maniobras mecánicas respiratorias*, p. 4-28, para obtener instrucciones sobre cómo realizar estas maniobras.

Además de las maniobras de pausa inspiratoria y pausa espiratoria, el respirador puede proporcionar otras maniobras respiratorias entre las que se incluyen fuerza inspiratoria negativa (NIF), presión de oclusión (P_{O,1}) y capacidad vital (VC), así como cálculos automáticos de la función y el rendimiento pulmonar como compliancia dinámica (C_{DYN}) y resistencia dinámica (R_{DYN}), flujo espiratorio máximo (PEF), flujo espiratorio final (EEF), C_{20}/C y flujo espontáneo máximo (PSF).

Las maniobras respiratorias se pueden realizar en todos los modos respiratorios (excepto los que se especifican a continuación), pero no están disponibles durante las siguientes condiciones:

- Ventilación de apnea
- PCV de seguridad
- Ciclo de estado de oclusión (OSC)
- Ventilación no invasiva (NIV)
- Cuando el tipo de circuito es neonatal
- SVO
- Respirador en estado de espera
- Cuando ya se ha producido cualquier otra maniobra respiratoria durante la misma respiración

La GUI también muestra cualquier solicitud de maniobra, distinguiendo entre solicitudes aceptadas y rechazadas y cualquier maniobra que haya comenzado, finalizado o se haya cancelado.
Cuando se selecciona una maniobra, se abre un panel de información de la GUI que muestra el nombre de la maniobra, mensajes y controles y del usuario y resultados recientemente calculados.

Cualquier maniobra se cancela automáticamente al declarar cualquiera de las siguientes alarmas:
- Alarma \(\uparrow P_{PEAK} \)
- Alarma \(\uparrow P_{VENT} \)
- \(\uparrow V_T \)

Las siguientes maniobras mecánicas respiratorias no están disponibles en la ventilación BiLevel:
- \(P_{0.1} \) – Presión de oclusión
- NIF – Fuerza inspiratoria negativa
- VC – Capacidad vital

10.14.1 Pausa inspiratoria

Nota:
Las maniobras de pausa inspiratoria y de pausa espiratoria se pueden realizar directamente pulsando las teclas respectivas en la GUI o abriendo la pestaña Menú en el lado izquierdo de la GUI. Para obtener más información sobre cómo llevar a cabo maniobras mecánicas respiratorias desde la pestaña Menú, consulte *Maniobras mecánicas respiratorias*, p. 4-28.

La pausa inspiratoria amplía la fase inspiratoria de una sola respiración mandatoria a fin de medir la presión inspiratoria final del circuito, que se utiliza para calcular la compliancia estática de los pulmones y el tórax del paciente (\(C_{STAT} \)), la resistencia estática del sistema respiratorio (\(R_{STAT} \)) y la presión de meseta inspiratoria (\(P_{PL} \)).

Para calcular estas presiones se cierran las válvulas inspiratoria y espiratoria a fin de permitir que se igualen las presiones a ambos lados de la vía aérea artificial y revelar el inflado real de los pulmones en ausencia de flujo. Las pausas inspiratorias se pueden administrar de forma manual o automática y solo están disponibles durante la siguiente respiración mandatoria en los modos A/C, SIMV, BiLevel o SPONT.

En BiLevel, la maniobra de pausa inspiratoria se programa para la siguiente inspiración antes de una transición de \(P_H \) a \(P_L \). Solo se permite una pausa inspiratoria por respiración. No se pueden producir pausas inspiratorias durante ventilación de apnea, PCV de seguridad, estado en espera, oclusión y SVO.
La pausa inspiratoria **automática** comienza cuando se pulsa la tecla de pausa inspiratoria momentáneamente o se inicia la maniobra desde la pantalla de GUI. Consulte *Para acceder a las maniobras de mecánica respiratoria*, p. 4-28, para obtener más información acerca de la realización de maniobras mecánicas respiratorias desde la pestaña Menú en la GUI en lugar de utilizar las teclas de la GUI. La pausa dura al menos 0,5 s y tres (3) s como máximo. La pausa inspiratoria **manual** comienza al pulsar y mantener pulsada la tecla de pausa inspiratoria. La pausa dura el tiempo que se mantenga pulsada la tecla (hasta un máximo de siete (7) s).

Una pausa inspiratoria activa **manual** se considera finalizada si sucede cualquiera de lo siguiente:

- Se suelta la tecla de pausa inspiratoria y han transcurrido al menos dos (2) s de pausa inspiratoria o se han detectado condiciones de estabilidad inspiratoria durante al menos 0,5 s.

- La duración de la pausa alcanza los siete (7) s.

Se cancelará una solicitud de maniobra de pausa inspiratoria **manual** (si la maniobra todavía no está activa) si se produce cualquiera de los eventos 1-10. *Eventos de pausa inspiratoria y espiratoria*.

Tabla 10-5. Eventos de pausa inspiratoria y espiratoria

<table>
<thead>
<tr>
<th>Identificador de evento</th>
<th>Evento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hay una pérdida de comunicación con la GUI.</td>
</tr>
<tr>
<td>2</td>
<td>Se alcanza el límite de presión máxima del respirador ((P_{VENT})).</td>
</tr>
<tr>
<td>3</td>
<td>Se alcanza el límite de presión máxima del circuito ((P_{PEAK})).</td>
</tr>
<tr>
<td>4</td>
<td>Se detecta una desconexión.</td>
</tr>
<tr>
<td>5</td>
<td>Se detecta una oclusión.</td>
</tr>
<tr>
<td>6</td>
<td>Se detecta apnea.</td>
</tr>
<tr>
<td>7</td>
<td>Han transcurrido 72 segundos sin una pausa inspiratoria después de haber solicitado una</td>
</tr>
<tr>
<td>8</td>
<td>Se detecta la alarma de INSPIRACIÓN DEMASIADO LARGA.</td>
</tr>
<tr>
<td>9</td>
<td>Se detecta la alarma de volumen corriente inspirado máximo ((V_{TI})).</td>
</tr>
<tr>
<td>10</td>
<td>Se detecta la alarma de presión máxima de compensación ((P_{COMP})).</td>
</tr>
<tr>
<td>11</td>
<td>Se toca Cancelar si la maniobra se inicia desde la pantalla de GUI.</td>
</tr>
<tr>
<td>12</td>
<td>Se detecta un estado de válvula de seguridad abierta (SVO).</td>
</tr>
</tbody>
</table>
Durante una pausa inspiratoria manual, la maniobra finaliza si sucede algunos de los eventos 1, 3, 5, 6, 12 o 13. Consulte *Eventos de pausa inspiratoria y espiratoria*, p. 10-51.

La maniobra de pausa inspiratoria se ignora si el respirador está en ventilación de apnea, PCV, OSC, SVO, BUV o en estado en espera.

La maniobra de pausa inspiratoria automática activa finaliza y comienza una espiración si se producen los eventos 1-12 o 14. Consulte *Eventos de pausa inspiratoria y espiratoria*, p. 10-51.

Una pausa inspiratoria activa automática se considera finalizada si la duración de la pausa llega a los tres segundos, o se han detectado condiciones de estabilidad de presión durante al menos 0,5 s.

Se cancelará una solicitud de maniobra de pausa inspiratoria automática (si la maniobra todavía no está activa) si se producen los eventos 1-9, 11, 12, 14 o 15: *Eventos de pausa inspiratoria y espiratoria*.

Otras características de la pausa inspiratoria incluyen:

- Durante una pausa inspiratoria, el intervalo de apnea (T_a) está ampliado por la duración de la pausa inspiratoria.

- Si el respirador está en SIMV, el periodo durante el cual se produce la siguiente VIM programada, también se ampliará por la cantidad de tiempo que está activa la pausa inspiratoria.

- Todas las activaciones del control de pausa inspiratoria se registran en el registro de datos del paciente.

- Se suspende la detección de oclusiones severas.

- Cuando se calcula la relación I:E la pausa inspiratoria se considera como parte de la fase de inspiración.

- El tiempo espiratorio permanece sin cambios y producirá un cambio de la relación I:E para la respiración que incluye la fase inspiratoria.

Una vez la pausa inspiratoria haya finalizado, el operador puede revisar la calidad de la forma de onda de la maniobra y aceptar o rechazar los datos de la maniobra.
10.14.2 Pausa espiratoria

La pausa espiratoria amplía la fase de espiración de una sola respiración a fin de medir la presión pulmonar espiratoria (PEEP\textsubscript{TOT}) y permite calcular la PEEP intrínseca (PEEP) como PEEP\textsubscript{TOT} menos la PEEP establecida. Se deja que las presiones a ambos lados de la vía aérea artificial se igualen cerrando la válvula inspiratoria y la espiratoria. La pausa espiratoria está disponible en los modos A/C, SIMV y BiLevel. Para A/C y SIMV, la maniobra de pausa inspiratoria se programa para el siguiente final de la espiración antes de una respiración mandatoria. En BiLevel, la pausa espiratoria se produce en el siguiente final de la espiración antes de una transición de P\textsubscript{L} a P\textsubscript{H}.

Solo se permite una pausa por respiración y la solicitud de pausa espiratoria se rechaza si ya ha tenido lugar una pausa inspiratoria durante la misma respiración.

En ventilación de apnea, PCV, SPONT, OSC, BUV y en espera se ignoran las solicitudes de maniobra de pausa espiratoria. Consulte Para acceder a las maniobras de mecánica respiratoria, p. 4-28, para obtener más información acerca de la realización de estas maniobras desde la pantalla de GUI en lugar de utilizar las teclas de la GUI.

Las maniobras de pausa espiratoria pueden ser manuales o automáticas. La pulsación momentánea de la tecla de pausa espiratoria inicia una pausa espiratoria que dura entre 0,5 s y 3,0 s. La pausa espiratoria manual se inicia al pulsar y mantener pulsada la tecla de pausa espiratoria, y dura el tiempo que se mantenga pulsada la tecla (hasta un máximo de 15 s).

Una pausa espiratoria activa manual finaliza si se suelta la tecla de pausa espiratoria y han transcurrido al menos tres (3) s de pausa espiratoria, se han detectado condiciones de estabilidad de presión durante \(\geq 0,5 \) s o la duración de la pausa llega a los 15 s.

Una pausa espiratoria activa automática se considera finalizada si sucede algún evento 1, 3 o 11-13. Consulte Eventos de pausa inspiratoria y espiratoria, p. 10-51.

Una pausa espiratoria activa automática finaliza si la duración llega a los tres (3) s, se han detectado condiciones de estabilidad de presión durante \(\geq 0,5 \) s o la duración de la pausa llega a 15 s.

Se cancelará una solicitud de maniobra de pausa espiratoria automática (si la maniobra todavía no está activa) si se producen los eventos 1-9, 11, 12 o 15:

La maniobra de pausa espiratoria automática finaliza y comienza una inspiración si se producen los eventos 1, 3 o 11-13. Consulte Eventos de pausa inspiratoria y espiratoria, p. 10-51.
Otras características de la pausa espiratoria incluyen:

- Durante una pausa espiratoria manual activa, la detección de oclusiones severas está suspendida.
- Cuando se calcula la relación I:E la pausa espiratoria se considera como parte de la fase espiratoria.
- Durante la pausa espiratoria, el tiempo inspiratorio permanece sin cambios, por lo que la relación I:E cambia para la respiración que incluye la pausa espiratoria.
- Todas las activaciones del control de pausa espiratoria se registran en el registro de datos del paciente.

Una vez la pausa espiratoria haya finalizado el operador puede revisar la calidad de la forma de onda de la maniobra y aceptar o rechazar los datos de la maniobra.

10.14.3 Maniobra de fuerza inspiratoria negativa (NIF)

La maniobra de fuerza inspiratoria negativa (NIF) es una maniobra con asesoramiento en la que se pide al paciente que realiza una inspiración máxima contra una vía aérea obstruida (la válvula inspiratoria y la espiratoria están completamente cerradas).

Una maniobra de NIF se cancela si:

- Se detecta una desconexión.
- Se detecta una oclusión.
- Se detecta SVO.
- Se declara la alarma P_{PEAK}.
- Se declara la alarma P_{VENT}.
- Se declara la alarma V_{T}.
- Se pierde la comunicación con la GUI.
- La maniobra lleva activa 30 s y no se detecta una inspiración.
- Se declara la alarma DESENGANCIO DEMASIADO LARGA.
- Se solicita una inspiración manual.

Cuando se activa una maniobra de NIF se muestra automáticamente una cuadrícula de una sola gráfica de tiempo-presión. Durante una maniobra de NIF la presión del circuito se muestra en la pantalla de gráficas de formas de onda y se actualiza periódicamente, produciendo una pantalla en tiempo real.
Cuando una maniobra de NIF activa finaliza con éxito, el resultado de NIF calculado aparece en la pantalla de formas de onda y en el panel de maniobras. El valor de NIF que se muestra representa la presión negativa máxima de la PEEP.

Cuando finaliza una maniobra de NIF se administra una respiración de restauración de la PEEP al paciente y, a continuación, se reanuda la administración respiratoria normal.

10.14.4 Maniobra de $P_{0.1}$ (presión de oclusión)

$P_{0.1}$ es la presión negativa de las vías aéreas (cambio de presión delta) generada durante los primeros 100 ms de una inspiración ocluida. Es una estimación de la fuerza neuromuscular para respirar.

Cuando una maniobra de $P_{0.1}$ finaliza con éxito, la presión calculada de las vías aéreas aparece en la pantalla de formas de onda y en el panel de maniobras.

La maniobra de $P_{0.1}$ finaliza si transcurren siete (7) s y no se ha detectado un trigger para activar la maniobra.

Una maniobra de $P_{0.1}$ se cancela si:
- Se detecta una desconexión.
- Se detecta una oclusión.
- Se detecta SVO.
- Se declara la alarma P_{PEAK}.
- Se declara la alarma P_{VENT}.
- Se declara la alarma V_{TI}.
- Se declara la alarma de INSPIRACIÓN DEMASIADO LARGA.
- Se pierde la comunicación con la GUI.
- Se solicita una inspiración manual.

10.14.5 Maniobra de capacidad vital (VC)

La maniobra de capacidad vital (VC) es una maniobra con asesoramiento en la que se pide al paciente que realice una inspiración máxima (independientemente de los parámetros actuales) y luego expire completa y lentamente.
Cuando la maniobra de capacidad vital se activa, el respirador administra una inspiración espontánea en respuesta al esfuerzo del paciente (con $P_{SUPP} = 0$, % de tiempo de rampa $= 50$ y $E_{SENS} = 0$), y, a continuación, permite un esfuerzo respiratorio completo.

Cuando se solicita una maniobra de capacidad vital se muestra automáticamente una cuadrícula de una sola forma de onda de tiempo-volumen. Una maniobra de capacidad vital se cancela si:

- Se detecta una desconexión.
- Se detecta una oclusión.
- Se detecta SVO.
- Se declara la alarma $\uparrow P_{PEAK}$.
- Se declara la alarma $\uparrow P_{VENT}$.
- Se declara la alarma $\uparrow V_{TI}$.
- Se declara la alarma de INSPIRACIÓN DEMASIADO LARGA.
- Se pierde la comunicación con la GUI.
- Se solicita una inspiración manual.
- La maniobra lleva activa 15 s y no se detecta una inspiración.
- Se toca Cancelar.

Cuando una maniobra de VC activa finaliza con éxito, el volumen espiratorio calculado se muestra en la pantalla de formas de onda y en el panel de maniobras y se administra una respiración de restauración de la PEEP.

10.15 **Configuración del respirador**

10.15.1 **Ventilación de apnea**

La ventilación de apnea es un modo de reserva que se inicia si el paciente no respira dentro del intervalo de apnea (T_{A}) establecido por el operador. T_{A} define el tiempo máximo permitido entre el inicio de una inspiración y el inicio de la siguiente. Los parámetros disponibles incluyen los tipos de respiración mandatoria (PC o VC). Para respiraciones de PC los parámetros permitidos son:

- Intervalo de apnea (T_{A})
- Presión inspiratoria (P_{i})
• Tiempo inspiratorio (T₁)
• Frecuencia respiratoria (f)

Para respiraciones de VC los parámetros permitidos son:
• Intervalo de apnea (Tₐ)
• Patrón de flujo
• O₂%
• Flujo inspiratorio máximo (VMAX)
• Frecuencia respiratoria (f)
• Volumen corriente (VT)

Durante la ventilación de apnea con PC seleccionada como el tipo de respiración mandatoria, el % de tiempo de rampa está fijado al 50 % y el parámetro constante durante un cambio de tasa es el tiempo inspiratorio (T₁).

Si es posible que se produzca apnea (es decir, si (60/f) > Tₐ) y se aumenta el parámetro O₂% sin apnea, la ventilación de apnea O₂% cambia automáticamente para que coincida con él si no está establecido ya más alto que el nuevo parámetro de O₂% sin apnea. La ventilación de apnea O₂% no cambia automáticamente al reducir el parámetro no de apnea O₂%. Siempre que se produce un cambio automático en un parámetro de apnea, aparece un mensaje en la GUI y se abre la pantalla de parámetros de apnea.

Durante la ventilación de apnea, se pueden hacer cambios en todos los parámetros de sin apnea, pero los parámetros nuevos no surtirán efecto hasta que el respirador reanude la ventilación normal. La posibilidad de cambiar el Tₐ durante la ventilación de apnea puede evitar que se vuelva a entrar en ventilación de apnea una vez se reanude la ventilación normal.

Dado que el valor mínimo para Tₐ es 10 s, la ventilación de apnea no puede producirse cuando f de no apnea es mayor o igual que 5,8/min. El respirador no entra en ventilación de apnea si Tₐ es igual al intervalo del periodo respiratorio. Establezca Tₐ a un valor inferior al intervalo de periodo respiratorio esperado o actual como una forma de permitir que el paciente inicie las respiraciones mientras protege al paciente de las consecuencias de la apnea.
10.15.2 **Tipo de circuito y peso corporal previsto (PBW)**

Juntos, el tipo de circuito y el PBW (en lb o kg) proporcionan la base para los valores de un paciente nuevo y los límites absolutos de diversos parámetros del respirador como el volumen corriente \((V_T) \) y el flujo máximo \((V_{MAX}) \). Realice un SST a fin de cambiar el tipo de circuito. La tabla siguiente ofrece los valores mínimo, máximo y predeterminado de un paciente nuevo para \(V_T \) en función del tipo de circuito.

Tabla 10-6. Valores para \(V_T \) en función del tipo de circuito

<table>
<thead>
<tr>
<th>Tipo de circuito</th>
<th>Valor predeterminado de paciente nuevo</th>
<th>(V_T) mínimo</th>
<th>(V_T) máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal</td>
<td>Cuando el tipo mandatorio es VC+, MAX {2 mL, (relación mL/kg x PBW)} mL; Cuando el tipo mandatorio es VC, MAX {3 mL, (relación mL/kg x PBW)} mL</td>
<td>2 mL si la opción de software NeoMode 2.0 está instalada</td>
<td>315 mL</td>
</tr>
<tr>
<td>Pediátrico</td>
<td>relación mL/kg x PBW mL</td>
<td>25 mL</td>
<td>1590 mL</td>
</tr>
<tr>
<td>Adulto</td>
<td>relación mL/kg x PBW mL</td>
<td>25 mL</td>
<td>2500 mL</td>
</tr>
</tbody>
</table>

Consulte *Intervalo y resolución de la configuración del respirador*, p. 11-8, parámetro de \(V_T \), para obtener más información sobre los cálculos de \(V_T \) basados en el PBW y el tipo de circuito.

Tabla 10-7. Flujo máximo y tipo de circuito (Leak Sync deshabilitado)

<table>
<thead>
<tr>
<th>Tipo de circuito</th>
<th>Parámetros de flujo máximo ((V_{MAX}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal</td>
<td>30 L/min</td>
</tr>
<tr>
<td>Pediátrico</td>
<td>60 L/min</td>
</tr>
<tr>
<td>Adulto</td>
<td>150 L/min</td>
</tr>
</tbody>
</table>

PBW determina las constantes para los algoritmos de administración respiratoria, algunas alarmas que puede establecer el usuario, el parámetro de límite de tiempo inspiratorio espontáneo máximo \((\overline{T}_{I_{SPONT}}) \) en NIV y la alarma de INSPIRACIÓN DEMASIADO LARGA que no se puede configurar.
10.15.3 **Tipo de ventilación**

Hay dos opciones de tipo de ventilación: INVASIVA y NIV (no invasiva). La ventilación INVASIVA es la ventilación convencional empleada con tubos endotraqueales o de traqueostomía. Durante la ventilación INVASIVA están disponibles todas las opciones de software instaladas, modos de respiración y tipos de trigger.

Las interfaces de NIV incluyen máscaras completas sin ventilación, máscaras nasales o cánulas nasales. Consulte *Interfaces de respiración NIV*, p. 4-23, para obtener una lista de interfaces que se han probado con éxito para NIV).

NIV permite al respirador hacerse cargo de las grandes fugas del sistema asociadas con estas interfaces al proporcionar alarmas de desconexión basadas en la presión, minimizar las falsas alarmas de desconexión y reemplazar la alarma de INSPIRACIÓN DEMASIADO LARGA por un parámetro de límite de tiempo inspiratorio espontáneo máximo (T_{SPONT}) y un indicador visual.

La siguiente lista muestra el subconjunto de parámetros de ventilación INVASIVA durante NIV:

- **Modo** — A/C, SIMV, SPONT (BiLevel no está disponible durante NIV).
- **Tipo mandatorio** — PC o VC (VC+ no está disponible durante NIV).
- **Tipo espontáneo** — PS (TC y VS no están disponibles durante NIV).

Durante la configuración de la alarma de NIV, el médico puede desactivar las alarmas y debe determinar si hacerlo es adecuado en función del estado del paciente.

10.15.4 **Modo y tipo de respiración**

Al especificar el modo se definen los tipos y las secuencias de respiración permitidas para los tipos de ventilación INVASIVA y NIV.

<table>
<thead>
<tr>
<th>Modo</th>
<th>Tipo de respiración mandatoria</th>
<th>Tipo de respiración espontánea</th>
<th>Secuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C</td>
<td>INVASIVE:VC, VC+ o PC</td>
<td>No permitido</td>
<td>Todas las mandatorias (iniciada por el paciente, el respirador o el operador).</td>
</tr>
</tbody>
</table>
Es necesario definir los tipos de respiración antes de poder especificar los parámetros. Solo hay dos categorías de tipos de respiración: respiración mandatoria y espontánea. Las respiraciones mandatorias están controladas por volumen (VC) o controladas por presión (PC o VC+). El respirador actualmente ofrece respiraciones espontáneas con presión de soporte (PS), volumen de soporte (VS), compensación del tubo (TC) o asistencia proporcional (PAV+), si la opción PAV+ está instalada. La figura siguiente muestra los modos y los tipos de respiración que hay disponibles en el respirador.

Tabla 10-8. Modos y tipos de respiración (continuación)

<table>
<thead>
<tr>
<th>Modo</th>
<th>Tipo de respiración mandatoria</th>
<th>Tipo de respiración espontánea</th>
<th>Secuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMV</td>
<td>INVASIVE: PC, VC o VC+ NIV: VC o PC</td>
<td>Presión de soporte (PS) o TC</td>
<td>Cada nueva respiración comienza con un intervalo mandatorio durante el cual el esfuerzo del paciente produce una respiración mandatoria sincronizada. Si no se detecta ningún esfuerzo del paciente durante el intervalo mandatorio, el respirador administra una respiración mandatoria. Los posteriores esfuerzos de los pacientes antes del final de la respiración producen respiraciones espontáneas.</td>
</tr>
<tr>
<td>SPONT</td>
<td>No permitida (PC o VC solo para inspiraciones manuales).</td>
<td>INVASIVE: Presión de soporte (PS), compensación del tubo (TC), volumen de soporte (VS), asistencia proporcional (PAV+) NIV: PS</td>
<td>Todas las espontáneas (excepto para inspiraciones manuales).</td>
</tr>
<tr>
<td>BiLevel (solo en tipo de ventilación INVASIVA)</td>
<td>PC</td>
<td>PS, TC</td>
<td>Combina modos de respiración mandatorios y espontáneos. Consulte el apéndice A para obtener más información sobre la ventilación BiLevel.</td>
</tr>
<tr>
<td>CPAP</td>
<td>VC o PC (solo para respiraciones IM)</td>
<td>N/D</td>
<td>Todas las espontáneas (excepto para inspiraciones manuales). Consulte el apéndice D para obtener más información sobre CPAP.</td>
</tr>
</tbody>
</table>
El parámetro de modo define la interacción entre el respirador y el paciente.

- El modo de respiración A/C (asistida/controlada) permite que el respirador controle la respiración dentro de los límites especificados por el médico. Todas las respiraciones son mandatorias y pueden ser de tipo PC, VC o VC+.

- El modo espontáneo (SPONT) permite al paciente controlar la ventilación. El paciente debe ser capaz de respirar independientemente y realizar el esfuerzo para accionar el soporte del respirador.

- La ventilación mandatoria intermitente sincronizada (SIMV) es un modo mixto que permite una combinación de interacciones mandatorias y espontáneas. En SIMV las respiraciones pueden ser espontáneas o mandatorias. Las respiraciones mandatorias están sincronizadas con los esfuerzos respiratorios del paciente y la administración respiratoria está determinada por el parámetro \(f \).

- BiLevel es un modo mixto que combina los tipos de respiración mandatoria y espontánea. Las respiraciones se administran de forma similar a las del modo SIMV con PC seleccionada, con la diferencia de que proporcionan dos niveles de presión. El paciente es libre de iniciar respiraciones espontáneas a cualquiera de las dos presiones durante el modo BiLevel.

Los cambios de modo se implementan al inicio de la inspiración. Las respiraciones mandatorias o espontáneas pueden ser accionadas por flujo o presión.

El respirador vincula automáticamente el parámetro de tipo mandatorio con el parámetro de modo. Durante los modos A/C o SIMV, una vez que el operador ha especificado el volumen o la presión, el respirador muestra los parámetros de respiración adecuados. Los cambios de tipo mandatorio se implementan al inicio de la inspiración.

10.15.5 Frecuencia respiratoria (\(f \))

El parámetro \(f \) determina el número mínimo de respiraciones mandatorias por minuto para respiraciones mandatorias iniciadas por el respirador en los modos A/C, SIMV y BiLevel. Si el modo es A/C o SIMV y el tipo de respiración es VC, al especificar \(V_{MAX} \) y el patrón de flujo, se determina \(T_i \), \(T_e \) e I:E. En las respiraciones tipo PC, al especificar \(T_i \) se determinan automáticamente las otras variables temporales. Consulte Tiempo inspiratorio \((T_i) \), p. 10-65 para conocer las interdependencias de \(f \), \(T_i \), \(T_e \) e I:E. Los cambios realizados en el parámetro \(f \) se implementan al inicio de la inspiración.
El respirador no acepta un parámetro de \(f \) propuesto si con ello el nuevo \(T_I \) o \(T_E \) tuviera que ser menor a 0,2 segundos y \(T_I \) tuviera que ser superior a ocho (8) s, o una relación I:E superior a 4,00:1. (El respirador también aplica estas restricciones a un cambio propuesto de la frecuencia respiratoria de apnea, con la excepción de que en apnea la I:E no puede exceder 1,00:1). La excepción a esta regla se produce en la ventilación BiLevel donde el parámetro \(f \) propuesto permitirá que la relación I:E sea superior a 4,00:1 solo hasta que se alcance el \(T_L \) mínimo.

10.15.6 **Volumen corriente (\(V_T \))**

El parámetro \(V_T \) determina el volumen de gas administrado al paciente durante una respiración mandatoria de VC. El \(V_T \) administrado se compensa en relación a BTPS y la compliancia del circuito del paciente. Los cambios en el parámetro \(V_T \) se implementan al inicio de la inspiración. El parámetro \(V_T \) solo afecta a la administración de respiraciones mandatorias.

Cuando se propone un cambio en el parámetro \(V_T \), el respirador compara el valor nuevo con los parámetros de \(f \), \(V_{MAX} \), patrón de flujo y \(T_{PL} \). Si el parámetro propuesto resultara en una relación I:E superior a 4,00:1, un \(T_I \) superior a ocho (8) s o inferior a 0,2 s o un \(T_E \) inferior a 0,2 s, el respirador no permitiría el cambio.

10.15.7 **Flujo inspiratorio máximo (\(V_{MAX} \))**

El parámetro \(V_{MAX} \) determina la tasa máxima de administración de volumen corriente al paciente solo durante respiraciones mandatorias de tipo VC. Los cambios de \(V_{MAX} \) se implementan al inicio de la inspiración. Las respiraciones mandatorias tienen la compliancia compensada, incluso con el parámetro \(V_{MAX} \) al máximo. La compensación de la compliancia del circuito no provoca que el respirador exceda la capacidad de flujo máximo del respirador.

Cuando se propone un cambio en el parámetro \(V_{MAX} \), el respirador compara el valor nuevo con los parámetros de \(V_T \), \(f \), patrón de flujo y \(T_{PL} \). No se permite establecer un \(V_{MAX} \) nuevo que resulte en una relación I:E superior a 4,00:1, o un \(T_I \) superior a 8,0 s o inferior a 0,2 s o un \(T_E \) inferior a 0,2 s.
10.15.8 **Tiempo de meseta (TPL)**

El parámetro TPL determina la cantidad de tiempo que se mantiene la inspiración en las vías aéreas del paciente una vez ha cesado el flujo inspiratorio. TPL solo está disponible durante respiraciones mandatorias VC (para el modo A/C y SIMV y las respiraciones mandatorias iniciadas por el operador). TPL no está disponible para respiraciones mandatorias. Los cambios en el parámetro TPL se implementan al inicio de la inspiración.

Cuando se propone un cambio en el parámetro TPL, el respirador calcula la relación I:E nueva y T,, con los parámetros de VT, f, VMAX y patrón de flujo. No se permite establecer un TPL nuevo que resulte en una relación I:E superior a 4,00:1, o un T_________________________ superior a ocho s o inferior a 0,2 s o un T_____________________________ inferior a 0,2 s. Para el cálculo de la relación I:E, TPL se considera parte de la fase inspiratoria.

10.15.9 **Patrón de flujo**

El parámetro de patrón de flujo define el patrón de flujo de gas solo de las respiraciones mandatorias con volumen controlado (VC). Los valores seleccionados para VT y VMAX se aplican tanto al patrón de flujo cuadrado como al de rampa descendente. Si VT y VMAX se mantienen constantes, T_____________________________ reduce aproximadamente a la mitad cuando el patrón de flujo cambia de rampa descendente a cuadrado (y aproximadamente se dobla cuando el patrón de flujo cambia de cuadrado a rampa descendente), y la relación I:E cambia en consecuencia. Los cambios en el patrón de flujo se implementan al inicio de la inspiración.

Los parámetros de patrón de flujo VT, f, TPL y VMAX están interrelacionados. Si cualquier cambio en los parámetros causara uno de los siguientes, el respirador no permitiría realizar el cambio:

- Relación I:E > 4:1
- T_____________________________ > 8,0 s o T_____________________________ < 0,2 s
- T_____________________________ < 0,2 s
10.15.10 Sensibilidad por flujo (V_{SENS})

El parámetro V_{SENS} define la tasa de flujo inspirada por un paciente que acciona el respirador para que administre una respiración mandatoria o espontánea. Cuando se selecciona V_{TRIG}, un flujo de gas de base (1,5 L/min) recorre el circuito del paciente durante la fase espiratoria del respirador. Cuando se selecciona un valor para la sensibilidad por flujo, el respirador administra un flujo de base igual a $V_{SENS} + 1,5$ L/min (el flujo de base no lo puede seleccionar el usuario). Cuando el paciente inspira y el flujo inspiratorio supera el parámetro V_{SENS}, el respirador se acciona y administra una respiración. Las reducciones de V_{SENS} se implementan inmediatamente, mientras que los aumentos se implementan al inicio de la espiración.

Cuando V_{SENS} está activa, reemplaza a sensibilidad por presión (P_{SENS}). El parámetro V_{SENS} no afecta al parámetro P_{SENS}. V_{SENS} puede estar activa en cualquier modo de respiración (incluida mantenimiento de presión, control de volumen, control de presión y ventilación de apnea). Cuando V_{SENS} está activa, se aplica un parámetro P_{SENS} de reserva de 2 cmH₂O para detectar los esfuerzos inspiratorios del paciente, aunque los sensores de flujo no detecten flujo.

El parámetro mínimo de V_{SENS} de 0,2 L/min (tipos de circuitos adultos/pediátricos) o 0,1 L/min (tipo de circuito neonatal) puede producir autociclado, aunque esto ser adecuado para pacientes muy débiles. El parámetro máximo de 20 L/min (tipos de circuito adulto/pediátrico) o 10 L/min (tipo de circuito neonatal) está previsto para evitar el autociclado cuando hay fugas importantes en el circuito del paciente.

10.15.11 Sensibilidad por presión (P_{SENS})

El parámetro P_{SENS} selecciona el descenso de presión por debajo de la inicial (PEEP) necesaria para comenzar una respiración iniciada por el paciente (ya sea mandatoria o espontánea). Los cambios en P_{SENS} se implementan inmediatamente. El parámetro P_{SENS} no tiene efecto en el parámetro V_{SENS} y solo está activo si el tipo de trigger es P_{TRIG}.

Los valores más bajos de P_{SENS} proporcionan un mayor confort al paciente y requieren un menor esfuerzo de este para iniciar una respiración. No obstante, las fluctuaciones en la presión del sistema pueden causar un autociclado en valores muy bajos del parámetro. El valor máximo del parámetro P_{SENS} evita el autociclado en las peores condiciones si las fugas del circuito del paciente están dentro de los límites especificados.
10.15.12 Presión inspiratoria (P_i)

El parámetro P_i determina la presión a la que el respirador administra gas al paciente durante una respiración mandatoria de tipo PC. El parámetro P_i solo afecta a la administración de respiraciones mandatorias de tipo PC. La P_i seleccionada es la presión por encima de la PEEP. (Por ejemplo, si la PEEP está establecida en cinco cmH₂O y P_i es 20 cmH₂O, el respirador administra gas al paciente a 25 cmH₂O). Los cambios en el parámetro P_i se implementan al inicio de la inspiración.

La suma de PEEP + P_i + 2 cmH₂O no puede ser superior al límite de presión máxima del circuito (TP_{PEAK}). Para aumentar esta suma de presiones, primero eleve el límite TP_{PEAK} antes de aumentar los valores del parámetro PEEP o P_i. El valor mínimo de P_i es 5 cmH₂O y el valor máximo es 90 cmH₂O.

10.15.13 Tiempo inspiratorio (T_i)

El parámetro T_i determina el tiempo durante el cual se administra una inspiración al paciente para respiraciones mandatorias de tipo PC. El respirador acepta un parámetro siempre y cuando la relación I:E resultante y los parámetros de T_E sean válidos. Los cambios en T_i se implementan al inicio de la inspiración. No se permite establecer T_i directamente en las respiraciones mandatorias de tipo VC.

El respirador rechaza los parámetros que resulten en una relación I:E superior a 4,00:1, un T_i superior a ocho (8) s o inferior a 0,2 s o un T_E inferior a 0,2 s para garantizar que el paciente tenga un tiempo adecuado para la espiración.

Al ajustar f y T_i se determina automáticamente el valor de I:E y T_E:

\[
\frac{60}{f} - T_i = T_E
\]

Esta ecuación resume la relación entre T_i, I:E, T_E y el tiempo del periodo respiratorio:

\[
T_i = \left(\frac{60}{f}\right) \left(\frac{(I:E)}{(1 + I:E)}\right)
\]

Si el parámetro f permanece constante, cualquiera de las tres variables (T_i, I:E o T_E) puede definir los intervalos inspiratorios y espiratorios. Si el parámetro f es bajo (y se esperan esfuerzos espontáneos adicionales del paciente), T_i puede ser una variable más útil de establecer que I:E. Esto se debe a que a medida que aumenta el parámetro f (y se esperan menos respiraciones accionadas por el paciente), el
parámetro I:E se vuelve más relevante. Independientemente de qué variable se elija, una barra de temporización de la respiración muestra la interrelación entre

\[T_i, I:E, T_E \text{ y } f. \]

10.15.14 *Tiempo espiratorio (T_E)*

El parámetro T_E define la duración de la espiración solo para las respiraciones mandatorias de tipo PC y VC+. Los cambios en el parámetro T_E se implementan al inicio de la espiración. Al ajustar \(f \) y T_E se determina automáticamente el valor de la relación I:E y T_i. Consulte *Tiempo inspiratorio (T_i)*, p. 10-65, para conocer las interdependencias de \(f, T_i, T_E \) e I:E.

10.15.15 *Relación I:E*

El parámetro relación I:E está disponible cuando se selecciona I:E como la constante durante el cambio de frecuencia. El parámetro I:E determina la relación entre el tiempo inspiratorio y el tiempo espiratorio para las respiraciones mandatorias de tipo PC. El respirador acepta el intervalo especificado de parámetros de relación I:E directos siempre que los parámetros T_i y T_E resultantes estén dentro de los rangos establecidos para las respiraciones mandatorias. Los cambios en la fase de parámetro de relación I:E se producen al inicio de la inspiración. No se permite establecer la relación I:E directamente en las respiraciones mandatorias de tipo VC. Consulte *Tiempo inspiratorio (T_i)*, p. 10-65, para conocer las interdependencias de \(f, T_i, T_E \) e I:E.

Al establecer \(f \) e I:E se determina automáticamente el valor de T_i y T_E. El parámetro máximo de relación I:E de 4,00:1 es el máximo que permite un tiempo suficiente para espirar y está previsto para la ventilación de control de presión de relación inversa.

10.15.16 *Presión alta (P_H) en BiLevel*

Se trata del nivel de presión que introduce el operador para la fase inspiratoria de la respiración mandatoria en la ventilación BiLevel.

10.15.17 *Presión baja (P_L) en BiLevel*

Se trata del nivel de presión que introduce el operador para la fase espiratoria de la respiración mandatoria en la ventilación BiLevel.
10.15.18 **Tiempo de presión alta (TH) en BiLevel**

Es la cantidad de tiempo (en segundos) durante el cual el respirador mantiene el nivel de presión alta establecido para la ventilación BiLevel.

10.15.19 **Tiempo de presión baja (TL) en BiLevel**

Es la cantidad de tiempo (en segundos) durante el cual el respirador mantiene el nivel de presión baja establecido para la ventilación BiLevel.

10.15.20 **Relación TH:TL en BiLevel**

La relación entre TH y TL en la respiración BiLevel, similar a la relación I:E cuando se ventila a un paciente sin BiLevel.

10.15.21 **PEEP**

Este parámetro define la presión espiratoria final positiva (PEEP), también llamada presión inicial de las vías aéreas. PEEP es la presión positiva mantenida en el circuito del paciente durante la espiración. Los cambios en el parámetro PEEP se implementan al inicio de la espiración.

La suma de:
- PEEP + 7 cmH2O, o
- PEEP + P1 + 2 cmH2O (si está activado el modo PC) o
- PEEP + P_SUPP + cmH2O (si PS está activa)

no puede exceder el límite P_{PEAK}. Para aumentar esta suma de presiones, primero eleve el límite de P_{PEAK} antes de aumentar los valores del parámetro PEEP, P1 o P_SUPP.

Si hay una pérdida de la PEEP por una condición de oclusión, desconexión, válvula de seguridad abierta o pérdida de alimentación, el respirador reestablece la PEEP (cuando se corrije la condición) administrando una respiración de restauración de la PEEP. La respiración de restauración de la PEEP es una respiración con presión de soporte a 1,5 cmH2O, sensibilidad espiratoria del 25 % y % de tiempo de rampa del 50 %. Al finalizar el inicio de la ventilación también se administra una respiración de restauración de la PEEP. Una vez se restaura la PEEP, el respirador reanuda la administración respiratoria de acuerdo con los parámetros que tenga ese momento.
Nota:
Los parámetros de respiración de restauración de la PEEP no los puede ajustar el usuario.

10.15.22 Presión de soporte (P_{SUPP})

El parámetro P_{SUPP} determina el nivel de presión positiva por encima de la PEEP que se aplicará a las vías aéreas del paciente durante una respiración espontánea. P_{SUPP} solo está disponible en SIMV, SPONT y BiLevel, al ser los modos en los que se permiten respiraciones espontáneas. El parámetro P_{SUPP} se mantiene siempre y cuando el paciente inspire, y la demanda del paciente es la que determina la tasa de flujo. Los cambios en P_{SUPP} se implementan al inicio de la inspiración. El parámetro de presión de soporte solo afecta a las respiraciones espontáneas.

La suma de PEEP + P_{SUPP} + 2 cmH₂O no puede ser superior al límite P_{PEAK}. Para aumentar esta suma de presiones, primero eleve el límite P_{PEAK} antes de aumentar los valores del parámetro PEEP o P_{SUPP}. Dado que el límite P_{PEAK} es la mayor presión considerada segura para el paciente, un parámetro P_{SUPP} que genera una alarma de P_{PEAK} requerirá volver a evaluar la presión máxima segura del circuito.

10.15.23 Volumen de soporte (V_{TSUPP})

El volumen de soporte (V_{TSUPP}) se define como el volumen de gas administrado al paciente durante las respiraciones espontáneas de tipo VS. Los cambios en V_{TSUPP} se implementan al inicio de la inspiración.

10.15.24 % Supp en TC

En la TC, el parámetro % Supp representa la cantidad de resistencia impuesta de la vía aérea artificial que el tipo de respiración TC eliminará aplicando una presión añadida al conector en “Y” del circuito del paciente. Por ejemplo, si el parámetro % Supp es del 100 %, la TC elimina el 100 % del trabajo extra impuesto por la vía aérea. Al 50 %, la TC elimina el 50 % del trabajo añadido de la vía aérea. La TC también se utiliza con BiLevel y están disponible durante las fases P_H y P_L.
10.15.25 % Supp en PAV+

En modo PAV+, el parámetro de % Supp representa el porcentaje del trabajo total de la respiración (WOB) realizado por el respirador. Las demandas inspiratorias más elevadas producen un mayor soporte del respirador. El paciente realiza el trabajo restante. Si el WOB cambia (como resultado de un cambio en la resistencia o compliance) el porcentaje de soporte permanece constante.

10.15.26 % de tiempo de rampa

El parámetro de % de tiempo de rampa permite ajustar la velocidad a la que la presión inspiratoria llega al 95 % de la presión objetivo. El parámetro de tiempo de rampa se aplica a las respiraciones PS (incluido el parámetro de 0 cmH₂O), VS, PC o VC+. Cuanto más alto sea el valor del % de tiempo de rampa, más agresivo (y, por tanto, más rápido) será el aumento de la presión inspiratoria hasta el valor objetivo (que equivale a PEEP + P₁ (o P_SUPP)). El parámetro de % de tiempo de rampa aparece cuando las respiraciones basadas en la presión están disponibles. El intervalo de % de tiempo de rampa es de 1 al 100 %. Un valor del 50 % tarda aproximadamente la mitad de tiempo en llegar al 95 % de la presión objetivo que un valor del 1 %.

- Para las respiraciones PC, VC+ o BiLevel, un tiempo de rampa de 1 produce una trayectoria de presión que llega al 95 % de la presión inspiratoria objetivo (PEEP + P₁) en dos (2) s o 2/3 de T₁, lo que sea menor.

- Para respiraciones espontáneas (VS o PS), un tiempo de rampa de 1 produce una trayectoria de presión que llega al 95 % del objetivo inspiratorio (PEEP + P_SUPP) en (0,4 x T₁ DEMASIADO LARGO basado en PBW x 2/3) s.

- Cuando están activas tanto las respiraciones PC como PS, las inclinaciones, y por tanto, las trayectorias de presión, pueden tener una apariencia diferente. Los cambios en T₁ y P₁ causan que las trayectorias de PC de presión cambien. Los cambios en % de tiempo de rampa se implementan al inicio de la inspiración.

- Cuando P_SUPP = 0, el parámetro % de tiempo de rampa determina la velocidad a la que el respirador hace que la presión del circuito llegue a la PEEP + 1,5 cmH₂O.
10.15.27 Sensibilidad espiratoria (ESENS)

El parámetro ESENS define el porcentaje del flujo inspiratorio máximo medido al que el respirador cambia de inspiración a espiración en todos los tipos de respiración espontánea. Cuando el flujo inspiratorio baja al nivel definido por ESENS, comienza la espiración. ESENS es un parámetro principal al que se puede tener acceso desde la pantalla de GUI. Los cambios en ESENS se implementan en la siguiente inspiración espontánea iniciada por el paciente.

ESENS complementa al % de tiempo de rampa. El % de tiempo de rampa se debe ajustar primero para que coincida con la fuerza inspiratoria del paciente, y luego el parámetro ESENS debe causar la espiración del respirador en el punto que sea más conveniente para el paciente. Cuanto más alto sea el parámetro ESENS, más corto será el tiempo inspiratorio. Por lo general, el ESENS más adecuado es el compatible con el estado del paciente sin ampliar ni acortar la fase inspiratoria intrínseca del paciente.

ESENS es una respiración de tipo PAV+ que se expresa en L/min en lugar de porcentajes.

10.15.28 Sensibilidad de desconexión

Opción Leak Sync deshabilitada: la sensibilidad de desconexión (DSENS) es el porcentaje de volumen devuelto perdido a causa de una fuga, por encima del cual el respirador declara la alarma DESCONEXIÓN DEL CIRCUITO. Cuando DSENS se establece en su valor más bajo (20 %), tiene la mayor sensibilidad para detectar una fuga o una desconexión. Y al contrario, cuando DSENS se establece en su valor más alto (95 %), el respirador es menos sensible a una fuga o una desconexión porque se debe perder más del 95 % del volumen devuelto antes de que se active la alarma. Durante la NIV, el valor DSENS se ajusta automáticamente a DESACTIVADO, lo que significa que la pérdida de volumen devuelto no se tiene en cuenta y la alarma no sonará.

Opción Leak Sync habilitada: DSENS se define como la fuga en el valor de PEEP en L/min, por encima del cual el respirador declara la alarma DESCONEXIÓN DEL CIRCUITO. El ajuste más bajo corresponde a la mayor sensibilidad para detectar y declarar una desconexión del circuito y viceversa.
Nota:
Si DSENS está deshabilitado durante la NIV, el respirador seguirá siendo capaz de declarar la alarma DESCONEXIÓN DEL CIRCUITO.

Nota:
DSENS no se puede desactivar si la opción Leak Sync está habilitada.

Los cambios en DSENS se implementan al inicio de la inspiración.

Consulte la Tabla 11-4. para obtener información sobre los intervalos aceptables de distensibilidad y resistencia.

10.15.29 **Límite de tiempo inspiratorio espontáneo máximo (T_{SPONT})**

El parámetro de límite de tiempo inspiratorio espontáneo máximo (T_{SPONT}) solo está disponible en los modos SIMV y SPONT durante NIV, y proporciona un medio para establecer un tiempo de tiempo inspiratorio máximo tras el cual el respirador pasa automáticamente a la espiración. El parámetro T_{SPONT} predeterminado está basado en el tipo de circuito y el PBW.

Para tipos de circuitos adultos/pediatricos, el valor predeterminado para un paciente nuevo es (1,99 + (0,02 x PBW)) s.

Para tipos de circuitos neonatales, el valor predeterminado para un paciente nuevo es (1,00 + (0,10 x PBW)) s.

El indicador T_{SPONT} aparece en la pantalla principal al principio de una espiración iniciada por el respirador y permanece visible todo el tiempo que el respirador trunque respiraciones en respuesta al parámetro T_{SPONT}. El indicador T_{SPONT} desaparece cuando el tiempo inspiratorio del paciente vuelve ser inferior a T_{SPONT} o después de que hayan transcurrido 15 s después del comienzo de la espiración de la última respiración truncada. Los cambios en T_{SPONT} se implementan al inicio de la inspiración.

10.15.30 **Tipo de humidificación**

El parámetro de tipo de humidificación establece el tipo de sistema de humidificación (intercambiador de calor y humedad [HME], el tubo espiratorio calentado o el tubo espiratorio no calentado) utilizado en el respirador y se puede cambiar durante la respiración normal o el autotest corto (SST). Los cambios en el tipo de humidificación se implementan al inicio de la inspiración.
SST calibra la espirometría basándose en parte en el tipo de humidificación. Si se cambia el tipo de humidificación sin volver a realizar el SST se puede ver afectada la precisión de la espirometría y la administración.

La precisión del sensor de flujo espiratorio varía en función del contenido de vapor de agua del gas espiratorio, que depende del tipo de sistema de humidificación que se emplee. Debido a que la temperatura y la humedad del gas que entra en el filtro espiratorio difieren en función del tipo de humidificación que se utilice, los cálculos de la espirometría también difieren de acuerdo con el tipo de humidificación. Para obtener la precisión óptima, vuelva a realizar el ATC para cambiar el tipo de humidificación.

10.15.31 **Volumen del humidificador**

Este es el volumen seco y comprimible en mL de la cámara de humidificación del tipo de humidificación introducido durante el SST. Solo se aplica si se utiliza un humidificador.

10.16 **Red de seguridad**

Aunque el respirador está diseñado para una máxima seguridad y fiabilidad, Covidien reconoce que existe la posibilidad de que surjan problemas durante la ventilación mecánica, por error del usuario, fallo en la interacción paciente-respirador o por problemas con el propio respirador. Safety Net es un término amplio que incluye estrategias para resolver problemas que surgen en el sistema “paciente-respirador” (problemas con el paciente) así como estrategias para minimizar el impacto de los fallos del sistema en la seguridad del paciente. En estas situaciones, el respirador está diseñado para emitir una alarma y proporcionar el máximo nivel de suministro de ventilación posible, en caso de fallo de funcionamiento del respirador. Si el respirador no puede suministrar ventilación, abre el circuito del paciente y permite que el paciente respire aire ambiental si es capaz (este estado de emergencia se denomina *válvula de seguridad abierta (SVO)*). Los mecanismos de seguridad están diseñados para ser verificados periódicamente o para contar con sistema de respaldo. El respirador está diseñado para garantizar que un fallo de un solo punto no ocasione un peligro de seguridad ni afecte a su posibilidad de emitir una alarma audible de alta prioridad.
10.16.1 **Error de usuario**

El respirador está diseñado para evitar que el operador implemente parámetros no adecuados para el peso corporal previsto (PBW) del paciente. Cada parámetro tiene límites flexibles (pueden ignorarse) y límites estrictos (no pueden ignorarse) que alertan al operador cuando los parámetros pueden no ser apropiados para el paciente. En el caso de que se conecte al paciente sin especificar los parámetros, el respirador entra en el modo PCV de seguridad, un modo seguro de ventilación independientemente del tipo de circuito que esté en uso (neonatal, pediátrico o adulto) o el PBW del paciente. Si se realiza una conexión del paciente antes de confirmar los parámetros, se entra en el modo PCV de seguridad, después del POST. La PCV de seguridad utiliza los parámetros predeterminados de nuevo paciente con las excepciones que se muestran en la siguiente tabla:

<table>
<thead>
<tr>
<th>Tabla 10-9. Parámetros de la PCV de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>PBW</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>modo</td>
</tr>
<tr>
<td>Tipo mandatorio</td>
</tr>
<tr>
<td>f_{TOT} (frecuencia respiratoria total)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T_I</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>P_I</td>
</tr>
<tr>
<td>$O_2%$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PEEP</td>
</tr>
<tr>
<td>Tipo de trigger</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>P_{SENS}</td>
</tr>
<tr>
<td>V_{SENS}</td>
</tr>
</tbody>
</table>
10.16.2 Problemas relacionados con el paciente

En el caso de problemas del paciente, el respirador permanece plenamente operativo y emite la alarma correspondiente. La detección, respuesta y prioridad de cada alarma relacionada con el paciente están determinadas por el problema determinado del paciente. Consulte Alaramas, p. 6-4, para obtener una descripción detallada del sistema de alarmas del paciente.

10.16.3 Problemas relacionados con el sistema

El respirador está diseñado para prevenir los fallos del sistema. Gracias a su diseño modular, la unidad de administración respiratoria (BDU) puede funcionar de forma independiente de la interfaz gráfica de usuario (GUI) y, además, cuenta con varios módulos del subsistema de administración respiratoria redundantes que, en caso de producirse determinados fallos, proporcionan soporte ventilatorio con los parámetros que no dependen del hardware dudoso. Entre los fallos del sistema se incluyen los siguientes:

- Fallos de hardware (aquellos que se originan dentro del respirador y afectan a su rendimiento)

Tabla 10-9. Parámetros de la PCV de seguridad (continuación)

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Valor de la PCV de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{PEAK}</td>
<td>20 cmH$_2$O</td>
</tr>
<tr>
<td>Alarma V_{ETOT}</td>
<td>APAGADO</td>
</tr>
<tr>
<td>Alarma V_{ETOT}</td>
<td>0,05 L/min</td>
</tr>
<tr>
<td>Alarma V_{TE}</td>
<td>APAGADO</td>
</tr>
<tr>
<td>Alarma $V_{\text{TE MAND}}$</td>
<td>APAGADO</td>
</tr>
<tr>
<td>Alarma $V_{\text{TE SPONT}}$</td>
<td>APAGADO</td>
</tr>
<tr>
<td>Tipo de circuito</td>
<td>Último valor establecido, o adulto si no hay ninguno disponible</td>
</tr>
<tr>
<td>Tipo de humidificación</td>
<td>Valor establecido, o “TUBO ESP. NO CALENTADO” si no hay ninguno disponible</td>
</tr>
<tr>
<td>Volumen del humidificador</td>
<td>Último valor establecido, o 480 mL si no hay ninguno disponible</td>
</tr>
</tbody>
</table>

Nota:
En el modo PCV de seguridad, las pausas espiratorias no están permitidas.
• Fallos de software (fallos introducidos temporalmente en el respirador que interfieren con el funcionamiento normal)
• Suministro inadecuado (alimentación de CA o presión de gas externa)
• Integridad del circuito del paciente (circuito ocluido o desconectado)

10.16.4 Sistema de diagnóstico de segundo plano

El respirador cuenta con un amplio sistema de procesos continuos de pruebas. Si se detecta un error en el sistema de diagnóstico de segundo plano, el respirador lo notifica al operador mediante una entrada en el registro de diagnósticos. Si el respirador experimenta una anomalía que cause un reinicio no deseado, el respirador se recuperará de ese reinicio y administrará una respiración en un plazo máximo de tres (3) s sin intervención del operador. Después de recuperarse de un reinicio el respirador utiliza los mismos parámetros que estaban en vigor antes de que se produjera el reinicio.

El proceso de prueba de segundo plano compara los valores monitorizados de las funciones del respirador con los valores esperados de los sensores del respirador en condiciones normales, independientemente de si se encuentra en espera o está ventilando a un paciente. El respirador continuará ventilando al paciente con el mayor nivel de soporte posible y puede volver a uno de los estados descritos. Consulte Estrategias de protección del respirador, p. 4-35.

Las pruebas de segundo plano incluyen:
• Pruebas iniciadas periódicamente realizadas a intervalos de un número específico de ciclos de la máquina. Estas pruebas comprueban los componentes del instrumento que afectan directamente a la administración respiratoria, los mecanismos de seguridad y la GUI y detectan y corregen la corrupción de datos variables de control.
• Las comprobaciones de límites se realizan en cada medición analógica. Estas comprobaciones verifican los circuitos de medición, incluidos los sensores.

El control de la ventilación es una función de la red de seguridad que se invoca si el sistema de diagnóstico de segundo plano detecta un problema con determinados componentes, como puede ser en el subsistema de mezcla de gas, en el subsistema inspiratorio o en el subsistema espiratorio. Cada subsistema cuenta con una estrategia de ventilación de reserva que permite que la ventilación continúe al evitar los componentes sospechosos y proporcionar tiempo suficiente al operador para que pueda sustituir el respirador.

La BUV combi. se invoca si la combinación medida de gases difiere considerablemente de la combinación establecida, si la presión del acumulador está fuera del intervalo o si se indica un fallo en la combinación de las PSOL o en los sensores de flujo. Durante la BUV combi., se evita el controlador normal de la mezcla y la ventilación
continúa según se ha establecido, excepto cuando la mezcla de gases se restablece a oxígeno o aire 100 %, dependiendo del lugar donde se detectó la indicación de fallo. Protege los circuitos y controla la presión del acumulador para mantenerla dentro del intervalo apropiado del módulo inspiratorio.

La BUV inspiratoria se invoca si el sistema de diagnóstico de segundo plano detecta un problema en el módulo inspiratorio (señal de PSOL y/o sensor de flujo fuera de intervalo) En la BUV inspiratoria, la ventilación continúa con los siguientes parámetros:

<table>
<thead>
<tr>
<th>Parámetro de la ventilación de reserva</th>
<th>Configuración</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBW</td>
<td>Parámetro utilizado anteriormente durante el inicio de la ventilación</td>
</tr>
<tr>
<td>Modo</td>
<td>A/C</td>
</tr>
<tr>
<td>Tipo mandatorio</td>
<td>PC</td>
</tr>
</tbody>
</table>
| f | Neonatal: 25 l/min
Pediátrico: 16 l/min
Adulto: 16 l/min |
| T_I | Neonatal: 0,3 s
Pediátrico: 0,7 s
Adulto: 1 s |
| P_i | 15 cmH$_2$O |
| O_2% | 100 % (21 % si O_2 no está disponible) |
| PEEP | 3 cmH$_2$O |
| Tipo de trigger | V_{TRIG} 2 L/min (adulto/pediátrico), 1,5 L/min |
| Flujo de gas | Controlado por presión en el acumulador de combinación |

Durante la BUV inspiratoria, la PSOL de administración está deshabilitada, pero la administración del gas se realiza mediante una válvula de solenoide de BUV inspiratoria, creándose el flujo de gas por presión en el acumulador de combinación.

La BUV de espiración se invoca si se detectan problemas en la unidad de la válvula de espiración. Se habilita un circuito análogo de reserva para controlar la válvula de espiración, aunque las funciones de control más avanzadas (control activo de la válvula de espiración) no están operativas.
Nota:
Durante la BUV de mezcla e inspiratoria, el suministro de gas a las opciones instaladas está deshabilitado.

La entrada en la BUV se registra en el registro de alarmas y en el registro de diagnósticos del sistema y la pantalla de estado muestra un indicador de que el respirador se encuentra en BUV y a qué subsistema está afectando.

Cuando está en BUV, se emite una alarma de alta prioridad y la GUI muestra un banner de alarma que indica BUV, deja en blanco los datos del paciente y muestra una forma de onda de presión.

Si el respirador no puede proporcionar un grado de monitorización fiable del soporte de ventilación y los fallos, emite una alarma y entra en el estado de emergencia de válvula de seguridad abierta (SVO). Durante el SVO, el respirador desactiva las válvulas de seguridad, espiratoria e inspiratoria, emite una alarma de alta prioridad y enciende el indicador de SVO. Durante el SVO el paciente puede inspirar espontáneamente el aire de la habitación (si es capaz) y espirar. Las válvulas de verificación del lado inspiratorio y espiratorio minimizan la posibilidad de volver a respirar el gas espirado durante el SVO. Durante el SVO el respirador:

- Muestra el tiempo transcurrido sin soporte ventilatorio.
- No muestra los datos del paciente (incluidas formas de onda).
- No detecta las condiciones de oclusión del circuito del paciente ni de desconexión.

Los indicadores visibles en la GUI del respirador y la pantalla de estado se iluminan cuando el respirador se encuentra en estado de SVO. Otras protecciones integradas en el respirador incluyen una válvula unidireccional (válvula de verificación) en el circuito neumático inspiratorio que permite al paciente inhalar a través de la válvula de seguridad (si es capaz) con una resistencia limitada. Esta comprobación también limita el flujo espirado que entra en el ramal inspiratorio para reducir la posibilidad de volver a respirar el gas CO₂ espirado.

10.17 Autotest de encendido (POST)

El autotest de encendido (POST) se realiza cada vez que se enciende o reinicia el respirador y al comienzo del autotest corto (SST) y el autotest largo (EST). El POST comprueba la integridad de los subsistemas de la GUI y de la administración respiratoria y los canales de comunicación sin intervención del operador, tardando aproximadamente 12 s en completar el proceso.
Si el POST detecta un fallo grave, personal de servicio cualificado deberá corregir el problema y realizar un EST con éxito. Consulte el Manual de mantenimiento del respirador serie 980 de Puritan Bennett™ para obtener más detalles sobre el POST.

10.18 Autotest corto (SST)

El ATC es una secuencia sencilla y corta (en torno a 5 minutos) de pruebas que verifica el funcionamiento correcto del instrumento de administración respiratoria (incluidos los sensores de presión y flujo), comprueba el circuito del paciente (incluidos los tubos, el dispositivo de humidificación y los filtros) en busca de fugas y mide la resistencia y la distensibilidad del circuito. El ATC comprueba también la resistencia del filtro espiratorio. El ATC, en modo Normal, solo se puede realizar durante el encendido, antes de iniciar la ventilación. Covidien recomienda realizar el ATC cada 15 días, al cambiar de paciente y al cambiar de circuito del paciente o de configuración del mismo (incluido el cambio de tipo de circuito, la adición o retirada de grifos de agua integrados o el uso de un tipo o estilo de circuito del paciente diferente). Consulte Para ejecutar el ATC, p. 3-46. El respirador no permite el acceso al ATC si detecta que hay un paciente conectado.

10.19 Autotest largo (EST)

El EST verifica integridad de los subsistemas del respirador con participación del operador. Para el EST se necesita un circuito de pruebas estándar y un tapón para bloquear el circuito en "Y" del paciente. Todos los recursos para la prueba, incluido el código de software para ejecutar el EST, ya existen en el respirador. Las pruebas del EST (excluidas las pruebas del equipo opcional, como el compresor y la batería de duración prolongada) tardan aproximadamente 10 minutos en completarse. Si se utiliza el compresor como la fuente aire para el EST y se prueba el equipo opcional, el EST tarda aproximadamente 15 minutos en completarse. Consulte ATG (Autotest largo), p. 3-51.

⚠️ **ADVERTENCIA:**

No entre en el modo de servicio con un paciente conectado al respirador. Se podrían causar lesiones graves.
11 Especificaciones

11.1 Descripción general

Este capítulo contiene las siguientes especificaciones para el respirador serie 980 de Puritan Bennett™:

- Físicas
- Componentes eléctricos
- Interfaz
- Ambientales
- Rendimiento (intervalos, resolución y precisiones para la configuración del respirador, la configuración de las alarmas y los datos del paciente)
- Cumplimiento normativo

ADVERTENCIA:

Debidos a las excesivas restricciones de los conjuntos de tubos flexibles de Air Liquide™, SIS, y Dräger™, se pueden conseguir niveles de rendimiento reducidos del respirador cuando se utilizan presiones de suministro de aire u oxígeno de < 345 kPa (50 psi).

11.2 Incertidumbre de la medición

Las incertidumbres de la medición y la manera en la que se aplican se enumeran en las tablas siguientes a menos que se indique de otro modo:

| Tabla 11-1. Incertidumbre del equipo de verificación del rendimiento |
|---|---|---|
| Parámetro medido | Compensación | Ganancia |
| Flujo | 0,1001 SLPM | 2,7642 % de la lectura |
| Presión | 0,121594 cmH₂O | 0,195756 % de la lectura |
| Concentración de oxígeno | 0,0168 % O₂ | 0,0973 % de la lectura |
| Temperatura | 0,886041 °C | 0,128726 % de la lectura |
| Presión atmosférica | 1,76 cmH₂O | - |
Durante la verificación del rendimiento de la administración respiratoria para mediciones basadas en el flujo y la presión, la imprecisión del equipo se resta de la especificación de aceptación del modo siguiente:

- Ganancia de aceptación neta = Ganancia de especificación del requisito - Ganancia de incertidumbre de la medición
- Compensación de aceptación neta = Compensación de especificación del requisito - Compensación de incertidumbre de la medición
- Límite de aceptación = ± [(Compensación de aceptación neta) + (Ganancia de aceptación neta) x (Configuración)]
- (Configuración - Límite de aceptación) ≤ Medición ≤ (Configuración + Límite de aceptación)

Para parámetros derivados, como volumen, compliancia, etc., las incertidumbres del sensor individual se combinan y aplican como corresponda para determinar los límites de aceptación.

11.3 Características físicas

<table>
<thead>
<tr>
<th>Tabla 11-2. Características físicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
</tr>
<tr>
<td>Respirador: 51,26 kg (113 lb) incluyendo la BDU, la GUI, la base estándar y la batería principal</td>
</tr>
<tr>
<td>Solo la BDU: 31,3 kg (69 lb)</td>
</tr>
<tr>
<td>Respirador y compresor: 71,2 kg (157 lb) incluido la GDU, la GUI, las baterías principales del respirador y el compresor, el conjunto de la base y el compresor</td>
</tr>
<tr>
<td>Compresor: 40,4 kg (89 lb) incluido el conjunto de la base</td>
</tr>
<tr>
<td>Solo la BDU: 31,3 kg (69 lb)</td>
</tr>
<tr>
<td>Dimensiones</td>
</tr>
<tr>
<td>Respirador: 32 cm anchura x 30 cm profundidad x 111 cm altura (12,5" x 11,5" x 43,5")</td>
</tr>
<tr>
<td>(sin incluir la pantalla de la GUI)</td>
</tr>
<tr>
<td>respirador: 32 cm anchura x 30 cm profundidad x 148 cm altura (12,5" x 11,5" x 58")</td>
</tr>
<tr>
<td>(incluida la pantalla de la GUI)</td>
</tr>
<tr>
<td>Base estándar: 58 cm anchura x 66 cm profundidad (22,5" x 26")</td>
</tr>
<tr>
<td>Nivel de presión acústica ponderado A, respirador (promedio)</td>
</tr>
<tr>
<td>A una distancia de un (1) metro no excede los 45 dBA por debajo de 500 mL/min</td>
</tr>
<tr>
<td>Nivel de presión acústica ponderado A, respirador y compresor</td>
</tr>
<tr>
<td>A una distancia de un (1) metro no excede los 49 dBA por debajo de 500 mL/min</td>
</tr>
<tr>
<td>Nivel de potencia acústica ponderado A, respirador</td>
</tr>
<tr>
<td>No excede 58 dBA por debajo de 500 mL/min</td>
</tr>
</tbody>
</table>
Características físicas

Nivel de potencia acústica ponderado A, respirador y compresor	No excede 63 dBA por debajo de 500 mL/min
Conectores	Los conectores del ramal inspiratorio y espiratorio tienen unas conexiones cónicas con un OD de 22 mm que cumplen la norma ISO 5356-1
Filtros inspiratorio y espiratorio	Consulte las instrucciones de uso del filtro para conocer las especificaciones completas.
Unidades de presión (elegidas por el operador)	Hectopascal (hPa) centímetros de agua (cmH₂O)
Unidades de peso mostradas	Kilogramos (kg) Libras (lb)
Unidades de longitud mostradas	Centímetros (cm) Pulgadas (pul)

Especificaciones neumáticas

Suministros de entrada de aire y oxígeno	Presión: de 241 a 600 kPa (de 35 psi a 87 psi) Flujo: máximo de 200 L/min
Vida útil del sensor de oxígeno	Hasta un año. La vida útil de funcionamiento puede variar dependiendo del uso de oxígeno y de la temperatura ambiente.
Sistema de mezcla de gases	Intervalo de flujo desde el sistema de mezcla: hasta 150 L/min para pacientes adultos. Hay disponible flujo adicional (flujo máximo 200 L/min) para compensar la compliancia. Hasta 80 L/min circuitos de tipo pediátrico. Hasta 30 L/min circuitos de tipo neonatal. Fuga de un sistema de gas a otro: cumple con la norma IEC 80601-2-12. Intervalo de presión de funcionamiento: de 241 a 600 kPa (de 35 psi a 87 psi)

Especificaciones técnicas

Presión máxima limitada ($P_{LIM\ max}$)	Un límite de presión fijado para la válvula de seguridad limita la presión del circuito a < 123 hPa (125 cmH₂O) en el circuito en “Y” del paciente.
Presión máxima de funcionamiento ($P_{W\ max}$)	$P_{W\ max}$ se garantiza mediante el límite superior de presión (T_P^{PEAK}) cuando P_I es < 100 cmH₂O (98,07 hPa)
Tiempo de respuesta frente a cambios en configuración FiO₂ de 21 % O₂ a 90 % O₂ (medido en el circuito en “Y” del paciente)	< 18 s para volúmenes > 150 mL < 19 s para volúmenes ≥ 30 mL pero ≤ 150 mL < 20 s para volúmenes ≥ 2 mL pero < 30 mL
Especificaciones

Tabla 11-4. Especificaciones técnicas (continuación)

| Dispositivos de medición y de visualización | Mediciones de presión:
| | Tipo: transductor de presión diferencial de estado sólido
| | Posición de detección: módulo inspiratorio; módulo espiratorio
| | Presión media del circuito (P_{MEAN}): de -20 cmH$_2$O (-20 hPa) a 100 cmH$_2$O (98 hPa)
| | Presión máxima del circuito (P_{PEAK}): de -20 cmH$_2$O (-20 hPa) a 130 cmH$_2$O (127 hPa)
| | Mediciones de volumen:
| | Tipo: anemómetro de revestimiento caliente
| | Posición de detección: módulo inspiratorio; módulo espiratorio
| | Medición de oxígeno:
| | Tipo: célula galvánica
| | Posición de detección: módulo inspiratorio |

| Capacidad volumen minuto (V_{ETOT}), respirador | Hasta 75 L/min |
| Capacidad volumen minuto (V_{ETOT}), compresor | BTPS hasta 40 L/min, incluida la compensación de la compliancia |

Resultados de pruebas con el respirador utilizando circuitos identificados para su uso con el sistema del respirador

| Eficacia de filtración bacteriana/viral del filtro inspiratorio interno | > 99,999 % |
| Eficacia de filtración de partículas del filtro inspiratorio interno | > 99,97 % retención de partículas de 0,3 μm nominal a un flujo de 100 L/min |
| Resistencia del filtro inspiratorio interno | 0,2 cmH$_2$O < resistencia < 2,2 cmH$_2$O a un flujo de 30 L/min
| | 0,2 cmH$_2$O < resistencia < 1,7 cmH$_2$O a un flujo de 15 L/min |
| Resistencia del filtro inspiratorio externo | 0,2 cmH$_2$O < resistencia < 2,2 cmH$_2$O a un flujo de 30 L/min
| | 0,2 cmH$_2$O < resistencia < 2,2 cmH$_2$O a un flujo de 15 L/min |
| Resistencia combinada del ramal inspiratorio | 0,2 cmH$_2$O < resistencia < 5,5 cmH$_2$O a un flujo de 30 L/min
| | 0,2 cmH$_2$O < resistencia < 1,7 cmH$_2$O a un flujo de 15 L/min |
| Resistencia del filtro inspiratorio externo | 0,2 cmH$_2$O < resistencia < 2,2 cmH$_2$O a un flujo de 30 L/min
	0,2 cmH$_2$O < resistencia < 1,7 cmH$_2$O a un flujo de 15 L/min
Eficacia de filtración bacteriana/viral del filtro inspiratorio externo, reutilizable	≥ 99,999 %
Eficacia de filtración de partículas del filtro inspiratorio externo	> 99,97 % retención de partículas de 0,3 μm nominal a un flujo de 100 L/min
Resistencia del filtro inspiratorio externo (filtro inspiratorio reutilizable)	0,2 cmH$_2$O < resistencia < 4,2 cmH$_2$O a 60 L/min
	0,2 cmH$_2$O < resistencia < 2,2 cmH$_2$O a 30 L/min
<p>| | 0,2 cmH$_2$O < resistencia < 1,7 cmH$_2$O a 15 L/min |</p>
<table>
<thead>
<tr>
<th>Características físicas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficacia de filtración bacteriana/viral del filtro inspiratorio externo, desechable</td>
<td>≥ 99,999 %</td>
</tr>
<tr>
<td>Eficacia de filtración de partículas del filtro inspiratorio externo (filtro inspiratorio desechable)</td>
<td>> 99,97 % retención de partículas de 0,3 μm nominal a un flujo de 100 L/min</td>
</tr>
<tr>
<td>Eficiencia de filtración de partículas del filtro espiratorio, reutilizable</td>
<td>Retención de partículas de 0,3 mm superior al 99,97 % nominal a un flujo de 100 L/min</td>
</tr>
<tr>
<td>Eficiencia de filtración vírica/bacteriana del filtro espiratorio reutilizable</td>
<td>> 99,999 %.</td>
</tr>
</tbody>
</table>
| **Resistencia del filtro espiratorio (adulto/pediátrico, reutilizable y desechable)** | < 2,5 cmH₂O a 100 L/min cuando es nuevo
< 1,7 cmH₂O a 15 L/min |
| **Eficiencia de filtración vírica/bacteriana del filtro espiratorio, desechable** | > 99,999 %. |
| **Eficiencia de filtración de partículas del filtro espiratorio, desechable** | Retención de partículas de 0,3 mm superior al 99,97 % nominal a un flujo de 100 L/min |
| **Resistencia del filtro espiratorio (adulto/pediátrico, desechable)** | < 2,5 cmH₂O a 100 L/min cuando es nuevo |
| **Eficiencia de filtración de partículas del filtro espiratorio** | Retención de partículas de 0,3 mm superior al 99,97 % nominal a un flujo de 100 L/min |
| **Eficiencia de filtración vírica/bacteriana del filtro espiratorio (neonatal, desechable)** | > 99,999 %. |
| **Eficiencia de filtración de partículas del filtro espiratorio (neonatal, desechable)** | Retención de partículas de 0,3 mm superior al 99,97 % nominal a un flujo de 100 L/min |
| **Resistencia del filtro espiratorio (neonatal, desechable)** | < 0,58 cmH₂O a 2,5 L/min |
| **Distensibilidad del circuito (intervalos aceptables de distensibilidad VBS para cada tipo de paciente)** | ADULTO: 1,3 mL/cmH₂O a 4,2 mL/cmH₂O
PEDIÁTRICO: 0,9 mL/cmH₂O a 3,0 mL/cmH₂O
NEONATAL: 0,4 mL/cmH₂O a 1,5 mL/cmH₂O |
| **Resistencia del circuito del ramal inspiratorio (intervalos aceptables de resistencia del circuito del ramal inspiratorio VBS para cada tipo de paciente)** | ADULTO (a 60 L/min): 1,15 cmH₂O a 11,0 cmH₂O
PEDIÁTRICO (a 30 L/min): 0,46 cmH₂O a 4,5 cmH₂O
NEONATAL (a 10 L/min): 0,37 cmH₂O a 4,5 cmH₂O (6,0 cmH₂O para Prox) |
| **Resistencia del circuito del ramal espiratorio (intervalos aceptables de resistencia del circuito del ramal espiratorio VBS para cada tipo de paciente)** | ADULTO (a 60 L/min): 1,15 cmH₂O a 11,0 cmH₂O
PEDIÁTRICO (a 30 L/min): 0,46 cmH₂O a 4,5 cmH₂O
NEONATAL (a 10 L/min): 0,37 cmH₂O a 4,5 cmH₂O (6,0 cmH₂O para Prox) |
11.4 Especificaciones eléctricas

<table>
<thead>
<tr>
<th>Tabla 11-4. Especificaciones técnicas (continuación)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen de la alarma (principal)</td>
</tr>
<tr>
<td>Incertidumbre de la medición ± 3 dBA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Volumen de la alarma (secundaria)</td>
</tr>
<tr>
<td>Incertidumbre de la medición ± 3 dBA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 11-5. Especificaciones eléctricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificaciones eléctricas, respirador</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Clasificaciones eléctricas, respirador y compresor</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sobreintensidad de la red</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Corriente de fuga a tierra</td>
</tr>
<tr>
<td>Corriente táctil</td>
</tr>
<tr>
<td>Corriente de fuga del paciente</td>
</tr>
</tbody>
</table>
11.5 **Requisitos de la interfaz**

Las clavijas de la interfaz RS-232 son:

<table>
<thead>
<tr>
<th>Clavija</th>
<th>Señal</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/C</td>
<td>Not connected (No conectado)</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
<td>Receive data (Recepción de datos)</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>Transmit data (Transmisión de datos)</td>
</tr>
<tr>
<td>4</td>
<td>N/C</td>
<td>Not connected (No conectado)</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground (Tierra)</td>
</tr>
<tr>
<td>6</td>
<td>N/C</td>
<td>Not connected (No conectado)</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Request to send (Solicitud de envío)</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Clear to send (Listo para emitir)</td>
</tr>
<tr>
<td>9</td>
<td>N/C</td>
<td>Not connected (No conectado)</td>
</tr>
</tbody>
</table>

Las clavijas de la interfaz de llamada a enfermera son:

<table>
<thead>
<tr>
<th>Clavija</th>
<th>Configuración</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normally closed (NC) (Normalmente cerrada)</td>
</tr>
<tr>
<td>2</td>
<td>Relay common (Relé común)</td>
</tr>
<tr>
<td>3</td>
<td>Normally open (NO) (Normalmente abierta)</td>
</tr>
<tr>
<td>4</td>
<td>Not connected (No conectado)</td>
</tr>
</tbody>
</table>
11.6 **Especificaciones ambientales**

La siguiente tabla facilita información sobre las condiciones ambientales adecuadas para utilizar el respirador. Utilice el respirador solo en las condiciones especificadas:

<table>
<thead>
<tr>
<th>Tabla 11-8. Especificaciones ambientales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funcionamiento</td>
</tr>
<tr>
<td>Temperatura</td>
</tr>
<tr>
<td>Presión atmosférica</td>
</tr>
<tr>
<td>Altitud</td>
</tr>
<tr>
<td>Humedad relativa</td>
</tr>
</tbody>
</table>

Nota:

Los límites que aparecen en la etiqueta del dispositivo representan las condiciones de almacenamiento fuera de la caja y son las siguientes:

- **Temperatura:** 10 °C a 40 °C (50 °F a 104 °F)
- **Presión:** de 70 kPa a 106 kPa (de 10,15 psi a 15,37 psi)
- **Humedad relativa:** de 10 % a 95 % no condensada

11.7 **Especificaciones de funcionamiento**

11.7.1 **Intervalo y resolución**

| Tabla 11-9. Intervalo y resolución de la configuración del respirador |
|------------------------|--------------------|----------------------|
| **Configuración** | **Descripción** | **Intervalo y resolución** |
| Ventilación de apnea | Un modo de ventilación de seguridad que se inicia si el paciente no recibe respiración durante un periodo de tiempo que supera el intervalo de apnea. | Consulte la configuración individual de la apnea. |
Tiempo espiratorio de apnea (TE)
Para respiraciones de apnea mandatorias del PC, el intervalo de tiempo entre el final de la inspiración y el comienzo de la siguiente inspiración.
Intervalo: de 0,20 s a 59,8 s
Resolución: 0,01 S

Relación I:E apnea
En los tipos de respiración PC, especifica la relación de tiempo inspiratorio de apnea y el tiempo espiratorio de apnea.
Intervalo: I:E ≤ 1,00:1
Resolución: 0,01 para valores > 1:10,0; 0,1 para valores ≤ 1:10 y > 1:100; 1 para valores ≤ 1:100

Patrón flujo de apnea
La forma del flujo de la respiración de apnea mandatoria basada en el volumen (VC) emitida.
Intervalo: CUADRADO, rampa descendente

Presión inspiratoria de apnea (PI)
La presión por encima de PEEP a la que el gas se envía al paciente durante las respiraciones de apnea del PC mandatorias.
Intervalo: de 5 cmH2O a 90-PEEP cmH2O
Resolución: 1 cmH2O

Tiempo espiratorio de apnea (TI)
Igual que el tiempo inspiratorio para la ventilación sin apnea.
Intervalo: de 0,20 s a 8 s
Resolución: 0,01 s en PC o VC+, 0,02 s en VC

Intervalo de apnea (TA)
El tiempo después del cual el respirador cambia a ventilación de apnea TA ≥ 60/FA
Intervalo: 10 s a 60 s o OFF en CPAP
Resolución: 1 S

Apnea O2%
Establece la concentración de oxígeno en una mezcla estándar de aire y oxígeno.
Intervalo: 21 %O2 a 100 % O2

Flujo inspiratorio máximo de apnea (VMAX)
La frecuencia máxima de emisión de volumen de corriente durante respiraciones mandatorias basadas en volumen.
Intervalo: cuando el tipo mandatorio es VC: NEONATAL: de 1 L/min a 30 L/min PEDIÁTRICO: de 3,0 L/min a 60 L/min ADULTO: de 3,0 L/min a 150 L/min
Resolución: 0,1 L/min para flujos < 20 L/min (BTPS); 1 L/min para flujos ≥ 20 L/min (BTPS)

Frecuencia respiratoria de apnea (fA)
Establece el número de respiraciones basadas en volumen o en presión por minuto para respiraciones de apnea mandatorias iniciadas por el respirador (VM).
Intervalo: de 2,0 l/min a 40 l/min
Resolución: 0,1 l/min para 2,0 a 9,9; 1 l/min para 10 l/min a 40 l/min
Tabla 11-9. Intervalo y resolución de la configuración del respirador (continuación)

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen corriente de apnea (Vt)</td>
<td>Establece el volumen de gas emitido a los pulmones del paciente durante una respiración de apnea mandatoria controlada por el volumen. El volumen corriente de apnea está compensado por la temperatura y la presión del cuerpo, saturado (BTPS) y por la compliancia del circuito del paciente.</td>
<td>Intervalo: NEONATAL: de 3 mL a 315 mL. PEDIÁTRICO/ADULTO: ≥ 25 mL a 2500 mL</td>
</tr>
<tr>
<td>Constante de apnea durante cambio de frecuencia</td>
<td>Especifica cuáles de las tres variables de tiempo de respiración configurables por el operador permanecen constantes cuando la frecuencia respiratoria se modifica durante la ventilación de apnea.</td>
<td>Intervalo: T1</td>
</tr>
<tr>
<td>Tipo mandatorio de apnea</td>
<td>El tipo de respiración mandatoria emitido durante la ventilación de apnea.</td>
<td>Intervalo: PC, VC</td>
</tr>
<tr>
<td>Tipo de circuito</td>
<td>Especifica el circuito para el que se han calculado los valores de compliancia y resistencia durante la SST.</td>
<td>Intervalo: NEONATAL, PEDIÁTRICO, ADULTO</td>
</tr>
<tr>
<td>Constante durante el cambio de frecuencia</td>
<td>Especifica cuáles de las tres variables de tiempo de respiración configurables por el operador permanecen constantes cuando se modifica la frecuencia respiratoria.</td>
<td>Intervalo: relación I:E, Tp, TE para respiraciones PC o VC+; relación Tp/Te, Tp, Te en BiLevel</td>
</tr>
<tr>
<td>Sensibilidad de desconexión (DSENS)</td>
<td>Opción Leak Sync deshabilitada: el porcentaje de volumen devuelto perdido, por encima del cual el respirador establece una alarma de desconexión del circuito cuando la opción Leak Sync no está habilitada o instalada. Opción Leak Sync habilitada: la fuga en el valor de PEEP en L/min por encima del cual el respirador declara la alarma DESCONEXION DEL CIRCUITO.</td>
<td>Intervalo (opción Leak Sync deshabilitada): del 20 % al 95 % o DESACTIVADO Intervalo (opción Leak Sync habilitada y compresor no en uso): NEONATAL: de 1 L/min a 15 L/min PEDIÁTRICO: de 1 L/min a 40 L/min ADULTO: de 1 L/min a 65 L/min Resolución (opción Leak Sync deshabilitada): 1 % Resolución (opción Leak Sync habilitada): 0,5 L/min para valores <10 L/min 1 L/min para valores ≥10 L/min</td>
</tr>
</tbody>
</table>
Especificaciones de funcionamiento

Tabla 11-9. Intervalo y resolución de la configuración del respirador (continuación)

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad espiratoria (ESENS)</td>
<td>El porcentaje de V_{MAX} que, cuando se alcanza, provoca que el respirador realice el ciclo de inspiración a exhalación durante respiraciones espontáneas basadas en la presión.</td>
<td>Intervalo: de 1 % a 80 % cuando el tipo espontáneo es PS o VS de 1 L/min a 10 L/min cuando el tipo espontáneo es PAV+. Resolución: 1 % cuando el tipo espontáneo es PS, TC o VS; 1 L/min cuando el tipo espontáneo es PAV+. NOTA: no se espera que la configuración predeterminada necesite ajustes. NOTA: no se espera que la configuración predeterminada necesite ajustes. Ajuste solo después de familiarizarse con el PAV+ y únicamente si se sospecha que el respirador no vuelve a retomar el ciclo después de que se finalice la inspiración por parte del paciente.</td>
</tr>
<tr>
<td>Tiempo espiratorio (T_2)</td>
<td>Para respiraciones PC o VC+, el intervalo de tiempo entre el final de la inspiración y el comienzo de la siguiente inspiración. El final de la fase de espiración se considera cuando la frecuencia de flujo en el circuito en "Y" del paciente permanece por debajo de 0,5 L/min por encima del flujo de base.</td>
<td>Intervalo: \geq 0,20 S Resolución: 0,01 S</td>
</tr>
<tr>
<td>Patrón de flujo</td>
<td>La forma del flujo de la respiración mandatoria administrada o de la respiración VC.</td>
<td>Intervalo: CUADRADO, rampa descendente</td>
</tr>
<tr>
<td>Sensibilidad por flujo (V_{SENS})</td>
<td>Para las respiraciones accionadas por flujo, determina el volumen del flujo (por debajo del flujo de base) exigido para iniciar una respiración iniciada por el paciente mandatoria o espontánea.</td>
<td>Intervalo: NEONATAL: de 0,1 L/min a 10 L/min PEDIÁTRICO/ADULTO: de 0,2 L/min a 20,0 L/min Resolución: 0,1 L/min</td>
</tr>
<tr>
<td>Sexo</td>
<td>El sexo del paciente</td>
<td>Intervalo: hombre o mujer</td>
</tr>
<tr>
<td>Altura</td>
<td>La altura del paciente</td>
<td>Intervalo: de 19,5 cm a 280 cm; de 7,5 pul a 110 pul Resolución: 0,5 cm para alturas < 35 cm; 1 cm para alturas < 254 cm; 2 cm para alturas ≥ 254 cm; 0,25 pulgadas para alturas < 14 pulgadas; 0,5 pulgadas para alturas < 100 pulgadas; 1 pulgadas para alturas ≥ 100 pulgadas Consulte Cálculo del peso corporal previsto (PBW), p. 4-21.</td>
</tr>
<tr>
<td>Configuración</td>
<td>Descripción</td>
<td>Intervalo y resolución</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Límite de tiempo inspiratorio espontáneo alto (TtSPONT)</td>
<td>Activo solo en NIV, permite al operador seleccionar el tiempo de inspiración espontáneo máximo.</td>
<td>Intervalo: NEONATAL: de 0,2 s a 1,7 s PEDIATRICO/ADULTO: de 0,4 s a 5 s Resolución: 0,1 s</td>
</tr>
<tr>
<td>Tipo de humidificación</td>
<td>El tipo de sistema de humidificación utilizado en el respirador.</td>
<td>Intervalo: HME, tubo espiratorio no calentado, tubo espiratorio calentado</td>
</tr>
<tr>
<td>Volumen del humidificador</td>
<td>El volumen de fluido vacío del humidificador actualmente instalado.</td>
<td>Intervalo: de 100 mL a 1000 mL Resolución: 10 mL</td>
</tr>
<tr>
<td>O₂ % elevado</td>
<td>El porcentaje de O₂ que se añade a la mezcla actual de aire/O₂ durante dos minutos.</td>
<td>Intervalo: de 1 % a 100 % Resolución: 1 % entre 1 % y 10; 5 % entre 5 % y 75 %; salta a 100 % cuando aumenta por encima del 75 %</td>
</tr>
<tr>
<td>Relación I:E</td>
<td>En los tipos de respiración PC y VC+, especifica la relación entre el tiempo inspiratorio y el tiempo espiratorio.</td>
<td>El intervalo va de 1:299 a 149:1 Resolución: 0,01 para valores > 1:10; 0,1 para valores ≤ 1:10,0 y > 1:100,0; 1 para valores ≤ 1:100 Se muestra como XX:1 cuando la relación I:E ≥ 1; se muestra como 1:XX cuando la relación I:E < 1</td>
</tr>
<tr>
<td>Presión inspiratoria (Pi)</td>
<td>La presión por encima de PEEP a la que el gas se envía al paciente durante las respiraciones PC mandatorias.</td>
<td>Intervalo: de 5 cmH₂O a 90 cmH₂O Resolución: 1 cmH₂O</td>
</tr>
<tr>
<td>Tiempo inspiratorio (Ti)</td>
<td>Tiempo durante el cual se administra una inspiración al paciente para respiraciones mandatorias de tipo PC o VC+.</td>
<td>Intervalo: de 0,2 s a 8 s para respiraciones mandatorias PC y VC+ TtPL+ 0,2 s a 8 s en VC Resolución: de 0,01 s para respiraciones PC o VC+; 0,02 s para respiraciones VC</td>
</tr>
<tr>
<td>Leak Sync (compensación de fugas)</td>
<td>Compensa las fugas producidas durante la ventilación de tipo INVASIVA o no invasiva (NIV).</td>
<td>Intervalo: habilitado o deshabilitado</td>
</tr>
<tr>
<td>Tipo mandatorio</td>
<td>El tipo de respiración mandatoria administrada en modos A/C, SPONT o SIMV. El modo SPONT permite la selección del tipo mandatorio para las respiraciones mandatorias iniciadas por el operador (IM).</td>
<td>Intervalo: PC, VC, VC+</td>
</tr>
<tr>
<td>Relación mL/kg</td>
<td>Relación volumen corriente/PBW predeterminados (solo ajustable en modo de servicio)</td>
<td>Intervalo: de 5,0 mL/kg a 10 mL/kg Resolución: 0,5 mL/kg</td>
</tr>
</tbody>
</table>
Especificaciones de funcionamiento

Modo
El modo de ventilación. El modo determina los tipos de respiración permitidos:
A/C – (asistencia/control) – un modo mandatorio que permite tipos de respiración controlados por volumen (VC), controlados por presión (PC) o VC+.
SPONT – permite al paciente iniciar la respiración. Los tipos de respiración SPONT aplicables son el de mantenimiento de la presión (PS), el de volumen de soporte (VS), el de compensación de tubo (TC) o PAV+ si la opción PAV+ está instalada.
SIMV – Ventilación mandatoria intermitente sincronizada – un modo ventilatorio combinado que ofrece respiraciones mandatorias y permite al paciente realizar respiraciones espontáneas durante el ciclo de respiración.
BiLevel – un modo ventilatorio combinado que cuenta con atributos tanto de las respiraciones mandatorias como de las espontáneas incorporando dos niveles de presión, P_H y P_L.

Intervalo: A/C, SIMV, SPONT, BiLevel (si la opción está instalada pero no está disponible cuando el tipo de ventilación es NIV); CPAP (disponible solo cuando el tipo de circuito es NEONATAL y el tipo de ventilación NIV)

O2% (administrado)
Porcentaje de oxígeno administrado en la mezcla de gas.
Intervalo: 21 % a 100 %
Resolución: 1 %

Flujo inspiratorio máximo (V_MAX)
La frecuencia máxima de emisión de volumen de corriente durante respiraciones obligatorias basadas en volumen.
Intervalo: cuando el tipo mandatorio es VC:
NEONATAL: de 1 L/min a 30 L/min
PEDIÁTRICO: de 3,0 L/min a 60 L/min
ADULTO: de 3,0 L/min a 150 L/min
Resolución: 0,1 L/min para valores < 20 L/min (BTPS); 1 L/min para valores ≥ 20 L/min (BTPS)

PEEP
Establece la presión espiratoria final positiva, definida como la presión emitida administrada en el circuito del paciente durante la espiración.
Intervalo: de 0 cmH2O a 45 cmH2O
Resolución: 0,5 cmH2O de 0,0 a 19,5 cmH2O; 1 cmH2O de 20 a 45 cmH2O

P_H
La presión positiva durante la fase de inspiración en modo de ventilación BiLevel.
Intervalo: de 5 cmH2O a 90 cmH2O
Resolución: 1 cmH2O
<table>
<thead>
<tr>
<th>Configuración</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_L</td>
<td>La presión positiva en el circuito del paciente durante la fase espiratoria para el modo de ventilación BiLevel.</td>
<td>Intervalo: de 0 cmH$_2$O a 45 cmH$_2$O Resolución: 0,5 cmH$_2$O de 0,0 a 19,5 cmH$_2$O; 1 cmH$_2$O de 20 a 45 cmH$_2$O</td>
</tr>
<tr>
<td>Tiempo de meseta (T_{PL})</td>
<td>La cantidad de tiempo que la inspiración se mantiene en los pulmones del paciente después de que cese el flujo inspiratorio para respiraciones mandatorias basadas en volumen. Parte que se tiene en cuenta de la fase inspiratoria para los cálculos de la relación I:E.</td>
<td>Intervalo: de 0 s a 2 s Resolución: 0,1 s</td>
</tr>
<tr>
<td>Peso corporal previsto (PBW)</td>
<td>Indica el peso corporal previsto aproximado tomando como referencia el sexo y la altura del paciente (o la altura de los pacientes neonatales). El PBW establece los límites predeterminados y los límites para los parámetros de administración respiratoria.</td>
<td>Intervalo: NEONATAL: 0,3 kg (0,66 lb) a 7,0 kg (15 lb) cuando está instalada la opción NeoMode 2.0 PEDIÁTRICO: de 3,5 kg (7,7 lb) a 35 kg (77 lb) ADULTO: ≥ 25 kg (55,12 lb) a 150 kg (330,69 lb) Resolución: 0,01 kg para pesos < 1 kg, 0,1 kg para pesos ≥ 1 kg y < 10 kg, 1 kg para pesos ≥ 10 kg</td>
</tr>
<tr>
<td>Sensibilidad por presión (P_SENS)</td>
<td>Para las respiraciones accionadas por presión, determina la cantidad de presión por debajo del PEEP exigida para iniciar una respiración iniciada por el paciente mandatoria o espontánea.</td>
<td>Intervalo: de 0,1 cmH$_2$O a 20,0 cmH$_2$O Resolución: 0,1 cmH$_2$O</td>
</tr>
<tr>
<td>Mantenimiento de la presión (P_SUPP) o PS</td>
<td>El respirador administra una presión positiva superior a PEEP (o P_L en BiLevel) durante una respiración espontánea.</td>
<td>Intervalo: de 0 cmH$_2$O a 70 cmH$_2$O Resolución: 1 cmH$_2$O</td>
</tr>
<tr>
<td>Frecuencia respiratoria (f)</td>
<td>Establece el número de respiraciones basadas en volumen o en presión por minuto para respiraciones mandatorias iniciadas por el respirador (VIM) en los modos A/C, SIMV, SPONT, BiLevel.</td>
<td>Intervalo: NEONATAL: de 1,0 1/min a 150 1/min PEDIÁTRICO/ADULTO: de 1,0 1/min a 100 1/min Resolución: 0,1 de 1,0 1/min a 9,9 1/min; 1 1/min de 10 1/min a 150 1/min</td>
</tr>
<tr>
<td>Configuración</td>
<td>Descripción</td>
<td>Intervalo y resolución</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>% de tiempo de rampa</td>
<td>Establece la velocidad a la que el gas inspiratorio enviado al paciente alcanza la presión meta en los modos BiLevel, PC, VC+, VS o PS. Los porcentajes más altos de tiempo rampa provocan trayectorias de presión inspiratoria con un tiempo menor para el valor meta.</td>
<td>Intervalo: 1 % a 100 % Resolución: 1 %</td>
</tr>
<tr>
<td>Tipo espontáneo</td>
<td>El tipo de respiración para respiraciones espontáneas iniciadas por el paciente en modos SIMV, SPONT y BiLevel.</td>
<td>Intervalo: PS, TC, PAV+, o VS</td>
</tr>
<tr>
<td>% Supp</td>
<td>En la función de compensación del tubo, especifica la presión positiva adicional deseada para superar la resistencia de la vía aérea artificial.</td>
<td>Intervalo: de 10 % a 100 % Resolución: 5 %</td>
</tr>
<tr>
<td>% Supp</td>
<td>En modo PAV+, especifica el porcentaje del trabajo inspiración total de la respiración (WOB) realizado por el respirador.</td>
<td>Intervalo: 5 % a 95 % Resolución: 5 %</td>
</tr>
<tr>
<td>T_H (tiempo máximo)</td>
<td>La duración de la fase de inspiración durante la ventilación del modo BiLevel.</td>
<td>Intervalo: 0,2 s a 30 s Resolución: 0,01 s</td>
</tr>
<tr>
<td>T_L (tiempo mínimo)</td>
<td>La duración de la fase de espiración durante la ventilación del modo BiLevel.</td>
<td>Intervalo: ≥ 0,20 s Resolución: 0,01 s</td>
</tr>
<tr>
<td>Relación T_H:T_L</td>
<td>En modo BiLevel, especifica la relación entre el tiempo de inspiración y el tiempo de espiración.</td>
<td>Intervalo: 1:299 a 4:1; en BiLevel T_H>T_L Resolución: 0,01 para < 10,00:1 y > 1:10,00:1 para [< 100,0:1 y ≥ 10,0:1] o [≤ 1:10,0 y > 1:100,0]; 1 para < 1:100,0 o ≥ 100:1</td>
</tr>
<tr>
<td>Volumen corriente (V_T)</td>
<td>El volumen de gas suministrado al paciente durante una respiración mandatoria basada en volumen. V_T compensa la temperatura del cuerpo y la presión, por el (BTPS) saturado y la compliancia del circuito. Aplicable para respiraciones basadas en volumen.</td>
<td>Intervalo: NEONATAL: de 2 mL a 315 mL PEDIÁTRICO: de 25 mL a 1590 mL ADULTO: de 25 mL a 2500 mL Resolución: 0,1 mL < 5 mL; 1 mL para ≥ 5 mL y < 100 mL; 5 mL para valores entre 100 mL y 395 mL; 10 mL para valores ≥ 400 mL</td>
</tr>
</tbody>
</table>
Especificaciones

<table>
<thead>
<tr>
<th>Volumen de soporte ($V_{T,SUPP}$) o VS</th>
<th>El volumen de gas suministrado al paciente durante respiraciones espontáneas apoyadas por el volumen.</th>
<th>Intervalo: NEONATAL: de 2 mL a 310 mL PEDIÁTRICO: de 25 mL a 1590 mL ADULTO: de 25 mL a 2500 mL Resolución: 0,1 mL para ≥ 5 mL; 1 mL para 5 mL a 100 mL; 5 mL para 100 mL ≥ 400 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de trigger</td>
<td>Establece si cambia el flujo (V_{TRIG}) o si cambia la presión (P_{TRIG}) de las respiraciones del paciente.</td>
<td>Intervalo: NEONATAL: V_{TRIG} PEDIÁTRICO/ADULTO: V_{TRIG} o P_{TRIG}</td>
</tr>
<tr>
<td>ID del tubo</td>
<td>El diámetro interno de la vía aérea artificial utilizada para ventilar al paciente.</td>
<td>Intervalo: de 4,5 mm a 10 mm cuando el tipo espontáneo es TC Intervalo: de 6 mm a 10 mm cuando el tipo espontáneo es PAV+ Resolución: 0,5 mm</td>
</tr>
<tr>
<td>Tipo de tubo</td>
<td>El tipo de vía aérea artificial utilizada para ventilar al paciente.</td>
<td>Intervalo: endotraqueal (ET), traqueal (Trach)</td>
</tr>
<tr>
<td>Tipo de ventilación</td>
<td>Tipo de ventilación invasiva o no invasiva (NIV) en función del tipo de interfaz de respiración utilizada. Invasiva: tubos ET o Trach. NIV: máscaras, cánulas nasales infantiles o tubos ET sin manguito.</td>
<td>Intervalo: INVASIVE, NIV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 11-9. Intervalo y resolución de la configuración del respirador (continuación)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen de alarma</td>
<td>Controla el volumen de las alarmas.</td>
<td>Intervalo: de 1 (mínimo) a 10 (máximo) Resolución: 1</td>
</tr>
<tr>
<td>Intervalo de apnea (T_{Apnea})</td>
<td>La alarma de Apnea indica que ni el respirador ni el paciente han activado una respiración durante el intervalo de apnea seleccionado por el operador (T_{Apnea}). Cuando la situación de alarma de apnea es real, el respirador recurre a la ventilación mandatoria especificada por el operador.</td>
<td>Intervalo: de 10 s a 60 s u OFF en CPAP Resolución: 1</td>
</tr>
</tbody>
</table>
Tabla 11-10. Intervalo y resolución de la configuración de las alarmas (continuación)

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
</table>
| Límite de presión máxima del circuito (P_{PEAK}) | La alarma P_{PEAK} indica que la presión de la vía aérea del paciente es \geq al nivel de la alarma establecida. | Intervalo: de 7 cmH$_2$O a 100 cmH$_2$O
Resolución: 1 cmH$_2$O |
| Configuración de presión mínima del circuito (ΔP_{PEAK}) | La alarma ΔP_{PEAK} indica que la presión medida de la vía aérea es \leq al límite de la alarma establecido durante una inspiración de tipo NIV o VC+. | Intervalo: NIV: OFF o \geq 0,5 cmH$_2$O a < 100 cmH$_2$O
Resolución: 0,5 cmH$_2$O para valores $< 20,0$ cmH$_2$O; 1 cmH$_2$O para valores ≥ 20 cmH$_2$O |
| Configuración de alarma para el volumen espirado máximo por minuto (V_{ETOT}) | La alarma V_{ETOT} indica que el volumen total medido por minuto es \geq al límite de la alarma establecido. | Intervalo: OFF y NEONATAL: de 0,1 L/min a 10 L/min
PEDIÁTRICO: de 0,1 L/min a 30 L/min
ADULTO: de 0,1 L/min a 100 L/min
Resolución: 0,005 L/min para valores $< 0,50$ L/min; 0,05 L/min para valores $\geq 0,5$ L/min a $< 5,0$ L/min; 0,5 L/min para valores $\geq 5,0$ L/min |
| Configuración de la alarma para el volumen corriente espirado máximo (V_{TE}) | La alarma V_{TE} indica que el volumen corriente espirado medido es \geq al límite establecido de la alarma para respiraciones espontáneas y mandatorias. | Intervalo: OFF y NEONATAL: de 5 mL a 500 mL
PEDIÁTRICO: de 25 mL a 1.500 mL
ADULTO: de 25 mL a 3.000 mL
Resolución: 1 mL para valores < 100 mL; 5 mL para valores ≥ 100 mL y < 400 mL; 10 mL para valores ≥ 400 |
| Límite de la alarma para el volumen corriente espirado máximo (V_{TI}) | La alarma V_{TI} indica que el volumen suministrado para cualquier respiración es \geq al límite establecido de la alarma. | Intervalo: de 6 mL a 6.000 mL
Resolución: 1 mL para valores < 100 mL; 5 mL para valores ≥ 100 mL y < 400 mL; 10 mL para valores ≥ 400 |
| Parámetro de la alarma para la frecuencia respiratoria máxima (f_{TOT}) | La alarma f_{TOT} indica que la frecuencia respiratoria medida es \geq al límite establecido para la alarma. | Intervalo: APAGADO o NEONATAL: de 10 l/min a 170 l/min
PEDIÁTRICO/ADULTO: de 10 l/min a 110 l/min
Resolución: 1 l/min |
Tabla 11-10. Intervalo y resolución de la configuración de las alarmas (continuación)

<table>
<thead>
<tr>
<th>Configuración</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro de límite de tiempo inspiratorio espontáneo máximo ((T_{I SPONT}))</td>
<td>El indicador (T_{I SPONT}) permite al operador seleccionar el tiempo de inspiración espontáneo máximo de una respiración NIV. No se emite ninguna alarma, solo el símbolo (T_{I SPONT}) aparece en la pantalla cerca del indicador NIV cuando el tiempo de inspiración supera el establecido. Si se excede (T_{I SPONT}), el respirador pasa de inspiración a espiración.</td>
<td>Intervalo: NEONATAL: 0,2 a ≤ el valor del trigger de límite de tiempo inspiratorio en modo NIV para el PBW y el tipo de circuito del paciente; PEDIÁTRICO/ADULTO: 0,4 ≤ el valor del trigger de límite de tiempo inspiratorio en modo NIV para el PBW y el de circuito del paciente; Resolución: 0,1 S</td>
</tr>
<tr>
<td>Configuración de la alarma para el volumen corriente espirado mínimo ((V_{TE MAND}))</td>
<td>La alarma (V_{TE MAND}) indica que el volumen corriente mandatorio medido es ≤ al límite establecido para la alarma.</td>
<td>Intervalo: OFF y NEONATAL: de 1 mL a 300 mL; PEDIÁTRICO: de 1 mL a 1.000 mL; ADULTO: de 1 mL a 2.500 mL; Resolución: 1,0 mL para valores < 100 mL; 5 mL para valores ≥ 100 mL y < 400 mL; 10 mL para valores ≥ 400 mL</td>
</tr>
<tr>
<td>Configuración de alarma para el volumen espirado mínimo por minuto ((V_{ETOT}))</td>
<td>La alarma (V_{ETOT}) indica que el volumen total medido por minuto es ≤ al límite establecido para la alarma para respiraciones mandatorias y espontáneas.</td>
<td>Intervalo: APAGADO cuando tipo vent = NIV y NEONATAL: APAGADO, 0,01 L/min a 10 L/min; PEDIÁTRICO: de 0,05 L/min a 30 L/min; ADULTO: de 0,05 L/min a 60 L/min; Resolución: 0,005 L/min para valores < 0,50 L/min; 0,05 L/min para valores ≥ 0,50 L/min y < 5,0 L/min; 0,5 L/min para valores ≥ 5,0 L/min</td>
</tr>
<tr>
<td>Configuración de la alarma para el volumen corriente espirado mínimo espontáneo ((V_{TE SPONT}))</td>
<td>La alarma (V_{TE SPONT}) indica que el volumen corriente espontáneo medido es ≤ al límite establecido para la alarma.</td>
<td>Intervalo: OFF y NEONATAL: de 1 mL a 300 mL; PEDIÁTRICO: de 1 a 1.000 mL; ADULTO: de 1 a 2.500 mL; Resolución: 1 mL para valores < 100 mL; 5 mL para valores entre 100 mL y < 400 mL; 10 mL para valores ≥ 400 mL</td>
</tr>
</tbody>
</table>
Tabla 11-11. Intervalo, resolución y precisión de los datos del paciente

<table>
<thead>
<tr>
<th>Valor de los datos</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase de respiración</td>
<td>El indicador de fase de respiración muestra la fase de administración de respiración (inspiración o espiración) que se le está suministrando al paciente actualmente.</td>
<td>Intervalo: Control (C), Asistencia (A), Espontáneo (S)</td>
</tr>
<tr>
<td>Volumen corriente inspirado (V_{TI})</td>
<td>El volumen inspirado para una respiración basada en la presión.</td>
<td>Intervalo: de 0 mL a 6.000 mL. Resolución: 0,1 mL para valores entre 0 mL y 9,9 mL; 1 mL para valores entre 10 mL y 6.000 mL.</td>
</tr>
<tr>
<td>Volumen corriente inspirado (V_{TL}) durante Leak Sync</td>
<td>El volumen inspirado para cada respiración cuando está habilitado Leak Sync.</td>
<td>Intervalo: de 0 mL a 6.000 mL. Resolución: 1 mL para valores < 10 mL; 1 mL para valores entre 10 mL y 6.000 mL.</td>
</tr>
<tr>
<td>Compliancia dinámica (C_{DYN})</td>
<td>El resultado de dividir el volumen corriente administrado entre la presión máxima de la vía aérea.</td>
<td>Intervalo: de 0 mL/cmH$_2$O a 200 mL/cmH$_2$O. Resolución: 0,1 mL/cmH$_2$O para valores < 10 mL/cmH$_2$O; 1 mL/cmH$_2$O para valores ≥ 10 mL/cmH$_2$O.</td>
</tr>
<tr>
<td>Resistencia dinámica (R_{DYN})</td>
<td>El cambio en la presión por el cambio en el flujo de la unidad.</td>
<td>Intervalo: de 0,0 cmH$_2$O/L/s a 100 cmH$_2$O/L/s. Resolución: 0,1 cmH$_2$O/L/s para valores < 10 cmH$_2$O/L/s; 1 cmH$_2$O/L/s para valores ≥ 10 cmH$_2$O/L/s.</td>
</tr>
<tr>
<td>Flujo espiratorio final (EEF)</td>
<td>El índice de flujo espiratorio que tiene lugar al final de la espiración.</td>
<td>Intervalo: de 0 a 150 L/min. Resolución: 0,1 L/min para valores < 20 L/min; 1 L/min para valores ≥ 20 L/min.</td>
</tr>
<tr>
<td>Presión espiratoria final (PEEP)</td>
<td>La presión al final de la fase espiratoria de la respiración anterior (también se aplica al modo BiLevel).</td>
<td>Intervalo: de -20,0 cmH$_2$O a 130 cmH$_2$O. Resolución: 0,5 cmH$_2$O entre -10,0 y +10,0 cmH$_2$O; 1 cmH$_2$O para valores ≤ -10 cmH$_2$O y ≥ 10 cmH$_2$O.</td>
</tr>
<tr>
<td>Presión inspiratoria final (P_{I-END})</td>
<td>La presión al final de la fase inspiratoria de la respiración actual (también se aplica al modo BiLevel).</td>
<td>Intervalo: de -20,0 cmH$_2$O a 130 cmH$_2$O. Resolución: 0,1 cmH$_2$O para -20,0 cmH$_2$O a 9,9 cmH$_2$O; 1,0 cmH$_2$O para valores 10 cmH$_2$O a 130 cmH$_2$O.</td>
</tr>
</tbody>
</table>
La tabla 11-11 muestra los intervalos, resoluciones y precisión de los datos del paciente (continuación).

<table>
<thead>
<tr>
<th>Valor de los datos</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
</table>
| Volumen corriente espirado mandatorio \(V_{E\text{MAND}}\) | El volumen espirado de la última respiración mandatoria. Cuando está en modo SPONT, y no han tenido lugar respiraciones mandatorias durante un periodo \(\geq 2\) minutos, el indicador \(V_{E\text{MAND}}\) se oculta. Las respiraciones mandatorias pueden tener lugar durante el modo SPONT a través de la inspiración manual. | Intervalo: de 0 mL a 6.000 mL
Resolución: 0,1 mL para valores entre 0 mL y 9,9 mL; 1 mL para valores entre 10 mL y 6.000 mL |
| Volumen espirado por minuto \(V_{E\text{TOT}}\) | Una suma calculada de los volúmenes espirados por el paciente en respiraciones mandatorias y espontáneas para el intervalo de un minuto anterior (también se aplica en modo BiLevel). | Intervalo: de 0,00 L/min a 99,9 L/min
Resolución: 0,01 L/min para valores entre 0,00 y 9,99 L/min; 0,1 L/min para valores entre 10,0 y 99,9 L/min |
| Volumen espirado espontáneo por minuto \(V_{E\text{SPONT}}\) | La suma de los volúmenes espontáneos espirados por minuto (también se aplica para el modo BiLevel). | Intervalo: de 0 L/min a 99,9 L/min
Resolución: 0,01 L/min para valores entre 0,00 y 9,99 L/min; 0,1 L/min para valores entre 10,0 y 99,9 L/min |
| Volumen corriente espirado espontáneo \(V_{E\text{SPONT}}\) | El volumen espirado de la última respiración espontánea. | Intervalo: de 0 mL a 6.000 mL
Resolución: 0,1 mL para 0 mL a 9,9 mL; 1 mL para 10 mL a 6.000 mL |
| Volumen corriente espirado \(V_{E}\) | El volumen espirado por el paciente en la última respiración mandatoria o espontánea (también se aplica en modo BiLevel). | Intervalo: de 0 mL a 6.000 mL
Resolución: 0,1 mL para 0 mL a 9,9 mL; 1 mL para 10 mL a 6.000 mL |
| Volumen corriente espirado durante Leak Sync \(V_{E}\) | El volumen espirado por el paciente en la última respiración mandatoria o espontánea durante Leak Sync (también se aplica en modo BiLevel). | Intervalo: de 0 mL a 6.000 mL
Resolución: 0,1 mL para 0 mL a 9,9 mL; 1 mL para 10 mL a 6.000 mL |
| Relación I:E | La relación entre el tiempo de inspiración y el tiempo de espiración de la respiración anterior. | Intervalo: entre 1:599 y 149:1
Resolución: 0,1 para valores entre 9,9:1 y 19,9:1; 1 para valores entre 149:1 y 10:1 y entre 1:10 y 1:599 |
| Compliancia inspiratoria \(C_{20}/C\) | La relación de compliancia del último 20% de inspiración respecto a la compliancia de toda la inspiración. | Intervalo: de 0 a 1,00
Resolución: 0,01 |
Tabla 11-11. Intervalo, resolución y precisión de los datos del paciente (continuación)

<table>
<thead>
<tr>
<th>Valor de los datos</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP intrínseca (PEEP)</td>
<td>Una estimación calculada de la presión por encima de la PEEP al final de la espiración.</td>
<td>Intervalo: de -20,0 cmH2O a +130 cmH2O
Resolución: 0,1 cmH2O entre -9,9 y +9,9 cmH2O; 1 cmH2O ≤ -10 cmH2O y ≥ 10 cmH2O</td>
</tr>
<tr>
<td>Presión media del circuito (PMEAN)</td>
<td>La presión media calculada del circuito para un ciclo de respiración completo incluyendo las fases inspiratoria y espiratoria (tanto si la respiración es mandatoria como espontánea).</td>
<td>Intervalo: de -20,0 cmH2O a 100 cmH2O
Resolución: 0,1 cmH2O para valores entre -20,0 y 9,9 cmH2O; 1 cmH2O para valores entre 10 y 100 cmH2O</td>
</tr>
<tr>
<td>Fuerza inspiratoria negativa (NIF)</td>
<td>La presión negativa generada durante un esfuerzo inspiratorio forzado al máximo frente a una obstrucción del flujo.</td>
<td>Intervalo: ≤ 0 cmH2O < -50 cmH2O
Resolución: 1 cmH2O para valores ≤ -10 cmH2O; 0,1 cmH2O para valores > -10 cmH2O</td>
</tr>
<tr>
<td>O2% (monitorizado)</td>
<td>El porcentaje supervisado de oxígeno es el porcentaje de oxígeno en el gas administrado al paciente, según lo analizado en el flujo de salida del respirador en el filtro inspiratorio.</td>
<td>Intervalo: 0 % a 103 %
Resolución: 1 %</td>
</tr>
<tr>
<td>P0,1</td>
<td>La depresión inspiratoria de la presión de la vía aérea después de 100 ms de oclusión. P0,1 mide la fuerza respiratoria.</td>
<td>Intervalo: ≥ -20 cmH2O a 0 cmH2O
Resolución: de 1 cmH2O cuando < -10 cmH2O; 0,1 cmH2O cuando ≥ -10 cmH2O</td>
</tr>
<tr>
<td>PEEP intrínseca basada en PAV (PEEP\textsubscript{PAV})</td>
<td>La PEEP intrínseca estimada durante una respiración PAV+.
La PEEP intrínseca es una estimación de la presión por encima de la PEEP al final de cada pausa de espiración.</td>
<td>Intervalo: de 0 a 130 cmH2O
Resolución: 0,1 cmH2O para valores < 10 cmH2O; 1 cmH2O para valores ≥ 10 cmH2O</td>
</tr>
</tbody>
</table>
Tabla 11-11. Intervalo, resolución y precisión de los datos del paciente (continuación)

<table>
<thead>
<tr>
<th>Valor de los datos</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
</table>
| Compliancia pulmonar basada en PAV (\(C_{PAV}\))\(^1\) | El cambio calculado en el volumen pulmonar para un cambio aplicado en la presión de la vía aérea del paciente cuando se mide en condiciones de flujo cero durante una maniobra de la meseta PAV+. Cuando se selecciona el modo PAV+, el respirador muestra el valor filtrado actual para la compliancia del paciente, y actualiza la pantalla tras finalizar con éxito cada una de las estimaciones. Se puede mostrar la \(C_{PAV}\) en el banner de los datos vitales del paciente. Consulte [Datos vitales del paciente](#), p. 3-40. | Intervalo: de 2,5 mL/cmH\(_2\)O a 200 mL/cmH\(_2\)O
Resolución: 0,1 mL/cmH\(_2\)O para valores < 10 mL/cmH\(_2\)O; 1 cmH\(_2\)O para valores ≥ 10 mL/cmH\(_2\)O |
| Elastancia pulmonar basada en PAV (\(E_{PAV}\))\(^1\) | Para una respiración de tipo PAV+, la \(E_{PAV}\) se calcula como el valor inverso del \(C_{PAV}\) (consultar la información anterior). Se puede mostrar la \(E_{PAV}\) en el banner de los datos vitales del paciente. Consulte [Datos vitales del paciente](#), p. 3-40. | Intervalo: de 5,0 cmH\(_2\)O/L a 400 cmH\(_2\)O/L
Resolución: 0,1 cmH\(_2\)O/L para valores < 10 cmH\(_2\)O/L; 1 cmH\(_2\)O/L ≥ 10 cmH\(_2\)O/L |
| Resistencia del paciente basada en PAV (\(R_{PAV}\))\(^1\) | La diferencia entre la resistencia total estimada \(R_{TOT}\) y la resistencia estimada simultáneamente de la vía aérea artificial. Cuando se selecciona el modo PAV+, el respirador muestra el valor filtrado actual para la resistencia del paciente, y actualiza la pantalla tras finalizar con éxito cada una de las estimaciones. Se puede mostrar la \(R_{PAV}\) en el banner de los datos vitales del paciente. Consulte [Datos vitales del paciente](#), p. 3-40. | Intervalo: 0,0 cmH\(_2\)O/L/s a 60 cmH\(_2\)O/L/s
Resolución: 0,1 cmH\(_2\)O/L/s para valores < 10 cmH\(_2\)O/L/s; 1 cmH\(_2\)O/L/s ≥ 10 cmH\(_2\)O/L/s |
Tabla 11-1. Intervalo, resolución y precisión de los datos del paciente (continuación)

<table>
<thead>
<tr>
<th>Valor de los datos</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Resistencia total de las vías aéreas basada en PAV (R\textsubscript{TOT})**¹</td>
<td>R_{TOT} es el valor estimado recogido justo cuando el flujo espiratorio máximo ha tenido lugar y es igual a la pérdida de presión a través del paciente y el sistema respiratorio (paciente + tubo ET + ramal espiratorio del VBS). Esta pérdida de presión se divide entre el flujo espiratorio estimado en el mismo momento, obteniendo la estimación para R_{TOT}. La operación completa viene regida y supervisada por un algoritmo del software. Cuando se selecciona el modo PAV+, el respirador muestra el valor filtrado actual para la resistencia total, y actualiza la pantalla tras finalizar con éxito cada uno de los cálculos. Se puede mostrar la R_{TOT} en el banner de los datos vitales del paciente. Consulte Datos vitales del paciente, p. 3-40.</td>
<td>Intervalo: 1,0 cmH\textsubscript{2}O/L/s a 80 cmH\textsubscript{2}O/L/s
Resolución: 0,1 cmH\textsubscript{2}O/L/s para valores < 10 cmH\textsubscript{2}O/L/s; 1 cmH\textsubscript{2}O/L/s para valores \geq 10 cmH\textsubscript{2}O/L/s</td>
</tr>
<tr>
<td>Tarea de respiración basada en PAV (WOB\textsubscript{TOT})</td>
<td>Es esfuerzo estimado que se necesita para la inspiración del paciente, incluyendo tanto el paciente como el respirador.</td>
<td>Intervalo: 1,0 J/L a 10,0 J/L
Resolución: 0,1 J/L</td>
</tr>
<tr>
<td>Flujo espiratorio máximo (PEF)</td>
<td>La velocidad máxima de espiración.</td>
<td>Intervalo: de 0 a 150 L/min
Resolución: 0,1 L/min para PEF < 20 L/min; 1 L/min para PEF ≥ 20 L/min</td>
</tr>
<tr>
<td>Presión máxima del circuito (P\textsubscript{PEAK})</td>
<td>La presión máxima durante la respiración anterior, relativa al circuito en “Y” del paciente, incluyendo las fases inspiratoria y espiratoria.</td>
<td>Intervalo: de -20,0 cmH\textsubscript{2}O a 130 cmH\textsubscript{2}O
Resolución: 0,1 cmH\textsubscript{2}O para valores entre -20,0 y 9,9 cmH\textsubscript{2}O; 1,0 cmH\textsubscript{2}O para valores entre 10 cmH\textsubscript{2}O y 130 cmH\textsubscript{2}O</td>
</tr>
<tr>
<td>Flujo espontáneo máximo (PSF)</td>
<td>La frecuencia de flujo máxima tomada durante una inspiración espontánea.</td>
<td>Intervalo: de 0 a 200 L/min
Resolución: 0,1 L/min para valores < 20 L/min; 1 L/min para valores ≥ 20 L/min</td>
</tr>
<tr>
<td>Valor de los datos</td>
<td>Descripción</td>
<td>Intervalo y resolución</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Presión de meseta (P_{PL})</td>
<td>La presión medida durante una maniobra de pausa inspiratoria.</td>
<td>Intervalo: de -20,0 cmH2O a 130 cmH2O. Resolución: 0,1 cmH2O para valores entre -20,0 y 9,9 cmH2O; 1,0 cmH2O para valores ≥ 10 cmH2O.</td>
</tr>
<tr>
<td>Volumen corriente espirado proximal (V_{TEY})</td>
<td>Para pacientes neonatales, el volumen espirado de la respiración anterior medido por el sensor de flujo proximal (si está instalado).</td>
<td>Intervalo: de 0 mL a 500 mL. Resolución: 0,1 mL para valores de 0 mL a 9,9 mL; 1 mL para valores de 10 mL a 500 mL.</td>
</tr>
<tr>
<td>Volumen proximal espirado por minuto total (V_{ETOTY})</td>
<td>Para pacientes neonatales, el volumen espirado por minuto medido por el sensor de flujo proximal.</td>
<td>Intervalo: de 0,00 a 100,0 L/min. Resolución: 0,1 L/min para valores entre 0,00 y 9,99 L/min; 1 L/min para valores entre 10,0 y 99,9 L/min.</td>
</tr>
<tr>
<td>Volumen corriente inspirado proximal (V_{TIY})</td>
<td>Para pacientes neonatales, el volumen espirado de la respiración anterior medido por el sensor de flujo proximal (si está instalado).</td>
<td>Intervalo: de 0 mL a 500 mL. Resolución: 1 mL.</td>
</tr>
<tr>
<td>Tiempo inspiratorio espontáneo (T_{ISPON})</td>
<td>La duración de la fase inspiratoria de una respiración espontánea.</td>
<td>Intervalo: 0 s a 10 s. Resolución: 0,01 s.</td>
</tr>
<tr>
<td>Relación de tiempo inspiratorio espontáneo (T_{I}/T_{TOT})</td>
<td>La fracción del tiempo de respiración espontánea total utilizada para la inspiración.</td>
<td>Intervalo: de 0 a 1. Resolución: 0,01.</td>
</tr>
<tr>
<td>Índice de taquipnea espontánea (f/V_{T})</td>
<td>Un valor calculado utilizando el volumen de corriente espontáneo espirado. Los valores elevados indican que el paciente está respirando rápidamente pero con respiración/volumen bajo. Los valores bajos indican justo lo contrario.</td>
<td>Intervalo: de 0,1 1/min-L a 600 1/min-L. Resolución: 0,1 1/min-L para valores < 10 1/min-L; 1 1/min-L para valores ≥ 10 1/min-L.</td>
</tr>
<tr>
<td>Compliancia estática (C_{STA})</td>
<td>Una estimación de la compliancia o elasticidad estática de los pulmones-tórax del paciente.</td>
<td>Intervalo: de 0 mL/cmH2O a 500 mL/cmH2O. Resolución: 0,1 mL/cmH2O para valores < 10 mL/cmH2O; 1 mL/cmH2O para valores ≥ 10 mL/cmH2O.</td>
</tr>
<tr>
<td>Resistencia (R_{STA})</td>
<td>Una estimación de la restricción de los pulmones del paciente y la vía aérea artificial.</td>
<td>Intervalo: 0 cmH2O/L/s a 500 cmH2O/L/s. Resolución: 0,1 cmH2O/L/s para valores < 10 cmH2O/L/s, 1 cmH2O/L/s para valores ≥ 10 cmH2O/L/s.</td>
</tr>
</tbody>
</table>
Especificaciones de funcionamiento

Tabla 11-11. Intervalo, resolución y precisión de los datos del paciente (continuación)

<table>
<thead>
<tr>
<th>Valor de los datos</th>
<th>Descripción</th>
<th>Intervalo y resolución</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP total (PEEPTOT)</td>
<td>La presión estimada en el circuito en “Y” durante una maniobra de pausa espiratoria.</td>
<td>Intervalo: de -20,0 cmH2O a +130 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 cmH2O para valores ≤ -10 cmH2O y ≥ 10 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervalo: de -10 a 130 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 cmH2O para valores ≤ -10 cmH2O y ≥ 10 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervalo: de -10 a 130 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 cmH2O para valores ≤ -10 cmH2O y ≥ 10 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervalo: de -10 a 130 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 cmH2O para valores ≤ -10 cmH2O y ≥ 10 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervalo: de -10 a 130 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 cmH2O para valores ≤ -10 cmH2O y ≥ 10 cmH2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervalo: de -10 a 130 cmH2O</td>
</tr>
<tr>
<td>Frecuencia respiratoria total (fTOT)</td>
<td>El número de respiraciones/min mandatorias o espontáneas suministradas al paciente.</td>
<td>Intervalo: de 1 a 200 1/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 1/min para valores ≤ 10 1/min y 200 1/min</td>
</tr>
<tr>
<td>Capacidad vital (VC)</td>
<td>La cantidad máxima de aire que puede ser espirada tras una inspiración máxima.</td>
<td>Intervalo: de 0 mL a 6.000 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 mL para valores ≤ 10 mL y 200 mL</td>
</tr>
<tr>
<td>VLEAK</td>
<td>Volumen de fuga inspiratoria. El volumen total suministrado durante la inspiración para compensar la fuga.</td>
<td>Intervalo: de 0 a 9.000 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 1 mL</td>
</tr>
<tr>
<td>%LEAK</td>
<td>Porcentaje de fuga. El porcentaje del volumen total suministrado durante la inspiración atribuido a la fuga calculado como (volumen de la fuga durante la inspiración / volumen inspiratorio suministrado total) x 100.</td>
<td>Intervalo: de 0 a 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 1 %</td>
</tr>
<tr>
<td>LEAK</td>
<td>Fuga de espiración. La tasa de fuga durante la espiración en PEEP.</td>
<td>Intervalo: de 0 a 200 L/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 L/min</td>
</tr>
<tr>
<td>LEAKV</td>
<td>Fuga de espiración en PEEP durante Leak Sync medida por el sensor del flujo proximal.</td>
<td>Intervalo: de 0 a 200 L/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolución: 0,1 L/min</td>
</tr>
</tbody>
</table>

1. Si el valor estimado de C, EPAV, RPAV o RTOT viola los límites (basados en PBW) esperados, los paréntesis alrededor del valor indican que el valor es cuestionable. Si el valor estimado supera el límite absoluto, el valor límite parpadea entre paréntesis.

Tabla 11-12. Precisión de la administración

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Precisión</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión inspiratoria (P)</td>
<td>± (3,0+2,5 % del parámetro) cmH2O</td>
<td>5 cmH2O a 90 cmH2O</td>
</tr>
<tr>
<td>Presión espiratoria final (PEEP)</td>
<td>± (2,0+4 % del parámetro) cmH2O</td>
<td>0 cmH2O a 45 cmH2O</td>
</tr>
<tr>
<td>Mantenimiento de la presión (PSUPP)</td>
<td>± (3,0+2,5 % del parámetro) cmH2O</td>
<td>0 cmH2O a 70 cmH2O</td>
</tr>
</tbody>
</table>
Especificaciones

Tabla 11-12. Precisión de la administración (continuación)

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Precisión</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen corriente (V_T)</td>
<td>Para parámetros de tipo de circuito adulto y pediátrico:</td>
<td>Para parámetros de tipo de circuito adulto y pediátrico:</td>
</tr>
<tr>
<td></td>
<td>Para $T_I < 600$ ms: $\pm (10 + 10%$ del parámetro $\times 600$ ms/T_I ms) mL</td>
<td>25 mL a 2500 mL</td>
</tr>
<tr>
<td></td>
<td>$T_I \geq 600$ ms $\pm (10 + 10%$ del parámetro) mL</td>
<td>Para parámetros de tipo de circuito neonatal:</td>
</tr>
<tr>
<td></td>
<td>Para parámetros de tipo de circuito neonatal:</td>
<td>Para parámetros de tipo de circuito neonatal:</td>
</tr>
<tr>
<td></td>
<td>Para el parámetro de 2 mL (solo VC+): $\pm (1 + 10%$ del parámetro) mL</td>
<td>2 mL a 310 mL</td>
</tr>
<tr>
<td></td>
<td>Para el parámetro de 3 mL a 4 mL: $\pm (2 + 10%$ del parámetro) mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(el volumen administrado será ≥ 1 mL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Para el parámetro de 5 mL a 20 mL: $\pm (3 + 15%$ del parámetro) mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Para el parámetro de ≥ 20 mL: $\pm (4 + 10%$ del parámetro) mL</td>
<td></td>
</tr>
<tr>
<td>$O_2%$ (administrado)</td>
<td>$\pm 3%$</td>
<td>21 % a 100 %</td>
</tr>
<tr>
<td>PH</td>
<td>$\pm (2,0 + 4%$ de la lectura) cmH$_2$O</td>
<td>5 cmH$_2$O a 90 cmH$_2$O</td>
</tr>
<tr>
<td>PL</td>
<td>$\pm (2,0 + 4%$ de la lectura) cmH$_2$O</td>
<td>0 cmH$_2$O a 45 cmH$_2$O</td>
</tr>
<tr>
<td>Frecuencia respiratoria (f)</td>
<td>$\pm 0,8$ 1/min</td>
<td>1 1/min, a 150 1/min.</td>
</tr>
</tbody>
</table>

Tabla 11-13. Precisión de supervisión (datos del paciente)

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Precisión</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión máxima del circuito (P_{PEAK})</td>
<td>$\pm (2 + 4%$ de la lectura) cmH$_2$O</td>
<td>5 cmH$_2$O a 90 cmH$_2$O</td>
</tr>
<tr>
<td>Presión media del circuito (P_{MEAN})</td>
<td>$\pm (2 + 4%$ de la lectura) cmH$_2$O</td>
<td>3 cmH$_2$O a 70 cmH$_2$O</td>
</tr>
<tr>
<td>Presión espiratoria final (PEEP)</td>
<td>$\pm (2 + 4%$ de la lectura) cmH$_2$O</td>
<td>0 cmH$_2$O a 45 cmH$_2$O</td>
</tr>
<tr>
<td>Presión inspiratoria final (P_{I-END})</td>
<td>$\pm (2 + 4%$ de la lectura) cmH$_2$O</td>
<td>5 cmH$_2$O a 90 cmH$_2$O</td>
</tr>
<tr>
<td>Volumen corriente inspirado (V_{TI})</td>
<td>$(4$ mL $+ 15%$ del valor real) mL</td>
<td>2 mL a 2500 mL</td>
</tr>
<tr>
<td>Volumen corriente espirado (V_{TE})</td>
<td>$(4$ mL $+ 10%$ del valor real) mL</td>
<td>2 mL a 2500 mL</td>
</tr>
</tbody>
</table>
Tabla 11-13. Precisión de supervisión (datos del paciente) (continuación)

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Precisión</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen corriente inspirado durante Leak Sync</td>
<td>Para parámetros de tipo de circuito adulto y pediátrico:</td>
<td>Para parámetros de tipo de circuito adulto y pediátrico:</td>
</tr>
<tr>
<td></td>
<td>Para T₁ ≤ 600 ms: ± (10 + 20 % x 600 ms/T₁ ms de la lectura) mL</td>
<td>25 mL a 2500 mL</td>
</tr>
<tr>
<td></td>
<td>Para T₁ > 600 ms: ± (10 + 20 % de la lectura) mL</td>
<td>Para parámetros de tipo de circuito neonatal:</td>
</tr>
<tr>
<td></td>
<td>Para parámetros de tipo de circuito neonatal: ± (10 + 20 % de la lectura) mL</td>
<td>2 mL a 310 mL</td>
</tr>
<tr>
<td></td>
<td>Para lecturas < 100 mL, la precisión será aplicable cuando el porcentaje de volumen de la fuga inspiratoria sea inferior al 80 %</td>
<td></td>
</tr>
<tr>
<td>Precisión del volumen corriente espirado (VT₁) durante Leak Sync</td>
<td>Para parámetros de tipo de circuito adulto y pediátrico:</td>
<td>Para parámetros de tipo de circuito adulto y pediátrico:</td>
</tr>
<tr>
<td></td>
<td>Para Tₑ ≤ 600 ms: ± (10 + 20 % x 600 ms/Tₑ ms de la lectura) mL</td>
<td>25 mL a 2500 mL</td>
</tr>
<tr>
<td></td>
<td>Para Tₑ > 600 ms: ± (10 + 20 % de la lectura) mL</td>
<td>Para parámetros de tipo de circuito neonatal:</td>
</tr>
<tr>
<td></td>
<td>Para parámetros de tipo de circuito neonatal: ± (10+20 % de la lectura) mL</td>
<td>2 mL a 310 mL</td>
</tr>
<tr>
<td></td>
<td>Para lecturas < 100 mL, la precisión será aplicable cuando el porcentaje de volumen de la fuga inspiratoria sea inferior al 80 %</td>
<td></td>
</tr>
<tr>
<td>Volumen corriente espirado proximal (VTₑ-Y)</td>
<td>± (1 + 10 % de la lectura) mL</td>
<td>2 mL a 310 mL</td>
</tr>
<tr>
<td>Volumen corriente inspirado proximal (VTₑ-Y)</td>
<td>± (1 + 10 % de la lectura) mL</td>
<td>2 mL a 310 mL</td>
</tr>
<tr>
<td>O₂% (monitorizado)</td>
<td>± 3 %</td>
<td>15 % a 100 %</td>
</tr>
</tbody>
</table>

Tabla 11-14. Precisión del valor calculado

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Precisión</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliancia pulmonar basada en PAV (C₀AV)</td>
<td>± (1 + 20 % del valor medido) mL/cmH₂O</td>
<td>10 a 100 mL/cmH₂O</td>
</tr>
<tr>
<td>Resistencia total de las vías aéreas basada en PAV (Rₜtot)</td>
<td>± (3 + 20 % del valor medido) cmH₂O/L/s</td>
<td>5,0 a 50 cmH₂O/L/s</td>
</tr>
<tr>
<td>Trabajo de respiración basado en PAV (WOBₜtot)</td>
<td>± (0,5 + 10 % del trabajo medido) J/L a un porcentaje de soporte del 75 %.</td>
<td>0,7 a 4 J/L</td>
</tr>
</tbody>
</table>
ADVERTENCIA:
Las precisiones del respirador que se incluyen en este capítulo son aplicables si se dan las condiciones de funcionamiento identificadas en la tabla *Especificaciones ambientales* en la página 11-8.

Si el funcionamiento se produce fuera de los intervalos especificados no se pueden garantizar las precisiones incluidas en las tablas anteriores y es posible que se proporcione una información incorrecta.

11.8 Cumplimiento normativo

El respirador cumple con las siguientes normas:

- **IEC 60601-1:2005** Equipo electromédico, 1ª parte: requisitos generales para la seguridad básica y las prestaciones esenciales
- **EN 60601-1:2006** Equipo electromédico, 1ª parte: requisitos generales para la seguridad básica y las prestaciones esenciales
- **ANSI-AAMI ES 60601-1:2005**, Equipo electromédico, 1ª parte: requisitos generales para la seguridad básica y las prestaciones esenciales
- **CSA C22.2 No. 60601-1:2008** Equipo electromédico, 1ª parte: requisitos generales para la seguridad básica y las prestaciones esenciales
- **IEC 60601-1-8:2006**, Equipo electromédico, Partes 1-8: requisitos generales para la seguridad básica y las prestaciones esenciales
- **EN 60601-1-8:2007**, Equipo electromédico, Partes 1-8: requisitos generales para la seguridad básica y las prestaciones esenciales
- **IEC 60601-2-12:2001**, Equipo electromédico, Parte 1-2: requisitos generales para la seguridad básica y las prestaciones esenciales
- **EN 60601-2-12:2005**, Equipo electromédico, Partes 1-2: requisitos generales para la seguridad básica y las prestaciones esenciales
- **EN 1041:2008**, Información proporcionada por el fabricante de productos sanitarios
- **EN 980:2008**, Símbolos gráficos utilizados en el etiquetado de productos sanitarios
- **ISO 15223-1:2012**, Dispositivos médicos - Símbolos gráficos utilizados en el etiquetado de dispositivos médicos, etiquetado e información que hay que proporcionar - Parte 2: creación, selección y validación de los símbolos
• ISO 7000:2004, Símbolos gráficos para empleo sobre equipo - Símbolos registrados - Cuarta edición

• ISO 5356-1:2004, Equipo respiratorio y de anestesia. Conectores cónicos Parte 1: Conectores macho y hembra

• EN 5356-1:2004, Equipo respiratorio y de anestesia. Conectores cónicos Parte 1: Conectores macho y hembra

• ISO 10993-1:07-15-2010, Evaluación biológica de dispositivos médicos, Parte 1: Evaluación y pruebas de un proceso de gestión de riesgo CORRIGENDUM TÉCNICO 1 - Cuarta edición

• IEC 60601-1:1988, Equipo electromédico, 1ª parte: requisitos generales para la seguridad

• EN 60601-1:1990 Equipo electromédico, 1ª parte: requisitos generales para la seguridad

• IEC 60601-1-4:2000, Equipo electromédico, Parte 1-4: requisitos generales para la seguridad - Norma colateral: Sistemas médicos eléctricos programables

• IEC 62304:2006, Software de productos sanitarios - Procesos del ciclo de vida del software

• IEC 60601-1-6:2010, Equipo electromédico, Parte 1-6: requisitos generales para la seguridad básica y las prestaciones esenciales - Norma colateral: aptitud de uso

• IEC 62366:2007, Dispositivos médicos - Aplicación de la ingeniería de aptitud de uso a los dispositivos médicos

• Directiva 2002/96/CE, del Parlamento Europeo y del Consejo sobre residuos de aparatos eléctricos y electrónicos (RAEE)

• ISO 14971:2007/EN ISO 14971:2012, Dispositivos médicos - Aplicación de la gestión de riesgos a los dispositivos médicos

• IEC 60601-1-2:2014: Equipos electromédicos - Parte 1-2: Requisitos generales para la seguridad básica y el funcionamiento esencial - Norma colateral: Perturbaciones electromagnéticas - Requisitos y ensayos

• Norma AIM 7351731 Rev. 2.00.2017: Prueba de inmunidad electromagnética de equipos y sistemas electromédicos para la exposición a lectores de identificación por radiofrecuencia
11.9 Declaración del fabricante

Las siguientes tablas contienen las declaraciones del fabricante para las emisiones electromagnéticas del sistema respirador, la inmunidad electromagnética, las distancias de separación entre el respirador y los equipos de comunicación por RF portátiles o móviles y una lista de cables que cumplen con los requisitos.

⚠️ ADVERTENCIA:
Los equipos de comunicación por RF portátiles o móviles pueden afectar al rendimiento del sistema respirador. Instale y utilice este dispositivo de acuerdo con la información contenida en este manual.

⚠️ ADVERTENCIA:
El sistema respirador no deberá utilizarse al lado o pegado a otros equipos, excepto como se especifique en este manual. Si es necesario utilizarlo al lado o pegado a otros equipos, el sistema respirador tendrá que ser supervisado para confirmar el funcionamiento normal en las configuraciones en las que se utilice.

⚠️ ADVERTENCIA:
Los equipos portátiles de comunicación por RF (incluidos los periféricos tales como cables de antena y antenas externas) deben usarse a una distancia mínima de 30 cm (12 pulgadas) de cualquier parte del respirador, incluidos los cables especificados por el fabricante. De lo contrario, podría disminuir el rendimiento de este equipo.
Precaución:
Este equipo no está destinado para su uso en ambientes residenciales y es posible que no proporcione protección adecuada para los servicios de comunicación por radio en ese tipo de entornos.

Nota:
Las emisiones características de este equipo lo hacen adecuado para utilizarse en áreas industriales y hospitales (CISPR 11 de clase A). Si se utiliza en un entorno residencial (para el que suele exigirse la norma CISPR 11 de clase B), este equipo podría no ofrecer la protección adecuada a los servicios de comunicación por radiofrecuencia. El usuario podría tener que tomar medidas paliativas, como reubicar o reorientar el equipo.

<table>
<thead>
<tr>
<th>Prueba de emisiones</th>
<th>Cumplimiento</th>
<th>Entorno electromagnético - guía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones de RF radiadas CISPR 11</td>
<td>Grupo 1 Clase A</td>
<td>El respirador utiliza energía RF solo para sus funciones internas. El respirador está destinado para su uso únicamente en hospitales y no puede conectarse a redes eléctricas públicas.</td>
</tr>
<tr>
<td>Emisiones de armónicos IEC 61000-3-2</td>
<td>Clase A</td>
<td>El respirador está destinado para su uso únicamente en hospitales y no puede conectarse a redes eléctricas públicas.</td>
</tr>
<tr>
<td>Fluctuaciones en el voltaje IEC 61000-3-3</td>
<td>Conforme</td>
<td></td>
</tr>
</tbody>
</table>

Tablas 11-15. Emisiones electromagnéticas
Tabla 11-16. Inmunidad electromagnética

<table>
<thead>
<tr>
<th>Prueba de CEM</th>
<th>Norma de la prueba</th>
<th>Niveles de prueba</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>IEC 60601-1-2, edición 3.0:2007</td>
<td>Descarga por contacto de ±2, 4, 6 y 8 kV</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-1-2, edición 4.0:2014</td>
<td>Descarga en aire de ±2, 4, 8 y 15 kV</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-2</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Inmunidad radiada</td>
<td>IEC 60601-1-2, edición 3.0:2007</td>
<td>10 V/m</td>
<td>Modulación: 80 % AM, 2 Hz</td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-3</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-1-2, edición 4.0:2014</td>
<td>3 V/m</td>
<td>Modulación: 80 % AM, 1 kHz</td>
</tr>
<tr>
<td>Transitorios eléctricos rápidos/ ráfagas</td>
<td>IEC 60601-1-2, edición 3.0:2007</td>
<td>±1 kV (E/S)</td>
<td>Frecuencia de repetición de impulsos de 5 kHz</td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-4</td>
<td>±2 kV (CA)</td>
<td>Frecuencia de repetición de impulsos de 100 kHz</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-1-2, edición 4.0:2014</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-4</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Sobretensión</td>
<td>IEC 60601-1-2, edición 3.0:2007</td>
<td>±0,5 kV, 1 kV línea a línea</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-1-2, edición 4.0:2014</td>
<td>±0,5 kV, 1 kV y 2 kV línea a masa</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-5</td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

El respirador está indicado para utilizarse en el entorno electromagnético especificado a continuación. El cliente o el usuario del respirador deben asegurarse de que se utiliza en ese entorno.

Los suelos deben ser de madera, hormigón o baldosas de cerámica. Si los suelos están recubiertos de material sintético, la humedad relativa debe ser de al menos el 30 %.
Tabla 11-16. Inmunidad electromagnética (continuación)

El respirador está indicado para utilizarse en el entorno electromagnético especificado a continuación. El cliente o el usuario del respirador deben asegurarse de que se utiliza en ese entorno.

<table>
<thead>
<tr>
<th>Prueba de CEM</th>
<th>Norma de la prueba</th>
<th>Niveles de prueba</th>
<th>Comentarios</th>
<th>Entorno electromagnético: directrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inmunidad conducida</td>
<td>IEC 60601-1-2, edición 3.0:2007, IEC 61000-4-6</td>
<td>3 V RMS en los siguientes intervalos de frecuencia (bandas ISM¹); 6,765-6,795 MHz; 13,553-13,567 MHz; 26,957-27,283 MHz; 40,66-40,70 MHz</td>
<td>Modulación: 80 % AM, 2 Hz</td>
<td>Los equipos portátiles y móviles de comunicación por RF no se deben utilizar a una distancia inferior de ninguna parte del sistema respirador, incluidos los cables, que la distancia calculada según la ecuación correspondiente a la frecuencia del transmisor. Consulte la Tabla 11-19.</td>
</tr>
<tr>
<td>IEC 60601-1-2, edición 4.0:2014, IEC 61000-4-6</td>
<td>6 V RMS en los siguientes intervalos de frecuencia (bandas ISM¹); 6,765-6,795 MHz; 13,553-13,567 MHz; 26,957-27,283 MHz; 40,66-40,70 MHz</td>
<td>Modulación: 80 % AM, 1 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inmunidad magnética</td>
<td>IEC 60601-1-2, edición 3.0:2007, IEC 60601-1-2, edición 4.0:2014, IEC 61000-4-8</td>
<td>30 A/m</td>
<td>N/A</td>
<td>Los campos magnéticos de frecuencia de la alimentación eléctrica deben encontrarse en los niveles característicos de un entorno hospitalario típico.</td>
</tr>
</tbody>
</table>

NOTA: UT es la tensión del suministro eléctrico de CA antes de la aplicación del nivel de prueba.
Tabla 11-16. Inmunidad electromagnética (continuación)

El respirador está indicado para utilizarse en el entorno electromagnético especificado a continuación. El cliente o el usuario del respirador deben asegurarse de que se utiliza en ese entorno.

<table>
<thead>
<tr>
<th>Prueba de CEM</th>
<th>Norma de la prueba</th>
<th>Niveles de prueba</th>
<th>Comentarios</th>
<th>Entorno electromagnético: directrices</th>
</tr>
</thead>
</table>
| Caidas de tensión | IEC 60601-1-2, edición 3.0:2007
IEC 61000-4-11 | • 95 % de reducción de tensión mínima en 0,5 periodos (10 ms)
• 60 % de reducción de tensión mínima en 5 periodos (100 ms)
• 30 % de reducción de tensión mínima en 25 periodos (500 ms) | N/A | La red eléctrica debe ser la de un entorno hospitalario típico. Si se necesita un funcionamiento continuo del respirador durante las interrupciones del suministro eléctrico, se recomienda que la alimentación de dicho respirador provenga de una batería o un sistema de alimentación ininterrumpida. |
| | IEC 60601-1-2, edición 4.0:2014
IEC 61000-4-11 | • $U_T=0\%$, 0,5 ciclos
(0, 45, 90, 135, 180, 225, 270 y 350°)
• $U_T=0\%$, 1 ciclo
• $U_T=70\%$, 25/30 ciclos (a 0°) | | |
| Interrupciones | IEC 60601-1-2, edición 3.0:2007
IEC 60601-1-2, edición 4.0:2014
IEC 61000-4-11 | • $U_T=0\%$, 250/300 ciclos | | |
| Campo de proximidad de los equipos de comunicaciones inalámbricas por RF | IEC 60601-1-2, edición 4.0:2014
IEC 61000-4-3 | Consulte la sección Inmunidad a campos de proximidad de equipos de comunicaciones inalámbricas por RF, Tabla 11-17. | Modulación: Consulte la sección Inmunidad a campos de proximidad de equipos de comunicaciones inalámbricas por RF, Tabla 11-17. | N/A |
| Inmunidad RFID | Norma AIM 7351731
Rev. 2.00.2017
IEC 61000-4-3 | Consulte la sección Niveles de prueba estándar AIM, Tabla 11-18. | Consulte la sección 7 de la norma AIM 7351731 para obtener más detalles sobre la aplicación de las diferentes especificaciones de RFID. | N/A |

NOTA 1 A 80 MHz y 800 MHz, se aplica el intervalo de frecuencia superior.

NOTA 2 Estas directrices pueden no ser aplicables en todas las situaciones. La propagación electromagnética se ve afectada por la absorción y reflexión de estructuras, objetos y personas.

1. Las bandas ISM (industrial, científica y médica) entre 150 kHz y 80 MHz van de los 6,765 MHz a los 6,795 MHz; de 13,553 a 13,567 MHz; 26,957 MHz; y de 40,66 MHz a 40,70 MHz. Los niveles de conformidad en las bandas de frecuencia ISM entre 150 kHz y 80 MHz y el intervalo de frecuencia de 80 MHz a 2,5 GHz se han diseñado para reducir la probabilidad de que los equipos de comunicaciones móviles y portátiles puedan causar interferencias si se trasladan inadvertidamente a zonas de pacientes. Por esta razón, se utiliza un factor adicional de 10/3 para calcular la distancia de separación para los transmisores en estos intervalos de frecuencia.
Tabla 11-17. Inmunidad a campos de proximidad de equipos de comunicaciones inalámbricas por RF

<table>
<thead>
<tr>
<th>Frecuencia de prueba (MHz)</th>
<th>Banda (MHz)</th>
<th>Servicio</th>
<th>Modulación</th>
<th>Potencia máxima (W)</th>
<th>Distancia (m)</th>
<th>Nivel de prueba de inmunidad (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>385</td>
<td>380-390</td>
<td>TETRA 400</td>
<td>Modulación de impulsos 18 Hz</td>
<td>1,8</td>
<td>0,3</td>
<td>27</td>
</tr>
<tr>
<td>450</td>
<td>430-470</td>
<td>• GMRS 460</td>
<td>Onda sinusoidal 1 kHz con una desviación de ±5 kHz</td>
<td>2</td>
<td>0,3</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>704-787</td>
<td>Banda LTE 13, 17</td>
<td>Modulación de impulsos 217 Hz</td>
<td>0,2</td>
<td>0,3</td>
<td>9</td>
</tr>
<tr>
<td>810</td>
<td>800-960</td>
<td>• GSM 800/900</td>
<td>Modulación de impulsos 18 Hz</td>
<td>2</td>
<td>0,3</td>
<td>28</td>
</tr>
<tr>
<td>870</td>
<td></td>
<td>• TETRA 800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>930</td>
<td></td>
<td>• iDEN 820</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CDMA 850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Banda LTE 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1720</td>
<td>1700-1990</td>
<td>• GSM 1800</td>
<td>Modulación de impulsos 217 Hz</td>
<td>2</td>
<td>0,3</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CDMA 1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GSM 1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GSM 1900 DECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Banda LTE 1, 3, 4, 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UMTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2450</td>
<td>2400-2570</td>
<td>• Bluetooth</td>
<td>Modulación de impulsos 217 Hz</td>
<td>2</td>
<td>0,3</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WLAN, 802.11 b/g/n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RFID 2450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Banda LTE 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5240</td>
<td>5100-5800</td>
<td>WLAN 802.11a/n</td>
<td></td>
<td>0,2</td>
<td>0,3</td>
<td>9</td>
</tr>
<tr>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5785</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 11-18. Niveles de prueba estándar AIM

<table>
<thead>
<tr>
<th>Especificaciones RFID</th>
<th>Frecuencia</th>
<th>Nivel de prueba (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 14223</td>
<td>134,2 kHz</td>
<td>65 A/m</td>
</tr>
<tr>
<td>ISO/IEC 14443-3 (Type A)</td>
<td>13,56 MHz</td>
<td>7,5 A/m</td>
</tr>
<tr>
<td>ISO/IEC 14443-4 (Type A)</td>
<td>13,56 MHz</td>
<td>7,5 A/m</td>
</tr>
<tr>
<td>ISO/IEC 15693 (ISO 18000-3 Modo 1)</td>
<td>13,56 MHz</td>
<td>5 A/m</td>
</tr>
<tr>
<td>ISO 18999-3 Modo 3</td>
<td>13,56 MHz</td>
<td>12 A/m</td>
</tr>
<tr>
<td>ISO/IEC 18000-7</td>
<td>433 MHz</td>
<td>3 V/m</td>
</tr>
<tr>
<td>ISO/IEC 18000-63 Tipo C</td>
<td>860–960 MHz</td>
<td>54 V/m</td>
</tr>
<tr>
<td>ISO/IEC 18000-4 Modo 1</td>
<td>2,45 GHz</td>
<td>54 V/m</td>
</tr>
</tbody>
</table>

Tabla 11-19. Distancias de separación recomendadas para RF

El respirador está destinado para su uso en entornos electromagnéticos en los que estén controladas las perturbaciones de RF radiada. El cliente o el operador del respirador pueden ayudar a evitar las interferencias electromagnéticas manteniendo una distancia mínima entre los equipos de comunicación por RF portátiles y móviles (transmisores) y el respirador tal y como se recomienda a continuación, según una potencia nominal máxima el equipo de comunicaciones.

<table>
<thead>
<tr>
<th>Potencia nominal máxima de salida del transmisor (W)</th>
<th>de 150 kHz a 80 MHz fuera de las bandas ISM</th>
<th>de 150 kHz a 80 MHz dentro de las bandas ISM</th>
<th>80 MHz a 800 MHz</th>
<th>800 MHz a 2,5 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(d = 3.5 \sqrt{P})</td>
<td>(d = 12 \sqrt{P})</td>
<td>(d = 1.2 \sqrt{P})</td>
<td>(d = 2.3 \sqrt{P})</td>
</tr>
<tr>
<td>0,01</td>
<td>0,35</td>
<td>1,2</td>
<td>0,12</td>
<td>0,23</td>
</tr>
<tr>
<td>0,1</td>
<td>1,1</td>
<td>3,8</td>
<td>0,38</td>
<td>0,73</td>
</tr>
<tr>
<td>1</td>
<td>3,5</td>
<td>12</td>
<td>1,2</td>
<td>2,3</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>38</td>
<td>3,8</td>
<td>7,3</td>
</tr>
<tr>
<td>100</td>
<td>120</td>
<td>12</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
ADVERTENCIA:
El uso de accesorios y cables distintos de los especificados, con la excepción de las piezas vendidas por Covidien como sustitución para los componentes internos, puede provocar mayores emisiones o una disminución de la inmunidad del sistema respirador.
Especificaciones

11.10 Pruebas de seguridad

Todas las pruebas de seguridad deberán ser realizadas por personal cualificado del servicio técnico en los intervalos especificados. Consulte Frecuencia del mantenimiento preventivo de servicio, p. 7-22.

11.11 Requisitos básicos de funcionamiento

En virtud de la norma ISO/EN 80601-2-12: 2011, Equipo electromédico Partes 2-12: requisitos particulares para la seguridad básica y las prestaciones esenciales de respiradores para cuidados intensivos, los requisitos para las prestaciones esenciales del respirador se incluyen en las tablas de Configuración del respirador, Configuración de alarmas y Datos de pacientes que aparecen con anterioridad en este capítulo. Las alarmas, incluyendo las alarmas de nivel de oxígeno y de fallo de gas se incluyen en el Capítulo 6. La información sobre la alimentación de CA y de la batería de reserva se encuentra en el Capítulo 3, y la información de flujo cruzado de gas fallido se incluye en el Capítulo 3.

Si el funcionamiento esencial se degrada o se pierde debido a la exposición de niveles de perturbación electromagnética superiores a los que se describen en la Tabla 11-16., pueden producirse lo siguiente:

- Fallos de componentes
- Cambios en los parámetros o configuraciones programables

<table>
<thead>
<tr>
<th>Número de la pieza y descripción</th>
<th>Longitud del cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>10087151, Cable de alimentación, 10A, RA, ANZ</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>10087159, Cable de alimentación, 10A, RA, RU</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>10087155, Cable de alimentación, 10A, RA, UE</td>
<td>3 m (10 pies)</td>
</tr>
<tr>
<td>10087157, Cable de alimentación, 10A, RA, Japón</td>
<td>3 m (10 pies)</td>
</tr>
<tr>
<td>10087152, Cable de alimentación, 10A, RA, británico</td>
<td>3 m (10 pies)</td>
</tr>
<tr>
<td>10087154, Cable de alimentación, 10A, RA, Suiza</td>
<td>3 m (10 pies)</td>
</tr>
<tr>
<td>10081056, Cable de alimentación, 10A, RA, EE. UU.</td>
<td>3 m (10 pies)</td>
</tr>
<tr>
<td>10087156, Cable de alimentación, 10A, RA, Israel</td>
<td>3 m (10 pies)</td>
</tr>
<tr>
<td>10087160, Cable de alimentación, 10A, RA, Brasil</td>
<td>3 m (10 pies)</td>
</tr>
<tr>
<td>10087153, Cable de alimentación, 10A, RA, China</td>
<td>3 m (10 pies)</td>
</tr>
</tbody>
</table>
- Restablecimiento de la configuración predeterminada
- Cambios en el modo de funcionamiento
- Inicio de una operación involuntaria
- Error en el volumen suministrado de respiraciones individuales superior al 35 %
- Error en el volumen minuto superior al 25 %
- Estado de falsas alarmas positivas
- Fallo de generación de alarma
Página dejada en blanco intencionadamente
A BiLevel 2.0

A.1 Descripción general

Este apéndice describe el funcionamiento del modo de ventilación BiLevel 2.0 en el respirador serie 980 de Puritan Bennett™.

BiLevel es un modo de ventilación combinado que mezcla características de respiración mandatoria y de respiración espontánea, en el que los parámetros de tiempo de respiración determinan qué tipo de respiración se favorece. En modo BiLevel, las respiraciones mandatorias están siempre controladas por presión, y las respiraciones espontáneas pueden contar con mantenimiento de la presión (PS) o con compensación de tubo (TC).

Figura A-1. Respiración espontánea a P_L

BiLevel se parece al modo SIMV, salvo que BiLevel establece dos niveles de presión positiva de las vías aéreas. El cambio entre ambos niveles se puede activar mediante los parámetros de tiempo BiLevel o mediante el esfuerzo del paciente.
Los dos niveles de presión se denominan presión baja (PL) y presión alta (PH).

En ambos niveles de presión, los pacientes pueden respirar de manera espontánea, y las respiraciones espontáneas se pueden ayudar de la compensación de tubo o del mantenimiento de la presión. BiLevel supervisa los volúmenes corrientes mandatorio y espontáneo por separado.

El tiempo inspiratorio y el tiempo espiratorio en BiLevel se convierten en tiempo alto (TH) y tiempo bajo (TL), respectivamente. Durante estos tiempos inspiratorio y espiratorio, la PH se mantiene durante el TH y la PL se mantiene durante el TL.

A.2 Uso previsto

BiLevel está diseñado para pacientes adultos, pediátricos y neonatales.

A.3 Definiciones de los símbolos de seguridad

Esta sección contiene información sobre seguridad para los usuarios, que deben actuar siempre con la precaución adecuada cuando utilicen el respirador.
ADVERTENCIA:
El respirador ofrece diversas opciones de ventilación. Durante el tratamiento del paciente, el médico debe seleccionar cuidadosamente el modo de ventilación y los parámetros que se usarán con dicho paciente, basándose en su criterio clínico, la situación y las necesidades de cada paciente, y los beneficios, las limitaciones y las características de cada opción de administración respiratoria. Dado que la situación del paciente cambia con el tiempo, evalúe periódicamente los modos y parámetros elegidos a fin de determinar si estos son o no los mejores para las necesidades actuales del paciente.

A.4 Configuración de BiLevel

BiLevel es un modo de ventilación (junto con A/C, SIMV y SPONT).

Para configurar el modo BiLevel

1. En la pantalla de configuración del respirador, introduzca el PBW o el sexo y la altura.
2. Toque **BiLevel**. Tras seleccionar el modo BiLevel, el respirador utiliza el tipo de respiración mandatorio PC, que no se puede modificar.
3. Seleccione el tipo espontáneo (PS o TC).
4. Elija el tipo de trigger (P_{TRIG} o V_{TRIG}).
5. Seleccione los parámetros deseados para el respirador. Aparecen los parámetros predeterminados para el modo BiLevel. Para cambiar un parámetro, toque el botón y gire el botón giratorio para configurar su valor. La P_H debe ser siempre al menos 5 cmH₂O mayor que la P_L.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVERTENCIA</td>
<td>Las advertencias alertan a los usuarios de posibles consecuencias graves (muerte, lesión o acontecimientos adversos) para el paciente, el usuario o el entorno.</td>
</tr>
<tr>
<td>Precaución</td>
<td>Las precauciones alertan a los usuarios para que actúen con el cuidado apropiado a fin de hacer un uso seguro y eficaz del producto.</td>
</tr>
<tr>
<td>Nota</td>
<td>Las notas proporcionan directrices o información adicionales.</td>
</tr>
</tbody>
</table>
Nota:
El parámetro de % de tiempo de rampa determina el tiempo de rampa para alcanzar la presión objetivo para las transiciones de P_L a P_H y para las respiraciones espontáneas, incluso con mantenimiento de la presión (P_{SUPP}) = 0. La sensibilidad espiratoria (E_{SENS}) se aplica a todas las respiraciones espontáneas.

6. Configure T_L, T_H, o la relación de T_H a T_L. Para seleccionar los parámetros que darían como resultado una relación $T_H:T_L$ superior a 1:1 o 4:1, debe tocar **Continuar** para confirmarla tras alcanzar los límites 1:1 y 4:1.

Figura A-3. Pantalla de configuración BiLevel

7. Toque **Inicio**.

8. Configure los parámetros de apnea y alarma tocando las pestañas respectivas en el lateral de la pantalla de parámetros del respirador y cámbielos de la manera apropiada.

A.5 Uso del mantenimiento de la presión con BiLevel

Las respiraciones espontáneas en el modo BiLevel pueden contar con la ayuda del mantenimiento de la presión según dichas reglas (Consulte **BiLevel con mantenimiento de la presión**, p. A-5):

- El mantenimiento de la presión (P_{SUPP}) se puede utilizar para ayudar a las respiraciones espontáneas en P_L y P_H. P_{SUPP} siempre se configura con respecto a P_L. Presión objetivo = $P_L + P_{SUPP}$.
• Los esfuerzos espontáneos del paciente en PH no cuentan con mantenimiento de la presión, salvo en PSUPP > (PH - PL). Las respiraciones espontáneas (tengan mantenimiento de presión o no) cuentan con la asistencia de una presión de 1,5 cmH₂O.

• Si PSUPP + PL es mayor que PH + 1,5 cmH₂O, las respiraciones espontáneas en PL tendrán la asistencia de la configuración de PSUPP y todas las respiraciones espontáneas en PH contarán con la asistencia de PSUPP - (PH - PL).

• Las respiraciones espontáneas no asistidas mediante PS o TC (por ejemplo, una respiración CPAP clásica) cuentan con la asistencia de una presión de 1,5 cmH₂O.

Por ejemplo, si PL = 5 cmH₂O, PH = 15 cmH₂O, y PSUPP = 20 cmH₂O:

• Las respiraciones espontáneas en PL cuentan con la asistencia de un mantenimiento de la presión de 20 cmH₂O (PL + PSUPP) para obtener una presión total de 25 cmH₂O, y

• Las respiraciones espontáneas PH tienen la asistencia de 10 cmH₂O de mantenimiento de la presión (PSUPP - (PH - PL)) para la misma presión total de 25 cmH₂O.

Figura A-4. BiLevel con mantenimiento de la presión

Durante las respiraciones espontáneas, la presión objetivo se calcula con respecto a PL.
A.6 Inspiraciones manuales en el modo BiLevel

Si se pulsa la tecla INSPIR. MANUAL durante el modo BiLevel, el respirador:

- Alterna con P_{H}, si el nivel de presión actual es P_{L}.
- Alterna con P_{L}, si el nivel de presión actual es P_{H}.

Para evitar la respiración superpuesta, el respirador no alterna entre un nivel de presión y otro durante la fase inicial de la espiración.

A.7 Maniobras de mecánica respiratoria en BiLevel

En BiLevel, las maniobras mecánicas respiratorias se limitan a las maniobras de pausa inspiratoria y pausa espiratoria.

A.8 Especificaciones

Consulte la tabla, Intervalo y resolución de la configuración del respirador, en el Capítulo 11 de este manual para ver las especificaciones siguientes:

- Presión baja (P_{L})
- Presión alta (P_{H})
- Tiempo de presión baja (T_{L})
- Tiempo de presión alta (T_{H})
- Relación $T_{H}:T_{L}$
- Frecuencia respiratoria (f)
- % de tiempo de rampa

A.9 Descripción técnica

BiLevel es un modo de ventilación que alterna entre dos niveles de presión establecidos por el operador, PL y PH. Las duraciones de presión están definidas por las variables de tiempo TL y TH configuradas por el operador. Las transiciones entre los dos niveles de presión, P_{L} y P_{H}, son análogas a las transiciones entre fases de respiración en PC.
En los intervalos extremos de TL y TH, BiLevel puede parecerse al modo A/C-PC del tipo de respiración único, o el modo de tipo de respiración más complejo, una IMV de aspecto “invertido”. Si el TH y el TL presuponen valores “normales” respecto al PBW (por ejemplo TH:TL > 1:2 o 1:3), BiLevel presupone un patrón respiratorio similar, si no cualitativamente idéntico, a A/C-PC. Sin embargo, a medida que el TL empieza a acortarse cuando la relación TH:TL se prolonga más allá de 4:1, el patrón respiratorio adopta una forma claramente diferente. En el extremo, el tiempo exagerado a PH y la abrupta liberación a la PL coincidiría con el patrón patentado por John Downs* y definido como APRV.

Entre el patrón de tipo A/C-PC y el patrón de tipo APRV, habría patrones con intervalos de TH que moderadamente largos, que conceden al paciente tiempo suficiente para respirar espontáneamente a P_H y P_L. Se puede considerar que estos tipos de patrones respiratorios, (menos en el caso de APRV), BiLevel y SIMV, proporcionan tipos de respiración mandatorias y espontáneas. En este sentido, BiLevel y SIMV se clasifican como modos combinados.

El acceso directo a cualquiera de estos tres parámetros de tiempo de respiración en BiLevel se consigue tocando el icono del candado asociado con el periodo TH, el periodo TL o la relación TH:TL que aparece en la barra de tiempo de respiración de la pantalla de configuración.

Mientras esté en modo BiLevel, las respiraciones accionadas espontáneamente en cualquiera de los niveles de presión se pueden aumentar con presiones inspiratorias más altas usando los tipos de respiración Mantenimiento de la presión (PS) o Compensación del tubo (TC).

A.9.1 Sincronía en BiLevel

Al igual que BiLevel intenta sincronizar la respiración espontánea con los esfuerzos inspiratorios y espiratorios, también intenta sincronizar las transiciones entre niveles de presión con los esfuerzos respiratorios del paciente. Esto permite prolongar el TH para evitar transiciones a la P_L durante la inspiración espontánea del paciente. Del mismo modo, el intervalo de TL se puede ampliar para evitar una transición a P_H durante la espiración espontánea del paciente.

El parámetro sensibilidad de trigger (PSENS o VSENS) se utiliza para sincronizar la transición de P_L a P_H. La transición de P_H a P_L se sincroniza con el esfuerzo espiratorio espontáneo del paciente. El algoritmo BiLevel variará los intervalos de TL y TH según sea necesario para sincronizar las transiciones entre la P_L y la P_H para ajustarse al patrón respiratorio del paciente.

Las duraciones reales del \(T_H \) y el \(T_L \) varían dependiendo de si el paciente realiza o no algún esfuerzo inspiratorio espontáneo durante dichos periodos.

Para gestionar la sincronía con el patrón respiratorio del paciente, el algoritmo BiLevel parte los periodos de \(T_H \) y \(T_L \) en intervalos espontáneos y síncronos como se muestra en la figura siguiente.

Figura A-5. Intervalos espontáneos y síncronos

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Presión (eje y)</td>
</tr>
<tr>
<td>2</td>
<td>(T_H)</td>
</tr>
<tr>
<td>3</td>
<td>(P_H)</td>
</tr>
<tr>
<td>4</td>
<td>(P_L)</td>
</tr>
<tr>
<td>5</td>
<td>(T_L)</td>
</tr>
<tr>
<td>6</td>
<td>Intervalo síncrono</td>
</tr>
<tr>
<td>7</td>
<td>Intervalo espontáneo</td>
</tr>
</tbody>
</table>

Al partir el \(TH \) y \(TL \) en las fases *espontánea* y *síncrona*, BiLevel responde a los esfuerzos del paciente (o a la ausencia de los mismos) con un patrón previsible:

- Durante el intervalo *espontáneo* de cada nivel de presión, los esfuerzos inspiratorios satisfactorios hacen que el respirador administre respiraciones espontáneas.

- Durante los intervalos de \(TL \) *síncronos*, los esfuerzos inspiratorios satisfactorios hacen que el respirador pase de \(PL \) a \(PH \). Si no hay esfuerzo espontáneo (paciente), esta transición se produce al final del periodo \(TL \).

- Durante los intervalos de \(TH \) *síncronos*, los esfuerzos espiratorios satisfactorios hacen que el respirador pase de \(PH \) a \(PL \). Si no se produce la espiración espontánea, la transición al nivel de \(P_L \) se produce al final del periodo del \(TH \).
A.9.2 Monitorización del paciente en BiLevel

Si el paciente respira espontáneamente en ambos niveles de presión, BiLevel monitoriza y muestra la frecuencia respiratoria total, incluidas las respiraciones mandatorias y espontáneas. BiLevel también muestra el volumen corriente espirado y el volumen espirado total por minuto para las respiraciones mandatorias y espontáneas.

A.9.3 Estrategia APRV en BiLevel

Alargar el periodo de TH y acortar el periodo de TL para permitir únicamente una espiración incompleta del volumen respiratorio mandatorio, tiene como resultado una relación TH:TL inversa. En esta configuración de tiempos respiratorios con relaciones TH:TL superiores a 4:1, BiLevel se convierte en Ventilación de Liberación de la Presión de las Vías aéreas (APRV).

La APRV se caracteriza por periodos de TH más largos, periodos de TL cortos (normalmente de menos de un segundo) y relaciones TH:TL inversas. Puesto que con estos parámetros de tiempos de respiración, todas las respiraciones espontáneas accionadas por el paciente se producen durante el periodo de TH, la APRV se parece a la ventilación CPAP con breves periodos ocasionales de espiración incompleta denominados “liberaciones” que están controlados por el parámetro f.

![Figura A-6. APRV con respiración espontánea a P_{H}](Imagen)

1. P_{CIRC} (cmH$_2$O)
2. Tiempo inspiratorio alargado (T_{Ih})
3. Tiempo de liberación abreviado (T_{L})
En APRV, el nivel P_H está definido para optimizar la compliancia pulmonar para la respiración espontánea manteniendo a la vez una presión media de las vías aéreas altas para potenciar la oxigenación, el nivel P_L está definido, junto con el T_L, para controlar el volumen de liberación espiratorio de las respiraciones mandatorias a fin de ayudar a gestionar el CO_2 y la ventilación alveolar, y el parámetro f controla el número de liberaciones por minuto que se usan para ayudar a gestionar los niveles de CO_2 del paciente. El parámetro f también repercute en la presión media de las vías aéreas.

En APRV el operador puede configurar los parámetros de BiLevel para permitir el control directo del T_L y asegurar que los cambios en el parámetro f no alargarán involuntariamente el periodo de T_L causando la desestabilización del volumen alveolar espiratorio final. Con el periodo T_L bloqueado, los cambios en el f definido cambiarán el periodo T_H para dar cabida al nuevo parámetro f a la vez que se mantiene el periodo T_L definido.

A.9.4 Estructura técnica de BiLevel

En BiLevel, el respirador establece dos niveles de presión inicial. Uno de ellos es esencialmente el mismo que el nivel de PEEP estándar definido para todos los modos habituales de ventilación. El segundo nivel de presión es el establecido en el T_H. Ambos niveles de presión permiten las respiraciones CPAP, TC y PS. Los parámetros de tiempo de respiración determinan si el paciente puede iniciar cualquiera de estos tipos de respiración.

A.10 Cambios de modo

El cambio al modo BiLevel desde otros modos sigue las directrices generales para los cambios de modo:

- El cambio se realiza tan pronto como sea posible sin poner en peligro ni la inspiración ni la espiración.

- Las respiraciones no se superponen durante la inspiración.
B.1 Descripción general

Este apéndice describe el funcionamiento de la opción Leak Sync del respirador serie 980 de Puritan Bennett™. La opción Leak Sync permite que el respirador compense las fugas en el circuito respiratorio y a la vez detecte con precisión el esfuerzo del paciente para iniciar y cícular una respiración. Puesto que Leak Sync permite al respirador diferenciar entre el flujo debido a fugas y el flujo debido al esfuerzo respiratorio del paciente, proporciona compensación dinámica y mejora la sincronía entre el paciente y el respirador. Consulte el Capítulo 4 de este manual para obtener información sobre el funcionamiento y los parámetros generales.

B.2 Uso previsto

Leak Sync está diseñado para compensar las pérdidas en el circuito respiratorio durante la ventilación no invasiva o invasiva. Leak Sync cuantifica con precisión las tasas de fugas instantáneas, detectando por tanto de manera correcta las transiciones entre fases respiratorias del paciente, y puede influir en el esfuerzo respiratorio. Leak Sync está indicado para pacientes adultos, pediátricos y neonatales.

B.3 Definiciones de los símbolos de seguridad

Esta sección contiene información sobre seguridad para los usuarios, que deben actuar siempre con la precaución adecuada cuando utilicen el respirador.

<p>| Tabla B-1. Definiciones de los símbolos de seguridad |
|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVERTENCIA [!]</td>
<td>Las advertencias alertan a los usuarios de posibles consecuencias graves (muerte, lesión o acontecimientos adversos) para el paciente, el usuario o el entorno.</td>
</tr>
<tr>
<td>Precaución [○]</td>
<td>Las precauciones alertan a los usuarios para que actúen con el cuidado apropiado a fin de hacer un uso seguro y eficaz del producto.</td>
</tr>
<tr>
<td>Nota [obook]</td>
<td>Las notas proporcionan directrices o información adicionales.</td>
</tr>
</tbody>
</table>
ADVERTENCIA:
El respirador ofrece diversas opciones de ventilación. Durante el tratamiento del paciente, el médico debe seleccionar cuidadosamente el modo de ventilación y los parámetros que se usarán con dicho paciente, basándose en su criterio clínico, la situación y las necesidades de cada paciente, y los beneficios, las limitaciones y las características de cada opción de administración respiratoria. Dado que la situación del paciente cambia con el tiempo, evalúe periódicamente los modos y parámetros elegidos a fin de determinar si estos son o no los mejores para las necesidades actuales del paciente.

B.4 Leak Sync

Las fugas del circuito respiratorio pueden hacer que el respirador detecte erróneamente esfuerzos inspiratorios del paciente (denominados autociclado) o retrasar la espiración en la presión de soporte. Las interfaces del paciente, como las máscaras, son especialmente propensas a las fugas significativas. La declaración imprecisa de la inspiración o la espiración puede ocasionar una asincronía entre el paciente y el respirador y aumentar el esfuerzo respiratorio.

El cambio de los parámetros de sensibilidad inspiratoria o espiratoria puede corregir temporalmente el problema, pero requiere la intervención frecuente de un profesional sanitario para garantizar que la sensibilidad se ajuste adecuadamente cuando cambien las condiciones (por ejemplo, si el paciente se mueve o si cambia la fuga del circuito).

Leak Sync añade flujo al circuito respiratorio para compensar las fugas. El flujo Leak Sync máximo se aplica a la compensación de flujo base máxima durante la espiración. Durante las inspiraciones basadas en la presión, el flujo total administrado (flujo de fuga más flujo inspiratorio) está limitado al flujo máximo total.

La tabla siguiente muestra las tasas de fuga máxima a una presión PEEP definida que Leak Sync compensará basándose en el tipo de paciente.

<table>
<thead>
<tr>
<th>Tipo de paciente</th>
<th>Flujo de compensación de fuga máximo en PEEP</th>
<th>Flujo total máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal</td>
<td>15 L/min</td>
<td>50 L/min</td>
</tr>
<tr>
<td>Pediátrico</td>
<td>40 L/min (25 L/min si el compresor es la fuente de aire)</td>
<td>120 L/min</td>
</tr>
<tr>
<td>Adulto</td>
<td>65 L/min (25 L/min si el compresor es la fuente de aire)</td>
<td>200 L/min</td>
</tr>
</tbody>
</table>
ADVERTENCIA:
En caso de fugas significativas, es posible que no se alcancen los objetivos de presión debido a las limitaciones del flujo.

B.5 Configuración de Leak Sync

Para obtener más información sobre la configuración del respirador, consulte el Capítulo 4 de este manual.

Para habilitar Leak Sync
1. En la pantalla de configuración del respirador, toque la pestaña Más parámetros.
2. Toque Habilitado en el área Leak Sync.
3. Toque Aceptar TODO para habilitar Leak Sync.

Figura B-1. Habilitar Leak Sync

Nota:
El valor predeterminado para Leak Sync es Deshabilitado cuando el tipo de circuito es pediátrico o adulto y el tipo de ventilación es invasiva. De lo contrario, el valor predeterminado para Leak Sync es Habilitado.
Nota:
Leak Sync no está permitido para los tipos de respiración con compensación del tubo (TC) y ventilación Asistida Proporcional (PAV+).

B.6 Cuando Leak Sync está habilitado

Consulte la pantalla de la GUI cuando Leak Sync está habilitado, p. B-5, para ver un ejemplo de la pantalla GUI cuando Leak Sync está habilitado.

- El botón Config. Resp. de la pantalla de la GUI indica que Leak Sync está activo.
- DSENS se muestra en unidades de L/min, en lugar de %.
- Si el respirador detecta una fuga durante una maniobra mecánica respiratoria, aparece el mensaje Fuga detectada.
- Las nuevas fugas o el cambio en la tasa de fuga se suele cuantificar y compensar en tres respiraciones. Los datos de pacientes monitorizados se estabilizan en unas respiraciones.
- Seleccione los parámetros de la sensibilidad inspiratoria del modo habitual, si el respirador se autocicla, trate de aumentar la sensibilidad de flujo (V_{SENS}).

Nota:
La ausencia del mensaje Fuga detectada no significa que no haya fugas.

Nota:
Leak Sync se habilita automáticamente cuando el tipo de ventilación es NIV o si se ha seleccionado Nuevo paciente y el tipo de circuito es neonatal, independientemente del tipo de ventilación. Si Leak Sync está deshabilitado mientras el tipo de ventilación es invasiva pero el tipo de ventilación cambia a NIV, sigue deshabilitado. LeakSync se deshabilita cuando el tipo de vent. se define como INVASIVE (INVASIVA) y el tipo de circuito es adulto o pediátrico.
B.6.1 Ajuste de la sensibilidad de desconexión (D_{SENS})

Cuando Leak Sync está habilitado, se activa la alarma Desconexión del circuito basada en el parámetro D_{SENS}, que es la tasa de fuga máxima permisible en la PEEP definida.

Cuando Leak Sync está deshabilitado, D_{SENS} se define automáticamente al 75 %.

ADVERTENCIA:

Cuando el tipo de ventilación = NIV y Leak Sync está deshabilitado, D_{SENS} se define automáticamente como DESC.

Consulte la tabla siguiente para ver un resumen de los parámetros D_{SENS} cuando Leak Sync está habilitado. Tenga en cuenta que es posible definir D_{SENS} por debajo del flujo Leak Sync máximo.
La configuración de D_{SENS} por encima de lo necesario puede impedir la detección oportuna de extubaciones involuntarias.

B.6.2 Datos del paciente monitorizados

Cuando Leak Sync está habilitado, aparecen tres parámetros adicionales en la pantalla Más datos de paciente y se actualizan en cada respiración. Vea la pantalla Más datos de paciente deslizando la pestaña del banner de datos del paciente. Estos parámetros de fuga también se pueden configurar en el banner de datos del paciente y el panel de datos de paciente de fuente grande.

Tabla B-3. Parámetros D_{SENS}

<table>
<thead>
<tr>
<th>Tipo de circuito respiratorio</th>
<th>Parámetro D_{SENS}</th>
<th>Flujo máximo total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal</td>
<td>Intervalo: de 1 a 15 L/min</td>
<td>50 L/min</td>
</tr>
<tr>
<td></td>
<td>Predeterminado: 2 L/min (ventilación INVASIVA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 L/min (NIV)</td>
<td></td>
</tr>
<tr>
<td>Pediátrico</td>
<td>Intervalo: de 1 a 40 L/min</td>
<td>120 L/min</td>
</tr>
<tr>
<td></td>
<td>Predeterminado: 20 L/min</td>
<td></td>
</tr>
<tr>
<td>Adulto</td>
<td>Intervalo: de 1 a 65 L/min</td>
<td>200 L/min</td>
</tr>
<tr>
<td></td>
<td>Predeterminado: 40 L/min</td>
<td></td>
</tr>
</tbody>
</table>
Cuando Leak Sync está habilitado

Consulte la tabla *Intervalo, resolución y precisión de los datos del paciente* en el Capítulo 11 de este manual para obtener información relativa a los siguientes datos del paciente monitorizados:

- V_{LEAK}
- % LEAK
- LEAK

Los valores de volumen corriente espirado (V_{TE}) y volumen corriente inspirado (V_{TL}) mostrados se compensan por las fugas y indican el volumen pulmonar inspirado o espirado estimado. Las precisiones de V_{TE} y V_{TL} también cambian cuando se habilita Leak Sync (consultar el Debate técnico si desea más información). Las representaciones gráficas de flujo durante Leak Sync indican los flujos pulmonares estimados.

Figura B-3. Datos del paciente monitorizados con Leak Sync
B.7 Debate técnico

La gestión de las fugas del circuito respiratorio es importante para asegurar el inicio y el ciclado respiratorios apropiados, la adecuación de la ventilación y la validez de los datos del paciente. La detección y supervisión de las fugas puede mejorar el tratamiento, reducir el esfuerzo respiratorio del paciente y proporcionar una información más precisa para las evaluaciones clínicas.

Leak Sync reconoce que las presiones cambiantes causan fugas variables dependiendo del material y medida de la interfaz. El modelo Leak Sync incluye un orificio de fuga rígido cuyo tamaño se mantiene constante ante los cambios de presión, combinado con una fuente de fuga elástica, cuyo tamaño varía en función de la presión aplicada. Este algoritmo proporciona una estimación más precisa de las fugas instantáneas para mejorar la sincronía entre el paciente y el respirador en caso de variaciones de presión en las vías aéreas.

Leak Sync permite que el respirador determine el nivel de fuga y que el operador defina las sensibilidades del trigger de flujo y del flujo máximo en un umbral seleccionado. El flujo base durante la espiración se define como:

- **Trigger por flujo**: 1,5 L/min + flujo de fugas estimado en PEEP + sensibilidad de flujo.
- **Trigger por presión**: 1,0 L/min + flujo de fugas estimado en PEEP.

B.7.1 Precisión del volumen corriente inspirado (VTL) durante Leak Sync

Consulte Intervalo, resolución y precisión de los datos del paciente, p. 11-19, parámetro VTL, para ver la precisión del VTL.

Para lecturas < 100 mL, se aplican los intervalos de precisión si el porcentaje de volumen de fuga inspiratorio es < al 80 %, donde el volumen de fuga es:

(Volumen de fuga durante la inspiración/volumen inspiratorio total administrado) x 100

Notas:

El volumen corriente inspirado se establece como VTL cuando Leak Sync está habilitado y como VTI cuando Leak Sync está deshabilitado.
B.7.2 Precisión del volumen corriente espirado (V_{TE}) durante Leak Sync

Consulte *Intervalo, resolución y precisión de los datos del paciente*, p. 11-19, párametro V_{TE} para conocer la precisión cuando Leak Sync está habilitado.

Donde T_E = tiempo para espirar el 90 % del volumen realmente espirado por el paciente.

Para lecturas < 100 mL, se aplican los intervalos de precisión si el porcentaje de volumen de fuga inspiratorio es < al 80 %, donde el volumen de fuga es:

$\text{(Volumen de fuga durante la inspiración/volumen inspiratorio total administrado)} \times 100$

B.7.3 Cálculo del %LEAK

Consulte *Intervalo, resolución y precisión de los datos del paciente*, p. 11-19, parámetro % LEAK, para ver las especificaciones.

B.7.4 Alarma de desconexión del circuito durante Leak Sync

La alarma de Desconexión del circuito se activa si el volumen de fuga global durante toda la respiración supera el volumen de fuga derivado del parámetro D_{SENS}. Durante VC, la alarma Desconexión del circuito también se activa si la presión inspiratoria final desciende por debajo de (PEEP definida + 1 cmH2O) durante tres respiraciones consecutivas. La pantalla muestra este mensaje de alarma:

Figura B-4. Desconexión del circuito durante VC
Si el compresor está en uso y el parámetro D_{SENS} es > 25 L/min, se utiliza un D_{SENS} de 25 L/min para determinar la Desconexión del circuito. Si LEAK es > 25 L/min, el banner de alarma muestra este mensaje:

Verif. paciente. Reconectar circuito. La fuga puede exceder el valor de compensación máximo para el compresor.

El funcionamiento normal se reinicia si el respirador detecta una conexión de paciente.
C.1 Descripción general

Este apéndice describe el funcionamiento de la opción de software PAV™+ para el respirador serie 980 de Puritan Bennett™.

La ventilación Proportional Assist™ (PAV+) está diseñada para mejorar el trabajo respiratorio de un paciente que respira de forma espontánea reduciendo el aumento del trabajo respiratorio del paciente cuando la mecánica pulmonar se encuentra deteriorada.

El tipo de respiración PAV+ se diferencia del tipo de respiración de mantenimiento de la presión (PS) en lo siguiente:

La PAV+ actúa como un amplificador inspiratorio; el grado de amplificación viene definido por el parámetro % Support (% Supp). El software PAV+ supervisa continuamente el flujo inspiratorio instantáneo del paciente y el volumen pulmonar instantáneo, que son indicadores del esfuerzo inspiratorio del paciente. Dichas señales, junto con los cálculos de resistencia y compliancia en curso del paciente, permiten al software calcular instantáneamente la presión necesaria en el circuito en “Y” del paciente para ayudar a los músculos inspiratorios del paciente en la medida seleccionada por el parámetro % Supp. Las demandas inspiratorias más elevadas producen un mayor soporte del respirador.

El software PAV+ reduce el riesgo de introducción involuntaria de parámetros incompatibles, como un peso corporal previsto pequeño (PBW) combinado con unas vías aéreas grandes.

*. Proportional Assist y PAV son marcas comerciales registradas de la Universidad de Manitoba, Canadá. Usadas bajo licencia.
C.2 Uso previsto

PAV+ está diseñado para su uso en pacientes adultos que respiran espontáneamente y cuya configuración del peso corporal previsto (PBW) en el respirador es como mínimo de 25,0 kg (55 lb). Los pacientes deben estar entubados con tubos endotraqueales (ET) o de traqueostomía (Trach) con un diámetro interno (ID) de entre 6,0 mm y 10,0 mm. Los pacientes deben presentar un acoplamiento neuroventilatorio satisfactorio y un impulso inspiratorio estable y sostenible.

C.3 Definiciones de los símbolos de seguridad

Esta sección contiene información sobre seguridad para los usuarios, que deberán actuar siempre con la precaución adecuada cuando utilicen el respirador.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVERTENCIA</td>
<td>Las advertencias alertan a los usuarios de posibles consecuencias graves (muerte, lesión o acontecimientos adversos) para el paciente, el usuario o el entorno.</td>
</tr>
<tr>
<td>Precaución</td>
<td>Las precauciones alertan a los usuarios para que actúen con el cuidado apropiado a fin de hacer un uso seguro y eficaz del producto.</td>
</tr>
<tr>
<td>Nota</td>
<td>Las notas proporcionan directrices o información adicionales.</td>
</tr>
</tbody>
</table>

ADVERTENCIA:
El respirador ofrece diversas opciones de ventilación. Durante el tratamiento del paciente, el médico debe seleccionar cuidadosamente el modo de ventilación y los parámetros que se usarán con dicho paciente, basándose en su criterio clínico, la situación y las necesidades de cada paciente, y los beneficios, las limitaciones y las características de cada opción de administración respiratoria. Dado que la situación del paciente cambia con el tiempo, evalúe periódicamente los modos y parámetros elegidos a fin de determinar si estos son o no los mejores para las necesidades actuales del paciente.
ADVERTENCIA:
PAV+ no es un tipo de respiración disponible en la ventilación no invasiva (NIV). No utilice interfaces de pacientes no invasivas, como máscaras, cánulas nasales, tubos ET sin manguitos, etc., ya que las fugas asociadas a dichas interfaces pueden tener como consecuencia un exceso de asistencia y molestias para el paciente.

ADVERTENCIA:
El circuito respiratorio y la vía aérea artificial no deben presentar fugas. Las fugas pueden causar un exceso de asistencia por parte del respirador y molestias al paciente.

ADVERTENCIA:
Asegúrese de que los umbrales de alarma de volumen corriente máximo y mínimo se definen adecuadamente, ya que una sobrestimación de la compliancia pulmonar podría causar una situación de infrasistencia que produciría una administración de volúmenes corrientes inferiores a los óptimos.

C.4 PAV+

ADVERTENCIA:
Asegúrese de que no hay fugas significativas en el circuito respiratorio ni en torno al manguito de la vía aérea artificial. Las fugas significativas pueden afectar al rendimiento de la opción PAV+ y a la precisión de los cálculos de resistencia (R) y elastancia (E).

ADVERTENCIA:
No utilice circuitos respiratorios de silicona con la opción PAV+: el comportamiento elástico de un circuito de silicona al inicio de la espiración puede causar oscilaciones del flujo por presión, lo que ocasiona subestimaciones de la resistencia del paciente.

El acto de la inspiración exige que los músculos inspiratorios del paciente generen un gradiente de presión suficiente entre la boca y los alvéolos para arrastrar el gas respiratorio e inflar los pulmones. Parte de este gradiente de presión se disipa a medida que el gas se desplaza a través de la vía aérea artificial y las vías aéreas conductoras del paciente, y parte del gradiente de presión desaparece durante el inflado de los pulmones y el tórax. Cada elemento de disipación de la presión se caracteriza por una propiedad mensurable: la resistencia de las vías aéreas artificial y del paciente y la compliancia (o elastancia) de los pulmones y el tórax.
El software PAV+ utiliza información específica, incluida la resistencia de la vía aérea artificial, la resistencia de las vías aéreas del paciente, la compliancia de los pulmones y el tórax, el flujo inspiratorio instantáneo y el volumen pulmonar, y el parámetro % Supp para calcular la presión instantánea que se debe aplicar en el puerto de conexión del paciente (puerto en “Y” del paciente). El software PAV+ calcula aleatoriamente la resistencia y la compliancia del paciente aproximadamente cada cuatro o diez respiraciones. Cada cinco (5) ms, el software calcula el flujo pulmonar, basándose en la estimación del flujo en el circuito en “Y” del paciente, y el volumen pulmonar, basándose en el valor integral del flujo pulmonar estimado.

PAV+ empieza a contribuir en la inspiración cuando aparece flujo (generado por los músculos inspiratorios del paciente) en el circuito en “Y” del paciente. Si el paciente detiene la inspiración, la asistencia también se detiene. Cuando comienza el flujo inspiratorio, el software PAV+ monitoriza el flujo y el volumen instantáneos cada 5 ms y aplica la presión calculada para superar una proporción (determinada por el parámetro % Supp) de las pérdidas de presión causadas por las resistencias de las vías aéreas artificial y del paciente y la compliancia de los pulmones y el tórax.

Puesto que el algoritmo PAV+ no conoce la mecánica del paciente cuando se selecciona el tipo de respiración PAV+, el software realiza una rutina de inicio para obtener los datos iniciales. Al inicio, el software PAV+ administra cuatro respiraciones PAV+ consecutivas, cada una de las cuales incluye una maniobra de pausa inspiratoria final que calcula la resistencia y la compliancia del paciente. No obstante, la primera respiración se administra utilizando la resistencia prevista para la vía aérea artificial y cálculos conservadores sobre la resistencia y la compliancia del paciente, basándose en el PBW del paciente.

En cada una de las tres siguientes respiraciones PAV+ se realiza el promedio de los valores fisiológicos reducidos gradualmente y los valores de resistencia y compliancia estimados a partir de la respiración anterior, ponderando las estimaciones previas cada vez menos con cada respiración sucesiva, y produciendo estimaciones más fiables sobre la resistencia y la compliancia. La quinta respiración PAV+ (la primera respiración que no es de inicio) se administra usando los cálculos finales con el parámetro de % Supp definido por el profesional sanitario. Una vez que ha concluido el inicio, el software PAV+ aplica aleatoriamente una respiración con maniobra cada cuatro o diez respiraciones desde la última respiración con maniobra para recalcular la resistencia y compliancia del paciente. Siempre se realiza el promedio de los nuevos valores y los anteriores.

La opción PAV+ muestra gráficamente los cálculos de presión pulmonar del paciente (PEEP intrínseca), compliancia del paciente, resistencia del paciente, resistencia total, trabajo inspiratorio total, trabajo inspiratorio del paciente, trabajo inspiratorio elástico (indicador del trabajo de pulmones y tórax) y trabajo de resistencia inspiratorio.
El parámetro % Supp va desde un mínimo del 5 % (el respirador realiza un 5 % del trabajo inspiratorio y el paciente realiza el 95 %) hasta un máximo del 95 % (el respirador realiza un 95 % del trabajo y el paciente realiza un 5 %), ajustable en incrementos del 5 %.

La opción PAV+ incluye además límites de alarma, verificaciones de seguridad y verificaciones lógicas que rechazan los valores no fisiológicos correspondientes a la resistencia y la compliancia del paciente, así como los datos inadecuados.

Se pueden ajustar el tipo y el volumen de humidificación tras procesar un SST, sin embargo el respirador hace suposiciones al calcular la resistencia y complanicia si se realizan estos cambios sin realizar el SST. Para una administración de la respiración óptima, execute SST tras cambiar el tipo de humidificación y el volumen del humidificador.

C.4.1 Configuración de PAV+

Para configurar PAV+:

1. En la pantalla de configuración del respirador, introduzca el sexo y la altura o el PBW del paciente.
2. Toque tipo de vent. INVASIVE (INVASIVA).
3. Toque el modo SPONT (Espontáneo).
4. Toque PAV+ para seleccionar el tipo espontáneo.
5. Toque el tipo de trigger que desea (P-TRIG o V-TRIG).
6. Seleccione el tipo de tubo
7. Seleccione el ID del tubo. Inicialmente, aparece un valor predeterminado basado en el PBW introducido en el inicio del respirador. Si este ID no es correcto para la vía aérea que se está utilizando, gire el botón giratorio y ajuste el parámetro de ID.

Nota:
Si el operario selecciona un diámetro interno que no corresponde con los intervalos de los pares PBW/ID de tubo recogidos en la tabla siguiente, toque Continuar para ignorar el parámetro de ID del tubo. Si se intenta elegir un ID de tubo inferior a 6,0 mm o superior a 10 mm, se alcanza un límite estricto, ya que PAV+ no está diseñado para su uso con tubos menores de 6,0 mm o mayores de 10,0 mm. Si se toca Descartar, el parámetro se mantiene con el valor del último ID de tubo seleccionado. Toque Aceptar o Aceptar TODO para aplicar los nuevos parámetros, o el botón Cancelar para cancelarlos.
8. Continúe configurando el respirador como se describe en el Capítulo 4 de este manual.

Nota:
Si Leak Sync está actualmente habilitado, se deshabilita cuando se selecciona PAV+.

![Figura C-1. Pantalla de configuración del respirador](image)

Nota:
Cuando el respirador se utiliza en el mismo paciente ventilado previamente con PAV+, la GUI muestra un icono de atención y el tipo de tubo y el ID usado previamente, como recordatorio para que el médico revise dichos parámetros durante la configuración del respirador.

C.4.2 PBW e ID del tubo

El respirador utiliza valores de "límite flexible" y "límite estricto" para los diámetros internos de tubo estimados basados en el PBW. Los límites flexibles son ajustes del respirador que han alcanzado sus límites superiores o inferiores recomendados. A la hora de ajustar el tamaño del tubo, si el diámetro interno no coincide con un peso corporal previsto válido, aparece el botón **Continuar**. Configurar el respirador más allá de dichos límites inferiores exige que el operador acepte el mensaje tocando **Continuar** antes de seguir ajustando el tamaño del tubo. El límite a partir del cual el ID del tubo no se puede ajustar se denomina límite estricto, y el respirador emite un tono de entrada no válida cuando se alcanza el límite estricto.
ADVERTENCIA:
Asegúrese de que se ha introducido el tamaño de ID correcto para la vía aérea artificial. Puesto que PAV+ amplifica el flujo, introducir un ID de vía aérea menor al real hace que la asistencia de la presión basada en el flujo proporcione un excesivo soporte al paciente y podría causar una sobreasistencia transitoria en valores elevados del % Supp. Por el contrario, introducir un ID mayor del real tiene como resultado una infrasistencia. El software PAV+ monitoriza los parámetros correspondientes al PBW y a la vía aérea artificial. Si los parámetros de PBW y DI del tubo no corresponden con los pares de intervalos de PBW/DI de tubo anteriores, confirme o corrija los parámetros. La confirmación o corrección del tamaño de ID real minimiza la probabilidad de que PAV+ ofrezca un exceso o un defecto de asistencia.

Para aplicar nuevos parámetros para la vía aérea artificial, siga los pasos a continuación:
1. Toque Config. Resp. en la parte inferior izquierda de la pantalla de la GUI.
2. Toque Tipo de tubo y gire el botón giratorio para seleccionar Trach o ET para definir el tipo de tubo.
3. Toque ID del tubo y gire el botón giratorio para definir el ID del tubo.
4. Toque Aceptar o Aceptar TODO para aplicar los nuevos parámetros, o Cancelar para cancelarlos.

Para aplicar los nuevos parámetros del humidificador
1. Toque la pestaña Más parámetros.
2. Toque el botón apropiado para el tipo de humidificación.
3. Para los tipos de humidificación no HME, toque Volumen humidificador y gire el botón giratorio para ajustar el volumen del humidificador (vacío).
4. Toque Aceptar TODO para aplicar los cambios.

ADVERTENCIA:
Para garantizar la precisión de las respiraciones PAV+ y las mediciones de espirometría, realice un SST después de cualquier cambio en el tipo de humidificación o de los parámetros de volumen de humidificación. Asegúrese de que se usa el circuito indicado con la prueba SST.
C.4.3 **Ajuste de los parámetros de apnea**

Tras aceptar los parámetros de PAV+, toque la pantalla Config. apnea. Ajuste los parámetros de apnea según sea necesario.

C.4.4 **Ajuste de los parámetros de alarma**

PAV+ incluye los parámetros de límite de alarma de las alarmas de volumen corriente inspirado máximo (2VTI) y volumen corriente espontáneo espirado mínimo (4VTESPONT). Consulte **Alarmas PAV+**, p. C-10.

Nota:

Debido a la variabilidad respiratoria que permite PAV+, la alarma \$ V_{TE \ SPONT} \$ está APAGADA por defecto para minimizar las alarmas molestas. Para supervisar la ventilación adecuada, utilice en cambio la situación de alarma \$ V_{ETOT} \$.

Para ajustar los parámetros de alarma

1. Toque la pestaña Alarma para ver los parámetros de alarma actuales.

2. Toque el botón para cada límite de alarma que requiera un cambio.

3. Gire el botón giratorio para ajustar el valor del límite de alarma. Los valores propuestos aparecen resaltados. Puede cambiar más de un límite de alarma antes de aplicar los cambios.

4. Toque **Aceptar** o **Aceptar TODO** para aplicar los nuevos parámetros, o el botón Cancelar para cancelarlos.

C.4.5 **Parámetros de respirador PAV+**

Consulte la tabla **Intervalo y resolución de la configuración del respirador**, en el **Capítulo 11** de este manual para ver un resumen de los parámetros de respirador PAV+ para los parámetros siguientes:

- $ %_{Supp} $

- Sensibilidad espiratoria ($ E_{SENS} $)

- Tipo de tubo

- ID del tubo

- Tipo de trigger
C.4.6 Parámetros de alarma de PAV+

Consulte la tabla *Intervalo y resolución de la configuración de las alarmas*, en el Capítulo 11 de este manual para ver un resumen de los siguientes parámetros de alarma cuando PAV+ está activo:

- Límite de volumen corriente inspirado máximo (\(\uparrow V_T\))
- Volumen corriente espontáneo espirado mínimo (\(\downarrow V_{TE\ SPONT}\))

C.4.7 Datos monitorizados

Consulte *Intervalo, resolución y precisión de los datos del paciente* en el Capítulo 11 de este manual para conocer los siguientes datos monitorizados asociados con PAV+:

- Compliancia pulmonar basada en PAV (\(C_{PAV}\))
- Elastancia pulmonar basada en PAV (\(E_{PAV}\))
- Resistencia pulmonar basada en PAV (\(R_{PAV}\))
- Resistencia total de las vías aéreas basada en PAV (\(R_{TOT}\))
- Volumen corriente inspirado (\(V_T\))

Consulte la tabla que aparece a continuación para ver los límites absolutos de los datos monitorizados.

<table>
<thead>
<tr>
<th>PBW (kg)</th>
<th>(R_{PAV}) (cmH(_2)O/L/s)</th>
<th>(C_{PAV}) (mL/cmH(_2)O)</th>
<th>(E_{PAV}) (cmH(_2)O/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>de 0 a 50</td>
<td>de 2,5 a 29</td>
<td>de 34 a 400</td>
</tr>
<tr>
<td>35</td>
<td>de 0 a 44</td>
<td>de 3,5 a 41</td>
<td>de 24 a 286</td>
</tr>
<tr>
<td>45</td>
<td>de 0 a 31</td>
<td>de 4,5 a 52</td>
<td>de 19 a 222</td>
</tr>
<tr>
<td>55</td>
<td>de 0 a 24</td>
<td>de 5,5 a 64</td>
<td>de 16 a 182</td>
</tr>
<tr>
<td>65</td>
<td>de 0 a 20</td>
<td>de 6,4 a 75</td>
<td>de 13 a 156</td>
</tr>
<tr>
<td>75</td>
<td>de 0 a 18</td>
<td>de 7,4 a 87</td>
<td>de 11 a 135</td>
</tr>
<tr>
<td>85</td>
<td>de 0 a 17</td>
<td>de 8,4 a 98</td>
<td>de 10 a 119</td>
</tr>
<tr>
<td>95</td>
<td>de 0 a 16</td>
<td>de 9,4 a 110</td>
<td>de 9,1 a 106</td>
</tr>
<tr>
<td>105</td>
<td>de 0 a 15</td>
<td>de 10 a 121</td>
<td>de 8,3 a 100</td>
</tr>
</tbody>
</table>
C.4.8 Alarmas PAV+

Consulte Resumen de las alarmas no técnicas en el Capítulo 6 de este manual para ver un resumen de las siguientes alarmas asociadas con PAV+:

- Presión máxima del circuito (P_{PEAK})
- Presión máxima del respirador (P_{VENT})
- INICIO PAV DEMASIADO LARGO
- $R_{Y C}$ DE PAV NO EVALUADAS
- VTI

C.5 Parámetros/Guía del respirador

ADVERTENCIA:
Para un rendimiento óptimo de PAV+, es importante seleccionar un tipo de humidificación, tipo de tubo y tamaño de tubo que coincidan con los que utiliza el paciente.

La presión instantánea generada en el circuito en “Y” del paciente durante la inspiración es una función del esfuerzo del paciente, el parámetro % Supp, el tipo y el tamaño del tubo, la resistencia y la elastancia del paciente y el flujo de gas y el volumen pulmonar medidos de forma instantánea. Defina P_{PEAK} para generar una presión de circuito segura, por encima de la cual son apropiados el truncamiento y el anuncio de la alarma.
Nota:
PAV+ cuenta con un límite integrado de compensación de presión máxima ($\uparrow P_{COMP}$) que está determinado por el parámetro $\uparrow P_{PEAK}$ menos 5 cmH$_2$O o 35 cmH$_2$O, el valor que sea inferior. Si la presión inspiratoria en el circuito en “Y” del paciente (P_{wye}) alcanza el límite 1PCOMP, la inspiración se trunca y el respirador pasa a la espiración. Consulte p. C-20 para ver más detalles relativos a $\uparrow P_{COMP}$ y $\uparrow P_{PEAK}$.

C.5.1 Rendimiento especificado

El rendimiento con PAV+ es ± 0,5 Julios/litro (J/L), comparado con el trabajo medido durante la inspiración a un nivel del 75 % Support (% Supp). El trabajo se calcula en todo el intervalo inspiratorio. En términos de ventilación, el trabajo (W) se expresa como:

$$W = \frac{k \times \int p^i \times \dot{V}^i dt}{\int \dot{V}^i dt}$$

- i: iésimo intervalo de muestra (5 ms)
- \dot{V}: flujo [L/s]
- k: constante de conversión (0,098) [J/cmH$_2$O x L]
- p^i: presiones síncronas y combinadas desarrolladas por el respirador y por el paciente (P_{MUS}), [cmH$_2$O]

C.5.2 Representaciones gráficas en PAV+

Cuando PAV+ está activo (el modo es SPONT y el tipo de respiración espontánea es PAV+), aparece automáticamente una gráfica de trabajo respiratorio (WOB) (Consulte Representaciones gráficas en PAV+, p. C-13) que muestra:

- un indicador que muestra la proporción de trabajo inspiratorio del paciente para superar la elastancia (E) de los pulmones y el tórax y la resistencia combinada (R) de las vías aéreas artificial y del paciente.

- estimaciones del trabajo respiratorio relativo a los valores normal, inferior al normal y superior al normal, incluidos:
 - el trabajo respiratorio estimado (en J/L) durante la inspiración (WOB$_{PT}$) y
 - el trabajo respiratorio total estimado (en J/L) del paciente y del respirador durante la inspiración (WOB$_{TOT}$)
La información adicional de las representaciones gráficas incluye:

- un trazo “sombra” de la presión pulmonar estimada, mostrado como un área sólida superpuesta en la forma de onda de la presión del circuito y
- estimaciones de los datos del paciente basados en PAV, incluidas la resistencia del paciente (R_{PAV}), la compliancia pulmonar (C_{PAV}), y la PEEP intrínseca ($PEEP_{PAV}$).

Nota:

Las representaciones gráficas de la presión pulmonar y el trabajo respiratorio del paciente no son mediciones reales y se extraen de ecuaciones que utilizan estimaciones de presión y flujo filtradas.

La gráfica WOB solo está disponible cuando se seleccionan el modo SPONT y el tipo respiratorio PAV+. El trazo sombra se puede habilitar o deshabilitar al seleccionar una representación gráfica, o después de pausar una representación.

El hecho de pausarla no afecta a la gráfica WOB, pero detiene el trazo sombra. Una vez pausada, el operador puede habilitar o deshabilitar el trazo sombra, y después ver la forma de onda pausada de nuevo con o sin el trazo sombra.

C.5.3 Términos y definiciones WOB

La tabla siguiente ofrece una definición y una descripción de cada uno de los términos de trabajo respiratorio (WOB).

Tabla C-3. Términos de trabajo respiratorio de PAV+

<table>
<thead>
<tr>
<th>Término WOB</th>
<th>Definición</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOB$_{TOT}$</td>
<td>Trabajo inspiratorio total</td>
<td>Con el tipo respiratorio PAV+, el paciente y el respirador siempre comparten el trabajo respiratorio. El WOB${TOT}$ porcentual realizado por el respirador equivale siempre al parámetro de % Supp y el WOB${TOT}$ porcentual realizado por el paciente siempre equivale a (100 menos el parámetro % Supp). El WOB$_{TOT}$ es la suma del trabajo para mover el gas respiratorio a través de la vía aérea artificial y las propias vías aéreas del paciente más el trabajo por inflar el pulmón-tórax elásticos del paciente.</td>
</tr>
<tr>
<td>WOB$_{PT}$</td>
<td>Trabajo respiratorio del paciente</td>
<td>Parte del WOB$_{TOT}$ realizado por el paciente.</td>
</tr>
<tr>
<td>WOB$_{PT}^{ELÁSTICO}$</td>
<td>Trabajo inspiratorio elástico</td>
<td>Parte del WOB$_{PT}$ atribuido al inflado de los pulmones y tórax elásticos del paciente.</td>
</tr>
<tr>
<td>WOB$_{PT}^{RESISTENCIA}$</td>
<td>Trabajo inspiratorio de resistencia</td>
<td>Parte del WOB$_{PT}$ atribuido al gas respiratorio que se mueve a través de los elementos de resistencia en la ruta del gas.</td>
</tr>
</tbody>
</table>
C.5.4 Descripción técnica

Cuando se selecciona PAV+, el respirador actúa como un amplificador inspiratorio, ayudando proporcionalmente a la capacidad generadora de presión de los músculos inspiratorios (P_{MUS}).
Ecuación de movimiento del gradiente de presión

Durante la respiración espontánea, P_{MUS} genera un gradiente de presión que impulsa el gas respiratorio a través de la vía aérea artificial y las vías aéreas del paciente hacia los pulmones y el tórax elásticos, y se describe mediante la ecuación de movimiento:

\[
P_{MUS} = \dot{V}_L \times R + V_L \times E_{LUNG-TORAX}
\]

Estimaciones de resistencia y elastancia del paciente

Si las estimaciones del software PAV+ sobre la resistencia y elastancia del paciente (R_{PAW} y E_{PAW}) se mantienen estables, esta ecuación podría reescribirse de la siguiente manera:

\[
P_{MUS}^i = \dot{V}_L^i \times R_{airway}^i + \dot{V}_L^i \times K_1 + V_L^i \times K_2
\]
\(P_{MU} \) se puede calcular entonces en cada periodo de control si el \(V_{L} \), la \(R_{vías aéreas} \) y el \(V_{L} \) también se conocen.

Mediciones de presión individual válidas

Durante cualquier inspiración, cada uno de los elementos de presión que conforman la \(P_{MU} \) se pueden expresar como:

ECUACIÓN 3

\[
P_{MU} = P_{FLOW_{ARTIFICIAL AIRWAY}} + P_{FLOW_{PATIENT}} + P_{VOLUME_{PATIENT}}
\]

Las ecuaciones 2 y 3 proporcionan una estructura para explicar cómo funciona PAV+. El profesional sanitario introduce el tipo y el tamaño de vía aérea artificial que se está usando y el software utiliza esta información para calcular la resistencia de la vía aérea artificial con cualquier flujo pulmonar.

Si se aplica una maniobra de pausa especial al final de las inspiraciones seleccionadas, se obtiene la información que el software necesita para calcular la resistencia (\(R_{PAV} \)) y la compliancia (\(C_{PAV} \)) del paciente, que se convierte en elastancia (\(E_{PAV} \)). Inmediatamente después del fin del evento de pausa, el software captura los valores simultáneos para \(P_{PULMÓN} \) y \(V_{E} \), que da una estimación de la \(R_{TOT} \) con el flujo calculado.

Todos los datos sin procesar están sujetos a verificaciones lógicas, y los cálculos de \(R_{PAV} \) y \(C_{PAV} \) están sujetos a verificaciones fisiológicas adicionales. Los cálculos de \(R_{PAV} \) y \(C_{PAV} \) se descartan si falla alguna de las verificaciones lógicas o fisiológicas. Si se rechaza la \(C_{PAV} \) también se rechaza la \(R_{PAV} \).
Se requieren estimaciones de R_{PAV} y C_{PAV} válidas para la administración de la respiración, por lo que se actualizan constantemente realizando el promedio entre los valores nuevos y los anteriores. Este proceso de cálculo de los valores promedio suaviza los datos y evita cambios bruscos en la administración de la respiración. Si se rechazan los nuevos valores de R_{PAV} y C_{PAV}, los valores previos se mantienen activos hasta la obtención de nuevos valores. El software PAV+ monitoriza el proceso de actualización y genera una situación de alarma que se intensifica si no se actualizan los antiguos valores.

Respiraciones con maniobras y % Supp

Durante PAV+, las respiraciones con maniobras se realizan aleatoriamente cada cuatro o diez respiraciones desde la última respiración con maniobra. Una respiración con maniobra es una inspiración PAV+ normal con una pausa en la inspiración final. Puesto que la actividad muscular se retrasa al menos durante 300 ms tras el final de la inspiración neural, el centro de control respiratorio del paciente no detecta la pausa. Con esta técnica, las respiraciones con maniobra se administran aleatoriamente, de manera que no se pueden reconocer ni predecir conscientemente.

Una respiración PAV+ comienza, tras el reconocimiento de una señal de trigger, con la detección del flujo en el circuito en “Y” del paciente. El ciclo de control y de muestra del respirador (el valor de i en la Ecuación 2) es lo bastante frecuente como para producir un seguimiento esencialmente constante de la inspiración del paciente. En cada iésimo intervalo, el software identifica un flujo pulmonar instantáneo (V_{IL}^i, que se ve dificultado por las resistencias de la vía aérea artificial y las vías aéreas del paciente) e integra este flujo para producir una estimación del volumen pulmonar instantáneo (V_{IL}, que es dificultado por el retroceso del pulmón y el tórax).

Con los valores del flujo pulmonar instantáneo y volumen pulmonar, el software PAV+ calcula cada uno de los elementos de la Ecuación 2, lo que produce el valor de P_{MUS} en cada iésimo intervalo.

En este punto, la Ecuación 2 y el análisis subsiguiente identifican que un paciente apropiado, ayudado por PAV+ y con una P_{MUS} activa (un requisito absoluto) permitirán al algoritmo, en tan solo unas respiraciones, obtener las estimaciones razonables de R_{PAV} y E_{PAV}. Una vez se han capturado estos datos fisiológicos (y durante un tiempo relativamente breve se mejoran y estabilizan) el algoritmo PAV+ replica la mecánica respiratoria del paciente, que permite así al respirador amplificar armoniosamente la P_{MUS}. El punto clave que se debe reconocer es que el esfuerzo respiratorio continuo del paciente “impulsa” el soporte PAV+: sin esfuerzo no hay soporte.
El parámetro de % Supp especifica la cantidad de presión basada en la resistencia y la elastancia que se debe aplicar en cada iénsimo intervalo en el circuito en “Y” del paciente.

Teniendo en cuenta la información anterior, se puede reescribir la ECUACIÓN 2 para incluir el parámetro de % Supp reconociendo que el V_L^i y el V_L^i son impulsados por el paciente y no por el respirador. (Es importante tener en cuenta que el respirador no está amplificando su propio flujo, solo el flujo generado por la PMUS).

ECUACIÓN 4

$$P_{\text{wye}}^i = S(V_L^i \times R_{\text{airway}}^i) + S(V_L^i \times K_1) + S(V_L^i \times K_2)$$

Gradiente de presión resultante

El gradiente de presión que impulsa el gas respiratorio hacia los pulmones del paciente viene determinado por la suma de la $P_{\text{cicuito en } 'Y'}^i$ y el esfuerzo inspiratorio del paciente, por tanto:

ECUACIÓN 5

$$\Delta P_{\text{GRADIENTE}}^i = P_{\text{wye}}^i + P_{\text{MUS}}^i$$

Nota:

- P_{wye}^i: Presión generada por el respirador en respuesta a los valores instantáneos de flujo pulmonar y volumen pulmonar en el circuito en “Y”. Este valor es la suma de cada uno de los tres elementos de presión (entre paréntesis) de la ecuación 4.

- P_{MUS}^i: Capacidad de generación de presión instantánea de los músculos inspiratorios del paciente.
c.5.5 Protección contra peligros

El software PAV+ está diseñado para reducir el riesgo de hiperinflación. La posibilidad de hiperinflación podría surgir si el software sobrestimase la resistencia real del paciente o subestimara la compliancia pulmón-tórax real del paciente (es decir, sobrestimara la elastancia real). Si el software no puede generar estimaciones válidas de R_{PAV} y C_{PAV}, no se puede iniciar PAV+. Si, tras el inicio, los valores de R_{PAV} y C_{PAV} no se pueden actualizar con nuevos valores válidos, los valores anteriores se vuelven menos fiables.

La estabilidad de PAV+ viene determinada principalmente por la relación entre la elastancia pulmonar real [$E_L (\text{real})$] y el volumen pulmonar real [$V_L (\text{real})$]. Aunque la P_i en el circuito (de resistencia) también desempeña una función, el debate siguiente se centra en el componente elástico.

En todos los volúmenes pulmonares, el estado real de los pulmones y el tórax se expresa mediante:

$$P_L^{\text{recoil}} = V_L^{(\text{true})} \times E_L^{(\text{true})}$$

P_L^{recoil}: Presión de retroceso pulmonar real ($P_i^{(\text{retroceso})}$)
$E_L^{(\text{true})}$: Elastancia pulmonar real ($E_L^{(\text{real})}$)
$V_L^{(\text{true})}$: Volumen instantáneo real de los pulmones
$V_L^{(\text{real})}$: Volumen pulmonar real

El exceso de inflación no se producirá siempre y cuando $P_i^{(\text{circuito})}$ en “Y” (elástica) $<$ $P_L^{(\text{retroceso})}$, lo que equivale a la desigualdad:

$$S[V_L^{(\text{estimado})} \times K_2] < V_L^{(\text{real})} \times E_L^{(\text{real})}$$

donde:

$$K_2 = E_{PAV}^{-1}$$

1. ver ecuaciones 2 y 4

C-18
Siempre que EPAV (estimada) = EPAV (real) y V_L^i (estimada) = V_L^i (real), entonces $P_{L_{retroceso}}^i > P_{circuito en “Y” en incluso con valores elevados de % Supp (es decir, entre un 85 % y un 95 %).

Esto significa que si la presión aplicada a los pulmones y al tórax nunca es superior a E_L (real) x V_L, el volumen pulmonar se colapsará si desaparece el flujo del circuito en “Y”. Siempre que EPAV (estimada) ≤ E_L (real), V_L^i (estimado) ≤ V_L^i (real), y RPAV (estimado) ≤ R_L (real), PMUS es el modulador de la Picircuito en “Y”.

La hiperinflación se produciría si la EPAV estimada fuera mayor que el valor real de E_L. Con un parámetro de % Supp alto, la Picircuito en “Y” (elástica) podría superar la $P_{L_{retroceso}}^i$, causando un flujo autogenerado en el circuito en “Y” del paciente, lo que a su vez generaría una inflación autogenerada de los pulmones. Este es en parte el motivo por el que el parámetro de % Supp está limitado al 95 %.

Del mismo modo, si la RPAV estimada superara el valor real de R_L en un parámetro % Supp alto, la $P_{circuito en “Y”}$ (resistente) podría superar el valor necesario para compensar la disipación de la presión en las vías aéreas artificial y del paciente, lo que produciría una hiperinflación temprana de los pulmones. Sin embargo, a medida que el flujo desciende tras el primer tercio de la inspiración, es muy probable que el efecto de hiperinflación desaparezca.

El software PAV+ incluye estas estrategias para minimizar la posibilidad de hiperinflación de los pulmones:

1. El parámetro de % Supp máximo está limitado al 95 %.

2. Se comprueba la lógica gráfica/matemática de los datos sin procesar de R_{PAV} y C_{PAV} y se verifican los valores mecánicos estimados comparándolos con los límites fisiológicos basados en el PBW. Estas verificaciones reducen la posibilidad de sobrestimar la resistencia del paciente o subestimar la compliancia del paciente, los que podría causar posibles excesos inflación.

3. El volumen corriente inspiratorio máximo (\bar{V}_{TI}) coloca un límite absoluto en la integral de flujo pulmonar (incluido el flujo de fugas), lo que iguala el volumen pulmonar. Si el valor de V_{TI} alcanza dicho límite, el respirador trunca la inspiración y pasa inmediatamente a la espiración.

4. El parámetro \bar{V}_{TI} establece un límite superior en el valor del componente $P_{VOLUMEN_{PACIENTE}}$ de la P^i circuito del paciente (ver Ecuaciones 3 y 4). Al comienzo de cada nueva inspiración, el software PAV+ calcula un valor para $P_{VOLUMEN_{PACIENTE}}$ de la siguiente manera:

$$P^*_{circuito en “Y”} (límite de umbral elástico) = 0,75 \times (V_{TI} \times E_{PAV})$$
donde P^* es el valor único para el límite de umbral elástico de P^i de "Y" que hará que el volumen pulmonar se amplíe hasta el 75 % de V_{TI}. Si P^i de "Y" es igual a P^* de "Y" (límite umbral elástico), el software deja de aumentar la P^i de "Y" (elástica). Esto significa que cualquier aumento adicional en el volumen pulmonar debe ser realizado por el paciente, lo que suele acelerar la conclusión del esfuerzo inspiratorio y evitar el truncamiento debido a que el volumen pulmonar alcanza el límite V_{TI}.

5. El límite de presión inspiratoria máximo ($\uparrow P_{\text{PEAK}}$) se aplica a todas las respiraciones y el software PAV.+ lo utiliza para detectar una situación de presión máxima de compensación ($\uparrow P_{\text{COMP}}$):

$$\uparrow P_{\text{COMP}} = \uparrow P_{\text{PEAK}} - 5 \text{ cmH}_2\text{O o } 35 \text{ cmH}_2\text{O, el valor más bajo}$$

Si se alcanza el límite $\uparrow P_{\text{PEAK}}$ ajustable por el usuario, el respirador trunca la inspiración y pasa de inmediato a la espiración. Si la P^i de "Y" (la presiónobjetivo del circuito en "Y" calculada en la Ecuación 4) iguala a $\uparrow P_{\text{COMP}}$ durante 500 ms, se trunca la inspiración y comienza la espiración. Además, cuando la P^i de "Y" es igual a $\uparrow P_{\text{COMP}}$, la P^i de "Y" está limitada a $\uparrow P_{\text{COMP}}$. Aunque esto congela el valor de la P^i de "Y", la actividad del paciente, como toser, podría llevar la P^i de "Y" hasta $\uparrow P_{\text{PEAK}}$, lo que podría fin a la inspiración.

El rápido aumento de la P^i de "Y" hasta el límite $\uparrow P_{\text{COMP}}$ se produciría probablemente en el primer tercio de la inspiración y solo si sobrestimó la R_{PAV} y el % Supp se definió por encima del 85 %. La situación $\uparrow P_{\text{COMP}}$ protege contra del exceso de inflación debido a la sobrestimación de la R_{PAV}.

6. El parámetro % Supp va del 5 al 95 % en incrementos del 5 %. La reducción del nivel de soporte reduce la posibilidad de exceso de inflación. Un descenso significativo produciría una sensación de soporte inadecuado, y el paciente absorbería el trabajo inspiratorio adicional o requeriría un aumento en el nivel de soporte.

Un aumento significativo podría causar un aumento en el valor generado por el respirador para la P^i de "Y", lo que a su vez podría hacer que la P^i de "Y" alcanzara $\uparrow P_{\text{COMP}}$ y producir un desajuste entre el paciente y el respirador. Para minimizar esta posibilidad, el software PAV+ limita el aumento real del soporte a incrementos del 10 % cada dos respiraciones hasta alcanzar el nuevo parámetro.
7. La espirometría se mantiene activa durante el funcionamiento de PAV+. $\uparrow V_{ET}$ se puede definir lo bastante alto como para permitir respiraciones con suspiro espontáneas, mientras que $\downarrow V_{ET}$ y $\uparrow V_{ET}$ permanecen activos para revelar cambios en la ventilación por minuto.

Como PAV+ no puede funcionar sin estimaciones válidas de la R_{PAV} y la C_{PAV}, y puesto que dichos valores se desconocen cuando se inicia PAV+, una rutina de inicio obtiene dichos valores durante cuatro respiraciones con maniobra que incluyen una pausa inspiratoria que proporciona los datos sin procesar correspondientes a la R_{PAV} y la C_{PAV} y ambos valores estimados deben ser válidos. Si algún valor no es válido durante cualquiera de las cuatro respiraciones de inicio, el software programa una respiración con maniobra de sustitución en la siguiente respiración. Consulte PAV+, p. C-3.

Se activa una alarma de prioridad baja si transcurre un intervalo de 45 segundos sin estimaciones válidas correspondientes a la R_{PAV} y la C_{PAV}. Si la situación se mantiene durante 90 segundos, la alarma se intensifica hasta la prioridad media. Si la situación se mantiene durante 120 segundos, la alarma se intensifica hasta la prioridad alta. Las alarmas $\downarrow V_{ET}$ y $\uparrow f_{TOT}$ también están asociadas con esta situación.

De manera similar, si la R_{PAV} y la C_{PAV} no se pueden actualizar con valores válidos tras un inicio PAV+ satisfactorio, se activa una alarma de prioridad baja en caso de que la situación se mantenga durante 15 minutos. Si aun así no se pueden actualizar los valores con otros valores válidos tras 30 minutos, la alarma se intensifica hasta la prioridad media.

8. Si PAV+ calcula una resistencia pulmonar máxima tras un fuerte incremento de la forma de onda del flujo espiratorio, se utiliza un valor de resistencia basada en PBW. Consulte la forma de onda y la tabla que aparecen a continuación.
<table>
<thead>
<tr>
<th>PBW (kg)</th>
<th>Resistencia (cmH₂O/L/s)</th>
<th>PBW (kg)</th>
<th>Resistencia (cmH₂O/L/s)</th>
<th>PBW (kg)</th>
<th>Resistencia (cmH₂O/L/s)</th>
<th>PBW (kg)</th>
<th>Resistencia (cmH₂O/L/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18,1</td>
<td>43</td>
<td>13,5</td>
<td>61</td>
<td>11,3</td>
<td>79</td>
<td>10,1</td>
</tr>
<tr>
<td>26</td>
<td>17,7</td>
<td>44</td>
<td>13,3</td>
<td>62</td>
<td>11,2</td>
<td>80</td>
<td>10,1</td>
</tr>
<tr>
<td>27</td>
<td>17,4</td>
<td>45</td>
<td>13,2</td>
<td>63</td>
<td>11,1</td>
<td>de 81 a 150</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>17,1</td>
<td>46</td>
<td>13,0</td>
<td>64</td>
<td>11,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>16,8</td>
<td>47</td>
<td>12,9</td>
<td>65</td>
<td>10,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>16,5</td>
<td>48</td>
<td>12,7</td>
<td>66</td>
<td>10,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>16,2</td>
<td>49</td>
<td>12,6</td>
<td>67</td>
<td>10,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>15,9</td>
<td>50</td>
<td>12,4</td>
<td>68</td>
<td>10,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>15,7</td>
<td>51</td>
<td>12,3</td>
<td>69</td>
<td>10,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>15,4</td>
<td>52</td>
<td>12,2</td>
<td>70</td>
<td>10,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>15,2</td>
<td>53</td>
<td>12,1</td>
<td>71</td>
<td>10,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>14,9</td>
<td>54</td>
<td>12,0</td>
<td>72</td>
<td>10,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>14,7</td>
<td>55</td>
<td>11,8</td>
<td>73</td>
<td>10,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>14,5</td>
<td>56</td>
<td>11,7</td>
<td>74</td>
<td>10,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>14,3</td>
<td>57</td>
<td>11,6</td>
<td>75</td>
<td>10,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>14,1</td>
<td>58</td>
<td>11,5</td>
<td>76</td>
<td>10,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>13,9</td>
<td>59</td>
<td>11,4</td>
<td>77</td>
<td>10,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>13,7</td>
<td>60</td>
<td>11,3</td>
<td>78</td>
<td>10,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Si el software NeoMode 2.0 está instalado, consulte PT00047284.
Página dejada en blanco intencionadamente
E Flujo proximal

E.1 Descripción general

Este apéndice describe el funcionamiento de la opción de flujo proximal del respirador serie 980 de Puritan Bennett™. La opción de flujo proximal se utiliza exclusivamente para monitorizar los flujos, presiones y volúmenes corriente, y no controla en modo alguno estos parámetros.

El sensor de flujo proximal está diseñado para medir los flujos, presiones y volúmenes corriente más bajos en el circuito en “Y” del paciente normalmente asociados a los pacientes neonatales ventilados de forma invasiva.

Para obtener información sobre la configuración general del respirador y los parámetros generales, consulte el Capítulo 4 de este manual.

E.2 Uso previsto

La opción de flujo proximal se utiliza para medir los flujos, presiones y volúmenes corriente de pacientes neonatales ventilados de forma invasiva con pesos corporales previstos de 0,3 kg (0,66 lb) a 7,0 kg (15,4 lb), con tamaños de tubo ET de 2,5 mm a 4,0 mm. Además, la opción de software NeoMode 2.0 debe estar instalada en el respirador.

E.3 Descripción de la opción de flujo proximal

La opción de flujo proximal mide la presión, el flujo y el volumen en el circuito en “Y” del paciente. Hay un ensamblaje de placas de circuito impreso (PCBA), que contiene los componentes electrónicos y neumáticos de la opción de flujo proximal, instalado en la tarjeta opcional de host del respirador. Los datos que mide el sensor de flujo proximal se muestran en la GUI a efectos de monitorización y no para controlar el respirador. Si el respirador tiene un sensor de flujo proximal instalado, tanto las mediciones del flujo proximal como las de la presión proximal se obtienen y muestran en la GUI.

Además, cuenta con un control de purga para mantener limpias las vías neumáticas a fin de obtener mediciones precisas de la presión. Cuando se solicita una purga manual, el respirador no permitirá otra purga al menos durante 30 segundos. Consulte Calibración del sensor y purga de la vía del sensor, p. E-8 para obtener más información sobre la función de purga.
E.3.1 Componentes de la opción de flujo proximal

La opción de flujo proximal consta de los siguientes componentes:

PCBA de la opción de flujo proximal — Instalado en la tarjeta opcional de host en la BDU, este ensamblaje de placas de circuito impreso consta de un sensor de presión para medir la diferencia de presión que existe entre las vías del sensor de flujo y de las interfaces necesarias para convertir las mediciones analógicas del sensor de flujo proximal en datos digitales mostrados por el respirador. El PCBA además consta de válvulas y un acumulador para purgar los bloqueos que se pueden producir en las vías del sensor.

Sensor de flujo proximal — El sensor de flujo proximal de Puritan Bennett es necesario para el uso de la opción de flujo proximal. El sensor se instala cerca del circuito en “Y” del paciente. El otro extremo del sensor se conecta al panel frontal del respirador situado detrás de una puerta transparente diseñada para proteger el punto de conexión de la exposición a derrames o líquidos pulverizados durante la limpieza y desinfección.

Figura E-1. Sensor de flujo proximal

![Imagen del sensor de flujo proximal]
E.4 Definiciones de los símbolos de seguridad

Esta sección contiene información sobre seguridad para los usuarios, que deben actuar siempre con la precaución adecuada cuando utilicen el respirador.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADVERTENCIA</td>
</tr>
<tr>
<td></td>
<td>Precaución</td>
</tr>
<tr>
<td></td>
<td>Nota</td>
</tr>
</tbody>
</table>

ADVERTENCIA
Las advertencias alertan a los usuarios de posibles consecuencias graves (muerte, lesión o acontecimientos adversos) para el paciente, el usuario o el entorno.

Precaución
Las precauciones alertan a los usuarios para que actúen con el cuidado apropiado a fin de hacer un uso seguro y eficaz del producto.

Nota
Las notas proporcionan directrices o información adicionales.

E.5 Requisitos de software/hardware

La opción de flujo proximal precisa de la instalación de la opción de software NeoMode 2.0 o utilizarse un respirador neonatal 980 de Puritan Bennett™. Los detalles relacionados con el software NeoMode 2.0 pueden encontrarse en el NeoMode 2.0.

E.6 Información sobre seguridad

ADVERTENCIA:
El respirador serie 980 de Puritan Bennett™ contiene ftalatos. Si se usa como se indica, puede producirse una exposición muy limitada a cantidades traza de ftalatos. No existen datos clínicos claros de que este grado de exposición aumente los riesgos clínicos. Sin embargo, a fin de minimizar el riesgo de exposición a ftalatos en niños y mujeres embarazadas o en periodo de lactancia, este producto debe emplearse únicamente como se indica.
ADVERTENCIA:
El respirador ofrece diversas opciones de ventilación. Durante el tratamiento del paciente, el médico debe seleccionar cuidadosamente el modo de ventilación y los parámetros que se usarán con dicho paciente, basándose en su criterio clínico, la situación y las necesidades de cada paciente, y los beneficios, las limitaciones y las características de cada opción de administración respiratoria. Dado que la situación del paciente cambia con el tiempo, evalúe periódicamente los modos y parámetros elegidos a fin de determinar si estos son o no los mejores para las necesidades actuales del paciente.

ADVERTENCIA:
Inspeccione el sensor de flujo proximal antes de su uso y si el cuerpo, los tubos o el conector del sensor están dañados, ocluidos o rotos, no lo utilice.

ADVERTENCIA:
No utilice el sensor de flujo proximal si los tubos están doblados.

ADVERTENCIA:
Antes de ventilar al paciente con la opción del flujo proximal, realice un SST con la configuración exacta que se va a utilizar en el paciente. Entre las opciones se incluyen el circuito del paciente neonatal, el sensor de flujo proximal y todos los accesorios que se van a utilizar con el circuito del paciente. Si falla alguna prueba en el SST del sensor de flujo proximal, compruebe si hay fugas u oclusiones en el circuito del paciente y en el sensor de flujo proximal y, si es necesario, sustituya el sensor de flujo. Si el SST continúa fallando, indica que existe un fallo o fuga dentro del hardware del flujo proximal, lo que puede afectar a su precisión o propiciar la contaminación cruzada; por consiguiente, debe sustituir el hardware del flujo proximal.

ADVERTENCIA:
Si se cambian los accesorios del respirador, la resistencia y compliancia del sistema pueden verse afectadas. Por ello, no añada ni quite accesorios después de realizar el SST.

ADVERTENCIA:
Si la opción de flujo proximal no responde tal como se describe en este apéndice, suspenda su uso hasta que el personal cualificado apruebe de nuevo su uso.

ADVERTENCIA:
El sensor de flujo proximal mide flujo de gas en el circuito en “Y” del paciente. El volumen real de gas administrado al paciente puede verse afectado por fugas del sistema entre el paciente y el sensor de flujo proximal, como por ejemplo las fugas que pueden producirse si se utilizan tubos endotraqueales sin balón.
ADVERTENCIA:
Coloque el sensor de flujo proximal exactamente como se describe en este apéndice o en las instrucciones de uso suministradas con el sensor.

ADVERTENCIA:
No coloque los cables o tubos del sensor de flujo proximal de modo que pueda causar atrapamiento, estrangulación o extubación, lo que podría causar hipercarpnia o hipoxemia. Utilice los sujetacables suministrados para reducir este riesgo.

ADVERTENCIA:
Para reducir el riesgo de extubación o desconexión, no aplique tensión en el sensor de flujo proximal ni lo gire estirando del tubo del sensor.

ADVERTENCIA:
No instale el sensor de flujo proximal en el circuito de paciente si el sensor no está también conectado a la BDU.

ADVERTENCIA:
El exceso de humedad en el tubo del sensor de flujo proximal puede afectar a la precisión de las mediciones. Compruebe periódicamente si hay exceso de humedad o acumulación de secreciones en el sensor o en el tubo.

ADVERTENCIA:
El sensor de flujo proximal está indicado para un solo uso. No lo reutilice. Si limpia o esteriliza el sensor puede provocar bioincompatibilidad, infección o riesgos de fallo del producto en el paciente.

ADVERTENCIA:
Instale el sensor de flujo proximal del modo mostrado. Consulte Conexión del sensor de flujo proximal, p. E-13. Una orientación incorrecta del sensor de flujo podría ocasionar un error de interpretación de los datos o una configuración incorrecta del respirador.

Precaución:
No utilice medicamentos aerosolizados con el sensor de flujo proximal, ya que pueden dañarlo.
Precaución:
Para evitar daños en las vías neumáticas, utilice los sujetacables suministrados.

Precaución:
Con la opción de flujo proximal utilice únicamente sensores de flujo proximal de la marca Covidien.

E.7 Símbolos en pantalla

Cuando se utiliza la opción de flujo proximal, los datos de forma de onda del volumen, presión y flujo, junto con los volúmenes administrados y espirados proceden de las mediciones que realiza el sensor de flujo proximal en el circuito en “Y” del paciente. Los datos del flujo proximal se muestran en el diseño de forma de onda con una Y en video inverso al lado del símbolo de mediación.

Figura E-2. Pantalla de muestra de la GUI con datos de flujo proximal

![Imagen de la pantalla de la GUI con datos de flujo proximal](image)

1 Datos medidos con el sensor de flujo proximal
 - P_s: Presión en todo el ciclo de respiración en el circuito en “Y” del circuito del paciente
 - V_y: Flujo en todo el ciclo de respiración (en el circuito en “Y” del paciente)
Los flujos inspirados y espirados, junto con los volúmenes en el circuito en “Y” del paciente se miden e identifican mediante los símbolos mostrados abajo, y corresponden a sus flujos no proximales equivalentes. Estos valores aparecen en el panel de datos del paciente, si está configurado de este modo. Consulte Datos vitales del paciente, p. 3-40 y la figura anterior.

<table>
<thead>
<tr>
<th>Símbolo de datos</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TIIY}</td>
<td>Volumen corriente inspirado (mandatorio o espontáneo en el circuito del paciente en la “Y”)</td>
</tr>
<tr>
<td>V_{TEY}</td>
<td>Volumen corriente espirado (en la “Y”)</td>
</tr>
<tr>
<td>$V_{TE SPONTY}$</td>
<td>Volumen corriente espirado espontáneo (en la “Y”)</td>
</tr>
<tr>
<td>$V_{TE MANDY}$</td>
<td>Volumen corriente espirado mandatorio (en el circuito en “Y” del paciente)</td>
</tr>
<tr>
<td>$V_{ETO Y}$</td>
<td>Volumen total espirado por minuto (en la “Y”)</td>
</tr>
<tr>
<td>$V_{CIRC Y}$</td>
<td>Flujo en todo el ciclo de respiración (en el circuito en “Y” del paciente)</td>
</tr>
<tr>
<td>V_{TLY}</td>
<td>Volumen corriente inspirado proximal con Leak Sync habilitado</td>
</tr>
</tbody>
</table>

Nota:

Nota:
Cuando se habilitan las opciones de flujo proximal y Leak Sync, los siguientes parámetros se encuentran disponibles:
- V_{TLY} y V_{TL}
- LEAK y LEAK$_Y$

Cuando solo se habilita la opción de flujo proximal, V_{TIY} y V_{TI} se encuentran disponibles. Cuando aparece “Y” en el símbolo, los datos se miden con el sensor de flujo proximal. Cuando la “Y” no está en el símbolo, los datos son medidos por los sensores de flujo internos del respirador.
E.8 Calibración del sensor y purga de la vía del sensor

Para garantizar mediciones precisas de presión y flujo, el respirador aplica una puesta a cero automática para calibrar el sensor de flujo proximal. Esta acción se lleva a cabo abriendo periódicamente el sensor de presión en el PCBA de la opción de flujo proximal a la atmósfera durante la espiración. Las mediciones resultantes se utilizan como correcciones de compensación.

La función de purga está diseñada para eliminar los líquidos que puedan acumularse en las vías neumáticas y se aplica periódicamente enviando un breve flujo de aire a través de las vías del sensor. Las funciones de puesta a cero automática y purga solo están activas durante la espiración, lo que limita el efecto del gas de purga en la concentración de oxígeno suministrado.

Durante los procesos de puesta a cero automática y purga automática, la medición y visualización de los datos de flujo proximal no se muestran en tiempo real y aparece un breve mensaje en la GUI que indica que se está realizando el proceso de purga.

Durante los procesos de puesta a cero automática y purga automática, cuando se muestran las formas de onda de la presión aparece el valor actual de la PEEP y cuando se muestra la forma de onda del flujo aparece un valor de 0.

Figura E-3. Mensaje que aparece durante los procesos de purga y puesta a cero automática
E.9 Requisitos del SST

El SST debe procesarse antes de la ventilación, y todos los componentes y accesorios deben estar instalados en la configuración que se va a utilizar en el paciente, de este modo el respirador puede calcular la compliancia y resistencia correctas. Entre las opciones se incluyen el circuito del paciente neonatal, el sensor de flujo proximal y otros accesorios que se vayan a utilizar durante la ventilación. Consulte *Para ejecutar el ATC* en el *Capítulo 3* este manual. Además, en dicha sección hay una tabla que incluye la secuencia general de las pruebas del SST. Consulte la siguiente tabla para obtener un listado de la secuencia de la prueba cuando se procesa el SST con la opción de flujo proximal.

Nota:
Si la opción de flujo proximal no supera el SST, la ventilación puede seguir su curso pero no se realizará la medición con la opción de flujo proximal. El respirador utilizará los sensores de flujo internos para realizar las mediciones, en lugar de la opción de flujo proximal.

<table>
<thead>
<tr>
<th>Paso de la prueba</th>
<th>Función</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verificación cruzada de sensor de flujo SST</td>
<td>Comprueba el O₂ y los sensores de flujo de aire.</td>
<td>N/D</td>
</tr>
<tr>
<td>Rendimiento EV del SST</td>
<td>Calibra la válvula de espiración y crea una tabla para utilizarla durante los cálculos.</td>
<td>N/D</td>
</tr>
<tr>
<td>Presión del circuito del SST</td>
<td>Ejecuta la PSOL (válvula solenoide proporcional) de administración. Comprueba la puesta a cero de los solenoides inspiratorio y espiratorio. Realiza una prueba cruzada de los transductores de presión inspiratoria y espiratoria a varias presiones.</td>
<td>N/D</td>
</tr>
<tr>
<td>Fugas del SST</td>
<td>Comprueba si hay fugas en el sistema respiratorio del respirador.</td>
<td>N/D</td>
</tr>
<tr>
<td>Filtro espiratorio del ATC</td>
<td>Comprueba si hay oclusión en el filtro espiratorio u oclusión en el compartimiento espiratorio.</td>
<td>El respirador solicita al usuario que bloquee la salida del sensor de flujo proximal durante la prueba de fugas. Cuando se solicite volver a conectar al paciente al filtro espiratorio durante la prueba del filtro espiratorio, reanude el bloqueo de la salida del sensor de flujo proximal.</td>
</tr>
</tbody>
</table>
Tabla E-3. Secuencia de las pruebas del SST de la opción de flujo proximal (continuación)

<table>
<thead>
<tr>
<th>Paso de la prueba</th>
<th>Función</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia del circuito del SST</td>
<td>Comprueba si hay oclusión en los ramales inspiratorio y espiratorio, además de calcular y guardar los parámetros de resistencia de dichos ramales.</td>
<td>N/D</td>
</tr>
<tr>
<td>Compliancia de circuito del SST</td>
<td>Calcula la compliancia del circuito del paciente conectado.</td>
<td>N/D</td>
</tr>
<tr>
<td>SST Prox</td>
<td>Verifica la funcionalidad del sistema del flujo proximal.</td>
<td>Incluye pruebas de las funciones de presión barométrica, puesta a cero automática, purga y verificación cruzada de la presión.</td>
</tr>
</tbody>
</table>

E.9.1 Conexión del sensor de flujo proximal para el SST

Durante el SST el respirador solicita que se conecte el sensor de flujo proximal.

Para conectar el sensor de flujo proximal al circuito del paciente

1. Verifique que el sensor de flujo proximal, las vías neumáticas y el conector no están dañados.

2. Abra la puerta del panel del conector y conecte de forma segura el conector del sensor en el receptáculo del puerto del conector frontal de la BDU con la etiqueta Prox.

Figura E-4. Conexión del sensor de flujo proximal al respirador

1. Puerto de inserción del conector del sensor de flujo proximal
2. Conector del sensor de flujo proximal
3. Cuando se solicite, bloquee el circuito respiratorio en “Y”.

4. Cuando se solicite que conecte el sensor de flujo proximal, desbloquee el circuito en “Y” e inserte el extremo más pequeño del sensor en el circuito en “Y”.

5. Cuando se solicite, ponga el tapón o precinte el extremo más grande del sensor (marcado con “UP” y una flecha).

6. Siga las indicaciones hasta completar el SST.

Si no se supera el SST, compruebe si hay fugas o oclusiones en el circuito del paciente o en las conexiones del sensor de flujo y, si es necesario, sustituya el sensor de flujo proximal. Sustituya el hardware de la opción de flujo proximal si el SST continúa fallando y, seguidamente, repita el SST para determinar la compliancia y la resistencia del circuito. Consulte las instrucciones de instalación de las opciones de hardware del respirador serie 980 de Puritan Bennett™, número de pieza 10084704, para obtener las instrucciones de sustitución del hardware de la opción del flujo proximal.

E.10 Activar/Desactivar la opción de flujo proximal

El sensor de flujo proximal puede funcionar en el estado ACTIVADO solo si el tipo de circuito es NEONATAL. Si la opción de flujo proximal está disponible y el tipo de ventilación es INVASIVE, el valor predeterminado de nuevo paciente es ACTIVADO. Si el tipo de ventilación es NO INVASIVA, la opción de flujo proximal está DESACTIVADA. El sistema se habilita de nuevo si el tipo de ventilación se cambia a INVASIVE.

Después de realizar el SST, el médico puede deshabilitar la opción de flujo proximal, si lo desea.

Para deshabilitar o habilitar la opción de flujo proximal

1. En el área de iconos de acceso permanente, toque el icono configurar. Aparece un menú con pestañas.

2. Toque la pestaña Opciones. Aparece una pantalla con las Opciones instaladas y las pestañas Prox.

3. Toque Habilitado o Deshabilitado para habilitar o deshabilitar la opción Flujo prox.
Flujo proximal

Figura E-5. Habilitar/deshabilitar el sensor de flujo proximal

Nota:
Si la opción de flujo proximal está habilitada o deshabilitada, el SST no debe volver a procesarse a menos que el circuito respiratorio u otros accesorios del sistema respiratorio se hayan cambiado, quitado o añadido.

E.11 Uso del sensor de flujo proximal

Antes de ventilar al paciente con el sensor de flujo proximal, revise y siga todas las advertencias. Consulte Información sobre seguridad, p. E-3 y asegúrese de que la opción de sensor de flujo proximal está habilitada.

Para conectar el sensor de flujo proximal al respirador:
1. Verifique que el sensor de flujo proximal, las vías neumáticas y el conector no están dañados.

2. Abra la puerta del panel del conector y conecte de forma segura el conector del sensor en el receptáculo situado más a la derecha del puerto del conector frontal de la BDU con la etiqueta Prox. Consulte Conexión del sensor de flujo proximal al respirador, p. E-10.

Para conectar el sensor de flujo proximal entre el tubo endotraqueal y el circuito del paciente
1. Conecte el extremo más grande del sensor (marcado con “UP” y una flecha) al tubo endotraqueal. Consulte la figura a continuación. No fuerce la conexión; cuando el sensor se coloca correctamente, la introducción requiere un poco de esfuerzo.
Nota:
Si en el tubo endotraqueal se utiliza un intercambiador de calor y humedad (HME), coloque el sensor de flujo proximal entre el HME y el circuito respiratorio en “Y”.

Figura E-6. Conexión del sensor de flujo proximal

2. Conecte el extremo más pequeño del sensor al circuito respiratorio en “Y”.

3. Asegúrese de que el tubo del sensor está colocado hacia arriba, como se muestra en la figura anterior. Si hay que volver a colocar el sensor, NO lo gire tirando del tubo. Vuelva a colocarlo de la siguiente manera:
 a. Agarre el cuerpo de plástico del sensor con una mano y el circuito respiratorio en “Y” con la otra.
 b. Gire el cuerpo del sensor y el circuito en “Y” uno contra otro hasta que el tubo del sensor esté en posición vertical.
 c. Compruebe que la conexión entre el sensor y el circuito respiratorio en “Y” es hermética.

4. Utilice los tres sujetacables suministrados con el sensor para sujetar el tubo del sensor al tubo del circuito respiratorio. Coloque los sujetacables de modo uniforme a lo largo del tubo del sensor. Doble los extremos de los sujetacables para cerrarlos.
Nota:
Si el respirador está configurado para que funcione la opción de flujo proximal, el sensor de flujo proximal puede apagarse o encenderse según sea necesario. No es necesario realizar un SST después de encender o apagar los sensores a no ser que el circuito respiratorio u otros accesorios del respirador se hayan cambiado.

E.11.1 Cómo realizar una purga manual

La purga manual puede realizarse en el momento en que se detecte un exceso de condensación, de humedad o de secreciones en las vías del sensor.

Para realizar una purga manual:

1. Toque el ícono de configuración en el área de íconos de acceso permanente de la GUI.
2. Toque la pestaña Opciones. Aparece una pantalla con las Opciones instaladas y las pestañas Prox.
4. Toque el botón Inicio que aparece al lado del texto "Purga prox. manual: para empezar toque el botón Inicio". Durante el proceso de purga, aparece un mensaje en el área de mensajes de la GUI indicando que el proceso de purga se está realizando. Consulte Mensaje que aparece durante los procesos de purga y puesta a cero automática, p. E-8.

Figura E-7. Purga manual
E.12 **Alarmas**

Si durante la ventilación, la opción de flujo proximal deja de funcionar, el respirador anuncia una alarma y la monitorización del flujo se restablece al suministro interno del respirador y a los sensores de flujo espiratorio. Este cambio puede activarse en caso de que se produzca cualquiera de los eventos siguientes:

- No se detecta el sensor de flujo proximal.
- Las lecturas de presión y flujo están fuera del intervalo.
- El PCBA de la opción de flujo proximal notifica problemas en el hardware.
- Hay un fallo de comunicación entre el respirador y la opción de flujo proximal.

Si se produce alguna de estas situaciones, la GUI muestra un mensaje de alarma similar al que se muestra a continuación. Siga las indicaciones que se muestran en la información del mensaje de resolución para solucionar el problema de la alarma.

Figura E-8. Mensaje de alarma: prox. no operativo

E.13 **Intervalos, resoluciones y precisiones**

Consulte *Intervalo, resolución y precisión de los datos del paciente* en el Capítulo 11 de este manual para obtener los parámetros de los datos del paciente relativos al volumen corriente espirado proximal, volumen corriente inspirado proximal, volumen proximal espirado por minuto y flujo proximal.
E.13.1 Especificaciones del sensor de flujo proximal

Tabla E-4. Precisión del volumen del sensor de flujo proximal

<table>
<thead>
<tr>
<th>Medición</th>
<th>Precisión¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen corriente espirado</td>
<td>± (1,0 mL + 10 % de la lectura)</td>
</tr>
<tr>
<td>Volumen corriente inspirado</td>
<td>± (1,0 mL + 10 % de la lectura)</td>
</tr>
</tbody>
</table>

¹. Las condiciones en las que se aplican los valores de precisión son las siguientes:
El sensor se utiliza como se describe en este apéndice o en las instrucciones de uso suministrados con el sensor.

Tabla E-5. Especificaciones del sensor de flujo proximal

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Especificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
<td>6,6 g</td>
</tr>
<tr>
<td>Espacio muerto</td>
<td>< 1 mL</td>
</tr>
<tr>
<td>Descenso de presión</td>
<td>1,5 cmH₂O a 10 L/min</td>
</tr>
</tbody>
</table>

E.14 Números de pieza

La siguiente tabla muestra las referencias del kit de la opción del flujo proximal y los componentes individuales.

Tabla E-6. Opción de flujo proximal y referencias de los componentes

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Número de pieza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit de la opción de flujo proximal</td>
<td>10084331</td>
</tr>
<tr>
<td>Incluye: Hardware y accesorios de instalación</td>
<td></td>
</tr>
<tr>
<td>Sensor de flujo proximal, neonatal (paquete de 10)</td>
<td>10047078</td>
</tr>
<tr>
<td>NOTA: incluye tres sujetacables</td>
<td></td>
</tr>
<tr>
<td>Módulo del sensor de flujo proximal</td>
<td>10087622</td>
</tr>
<tr>
<td>PCBA de interconexión</td>
<td>10083941</td>
</tr>
<tr>
<td>Cable de control de purga</td>
<td>10083940</td>
</tr>
<tr>
<td>Vía de suministro de purga</td>
<td>10083966</td>
</tr>
<tr>
<td>Tornillos para montar el PCBA</td>
<td>10083963</td>
</tr>
<tr>
<td>Etiqueta de la opción de flujo proximal</td>
<td>10005748</td>
</tr>
</tbody>
</table>
Glosario de términos de ventilación

<table>
<thead>
<tr>
<th>Tabla Glosario-1</th>
<th>Glosario de términos de ventilación</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de tiempo de rampa</td>
<td>Parámetro que determina el tiempo de rampa para lograr la presión inspiratoria definida en las respiraciones controladas por presión (PC), VC+, BiLevel o presión de soporte (PS). Cuanto mayor sea el valor, más agresivo será el aumento de la presión.</td>
</tr>
<tr>
<td>alarma aumentada</td>
<td>La causa inicial de una alarma ha precipitado una o más alarmas relacionadas. Cuando se produce una alarma, cualquier alarma subsiguiente relacionada con la causa de esta alarma inicial “aumenta” la alarma inicial.</td>
</tr>
<tr>
<td>alarma bloqueable</td>
<td>Alarma que no concluye una función silenciosa de alarma activa.</td>
</tr>
<tr>
<td>alarma de datos del paciente</td>
<td>Situación de alarma asociada con una condición anormal del estado respiratorio del paciente.</td>
</tr>
<tr>
<td>alarma de prioridad alta</td>
<td>Como definen las organizaciones de estándares internacionales, alarma que requiere atención inmediata para garantizar la seguridad del paciente. Cuando una alarma de prioridad alta está activa, el indicador LED rojo de prioridad alta parpadea y suena la alarma audible de prioridad alta (secuencia repetitiva de cinco tonos que se repite dos veces, se detiene y vuelve a repetirse) y el banner de alarma de la pantalla de la GUI muestra un mensaje de alarma con el símbolo (!).</td>
</tr>
<tr>
<td>alarma de prioridad baja</td>
<td>Como definen las organizaciones de estándares internacionales, alarma que indica un cambio en el sistema de paciente-respirador. Durante una alarma de prioridad baja, se ilumina el indicador LED amarillo de prioridad baja, suena la alarma audible de prioridad baja (un tono) y la pantalla de la GUI muestra un banner de alarma con el símbolo (!).</td>
</tr>
<tr>
<td>alarma de prioridad media</td>
<td>Como definen las organizaciones de estándares internacionales, condición anormal que requiere atención rápida para garantizar la seguridad del paciente. Durante una alarma de prioridad media, el indicador LED amarillo de prioridad media parpadea, suena la alarma sonora de prioridad media (una secuencia repetitiva de tres tonos) y la pantalla de la GUI muestra un banner de alarma con el símbolo (!).</td>
</tr>
<tr>
<td>alarma dependiente</td>
<td>Alarma que surge como resultado de otra alarma principal (también denominada aumento).</td>
</tr>
<tr>
<td>alarma fijada</td>
<td>Alarma cuyo indicador visual permanece iluminado después del restablecimiento automático de la alarma.</td>
</tr>
<tr>
<td>alarma no técnica</td>
<td>Alarma debida a un fallo en la interacción entre el paciente y el respirador o a un fallo en los suministros eléctrico o de gas que el médico puede ser capaz de paliar.</td>
</tr>
<tr>
<td>alarma principal</td>
<td>Alarma inicial.</td>
</tr>
<tr>
<td>alarma técnica</td>
<td>Alarma debida a la infracción de cualquier condición de autosupervisión del respirador, o detectada por las pruebas generales.</td>
</tr>
</tbody>
</table>
Tabla Glosario-1. Glosario de términos de ventilación (continuación)

<table>
<thead>
<tr>
<th>ASIST</th>
<th>Respiración mandatoria iniciada por el paciente. Respiración mandatoria accionada por el esfuerzo inspiratorio del paciente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>autociclado</td>
<td>El respirador administra respiraciones repetidas e involuntarias accionadas por flujos o presiones fluctuantes y no por demanda del paciente. Las fugas en el circuito del paciente y parámetros de flujo o sensibilidad por presión bajos son causas habituales del autociclado.</td>
</tr>
<tr>
<td>BD, BDU</td>
<td>Administración de respiración o unidad neumática. Componente del respirador que incluye el sistema neumático y electrónico inspiratorio y espiratorio.</td>
</tr>
<tr>
<td>BOC</td>
<td>British Oxygen Company. Estándar para los conectores de entrada de gas de alta presión.</td>
</tr>
<tr>
<td>BTPS</td>
<td>Temperatura y presión corporales, saturadas, a 37 °C, a presión barométrica ambiental y con un 100 % de humedad relativa.</td>
</tr>
<tr>
<td>cambios de lote</td>
<td>Cambios en múltiples parámetros que entran en vigor al mismo tiempo.</td>
</tr>
<tr>
<td>circuito de pruebas estándar</td>
<td>Circuito de pruebas diseñado para su uso con EST.</td>
</tr>
<tr>
<td>circuito del paciente</td>
<td>Conducto inspiratorio-espiratorio completo, incluidos los tubos, el humidificador y los colectores de agua.</td>
</tr>
<tr>
<td>cmH2O</td>
<td>Centímetros de agua. Unidad de presión aproximadamente equivalente a 1 hPa.</td>
</tr>
<tr>
<td>compresor</td>
<td>El compresor proporciona aire comprimido, que puede utilizarse en vez de aire de la pared o embotellado.</td>
</tr>
<tr>
<td>constante durante cambio de frecuencia</td>
<td>Una de las tres variables de tiempo de respiración (tiempo inspiratorio, relación I:E o tiempo espiratorio) que el operador puede mantener constante cuando cambia el parámetro de frecuencia respiratoria. Solo se aplica al tipo de respiración mandatoria de control de presión (PC) (incluidos VC+ y BiLevel).</td>
</tr>
<tr>
<td>CONT</td>
<td>Respiración mandatoria iniciada por el respirador. Respiración administrada en el momento determinado por el respirador.</td>
</tr>
<tr>
<td>CPU</td>
<td>Unidad de procesamiento central. Componentes electrónicos del respirador (BD y GUI) responsables de interpretar y ejecutar las instrucciones introducidas por el operador.</td>
</tr>
<tr>
<td>DISS</td>
<td>Estándar del índice de diámetros de seguridad. Estándar para los conectores de entrada de gas de alta presión.</td>
</tr>
<tr>
<td>DSENS</td>
<td>Sensibilidad de desconexión. Parámetro que especifica la pérdida permissible (porcentaje) de volumen corriente administrado, que si se iguala o supera, hace que el respirador emita una alarma de DESCONEXIÓN. Cuanto mayor es el parámetro, más volumen devuelto se debe perder antes de que se detecte la DESCONEXIÓN. Si se está utilizando la opción Leak Sync, DSENS es la frecuencia de fugas máxima permissible y se expresa en L/min.</td>
</tr>
<tr>
<td>ESENS</td>
<td>Sensibilidad espiratoria Parámetro que determina el porcentaje de flujo inspiratorio máximo (o flujo expresado en L/min en una respiración PAV) en el que el respirador cíclica de inspiración a espiración en las respiraciones espontáneas. Los parámetros bajos tendrán como resultado inspiraciones espontáneas más largas.</td>
</tr>
</tbody>
</table>
Tabla Glosario-1. Glosario de términos de ventilación (continuación)

<table>
<thead>
<tr>
<th>Término</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST</td>
<td>Autotest largo. Prueba exhaustiva de la función del respirador, diseñada para ser ejecutada por personal de servicio cualificado.</td>
</tr>
<tr>
<td>EVQ</td>
<td>El conjunto del sensor de flujo espiratorio.</td>
</tr>
<tr>
<td>f, f_{TOT}</td>
<td>Frecuencia respiratoria, como parámetro (f) en A/C, SIMV y BiLevel, número mínimo de respiraciones mandatorias que el paciente recibe por minuto. Como valor monitorizado (f_{TOT}), el número total medio de respiraciones administradas al paciente.</td>
</tr>
<tr>
<td>FALLO</td>
<td>Categoría de situación detectada durante SST o EST que hace que el respirador entre en el estado de válvula de seguridad abierta. El respirador que experimenta un FALLO debe retirarse del uso clínico y repararse de inmediato.</td>
</tr>
<tr>
<td>fallo del sistema</td>
<td>Definición utilizada por la red de seguridad del respirador. Los fallos del sistema incluyen fallos del hardware (aquellos originados dentro del respirador y que afectan a su rendimiento), fallos menores (fallos introducidos momentáneamente en el respirador que interfieren con el funcionamiento normal), suministro inadecuado (alimentación de CA o presión del gas exterior) e integridad de circuito del paciente (circuitos bloqueado o desconectado).</td>
</tr>
<tr>
<td>fase restringida de la espiración</td>
<td>Periodo durante la fase de espiración en el que no se permite un trigger de inspiración. La fase restringida de espiración se define como los primeros 200 ms de espiración o el periodo en el que el flujo espiratorio es ≤ 50 % del flujo espiratorio máximo o el periodo en el que el flujo espiratorio es ≤ 0,5 L/min el que tarde más tiempo. La fase restringida de espiración termina después de que hayan transcurrido cinco (5) segundos independientemente de la tasa de flujo espiratorio medida.</td>
</tr>
<tr>
<td>flujo base</td>
<td>Flujo constante de gas a través del circuito del paciente durante la última parte de la espiración durante el trigger de flujo (\dot{V}_{TRIG}). El valor de este flujo base es 1,5 L/min mayor que el valor seleccionado por el operador para la sensibilidad por flujo.</td>
</tr>
<tr>
<td>Garantía de ventilación</td>
<td>Función de la red de seguridad que se invoca en caso de fallo de sistema en el subsistema de combinación, en el subsistema inspiratorio o en el subsistema espiratorio que pone en peligro la capacidad del respirador de ventilar al paciente tal y como se ha definido.</td>
</tr>
<tr>
<td>GUI</td>
<td>Interfaz gráfica de usuario. Pantalla táctil del respirador utilizada para introducir los parámetros de paciente y de alarmas, y que incluye las teclas fuera de pantalla, las teclas programables y los mandos giratorios.</td>
</tr>
<tr>
<td>HME</td>
<td>Intercambiador de calor-humedad. Dispositivo de humidificación, denominado también nariz artificial.</td>
</tr>
<tr>
<td>hPa</td>
<td>Hectopascal. Unidad de presión que equivale aproximadamente a 1 cmH₂O.</td>
</tr>
<tr>
<td>IGNORADO</td>
<td>El estado final de un proceso SST o EST en el que el operador utiliza la función ignorar. (El respirador debe haber concluido la prueba con una situación de ALERTA).</td>
</tr>
<tr>
<td>IM</td>
<td>Respiración mandatoria iniciada por el operador. Respiración administrada cuando el operador pulsa la tecla INSPI. MANUAL.</td>
</tr>
<tr>
<td>inspiración manual</td>
<td>Respiración mandatoria iniciada por el operador (IM).</td>
</tr>
</tbody>
</table>
kPa Kilopascal. Unidad de presión que equivale aproximadamente a 10 cmH2O.

L/min Litros por minuto. Unidad de flujo.

límite flexible Parámetro del respirador que ha alcanzado su límite superior o inferior recomendado, acompañado de un tono audible. Configurar el respirador más allá del límite requiere que el operador reconozca un mensaje visual para continuar.

límite rígido Parámetro del respirador que ha alcanzado su límite mínimo o máximo.

mantenimiento Acciones necesarias para mantener el equipo en óptimo estado de uso o para devolverlo a dicho estado. Incluye la limpieza, mantenimiento, reparación, modificación, revisión, inspección y verificación del rendimiento.

mensaje base Mensaje emitido por el respirador durante una situación de alarma, que identifica dicha alarma.

mensaje de análisis Mensaje mostrado en la pantalla de la GUI durante una situación de alarma y que identifica la causa origen de la misma.

mensaje de resolución Mensaje mostrado en la GUI durante una situación de alarma que sugiere maneras de resolver dicha alarma.

modo Modo ventilatorio. Algoritmo que determina el tipo y la secuencia de administración de las respiraciones.

modulo A/C controlada-asistida Modo de ventilación en el que solo se administran al paciente las respiraciones mandatorias VC, PC o VC+.

modo BiLevel Modo de ventilación mixta que combina respiraciones mandatorias y espontáneas, en el que se administran dos niveles de presión (P'L y P'H) correspondientes a los tiempos espiratorios e inspiratorios T'L y T'H.

modo de servicio Modo de respirador que proporciona un conjunto de servicios adaptados a las necesidades del personal de mantenimiento y de prueba. Cuando se encuentra en modo servicio, el respirador no proporciona ventilación.

NIST Rosca de tornillo no intercambiable. Estándar para los conectores de entrada de gas de alta presión.

O₂% Parámetro del respirador y variable monitorizada. El parámetro O₂% determina el porcentaje de oxígeno en el gas administrado. Los datos de O₂% es el porcentaje de oxígeno en el gas administrado al paciente, analizado en el flujo de salida del respirador del filtro inspiratorio.

OSC Ciclo en estado de oclusión. Modo de ventilación en curso durante una oclusión severa. En este modo, el respirador intenta periódicamente administrar una respiración basada en la presión mientras supervisa las fases de inspiración y espiración para detectar la continuidad de la oclusión.

P_TRIG Accionamiento por presión, método de reconocimiento del esfuerzo inspiratorio del paciente en el que el respirador monitoriza la presión en el circuito del paciente. El respirador acciona una respiración cuando la presión de las vías aéreas desciende como mínimo hasta el valor seleccionado para la sensibilidad por presión (PSENS).
Tabla Glosario-1. Glosario de términos de ventilación (continuación)

<table>
<thead>
<tr>
<th>Término</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>patrón de flujo</td>
<td>Parámetro que determina el patrón de flujo del gas de las respiraciones mandatorias controladas por volumen.</td>
</tr>
<tr>
<td>pausa espiratoria</td>
<td>Maniobra iniciada por el operador que cierra las válvulas de inspiración (solenoides proporcionales) y espiración durante la fase de espiración de una respiración mandatoria. La maniobra se puede utilizar para determinar la PEEP (auto) intrínseca (PEEP).</td>
</tr>
<tr>
<td>pausa inspiratoria</td>
<td>Maniobra iniciada por el operador que cierra las válvulas de inspiración (solenoides proporcionales) y espiración al final de la fase de inspiración de una respiración mandatoria. La maniobra se puede utilizar para determinar la compliancia estática (CSTAT) y la resistencia estática (RSTAT).</td>
</tr>
<tr>
<td>PBW</td>
<td>Peso corporal previsto, parámetro del respirador que especifica el peso corporal del paciente presuponiendo niveles de grasa y líquido normales. Determina los límites absolutos del volumen corriente y el flujo máximo, y permite el ajuste apropiado de los parámetros del respirador con el paciente.</td>
</tr>
<tr>
<td>PC</td>
<td>Control de presión. Tipo de respiración mandatoria en la que el respirador administra una presión inspiratoria definida por el operador para un tiempo inspiratorio definido. Disponible en los modos A/C y SIMV y para las respiraciones mandatorias iniciadas por el operador (IM) en el modo SPONT.</td>
</tr>
<tr>
<td>PE</td>
<td>Transductor de presión espiratoria.</td>
</tr>
<tr>
<td>PEEP</td>
<td>Presión espiratoria final positiva. Presión del circuito (referido al circuito en "Y" del paciente) medida al final de la fase espiratoria de una respiración. Si la pausa espiratoria está activa, el valor mostrado refleja el nivel de cualquier PEEP pulmonar activa.</td>
</tr>
<tr>
<td>PEEP₁</td>
<td>PEEP intrínseca. Indica una estimación calculada de la presión por encima del nivel de PEEP al final de la espiración. Determinada durante una maniobra de pausa espiratoria.</td>
</tr>
<tr>
<td>P₁</td>
<td>Presión inspiratoria definida por el operador en el circuito en "Y" del paciente (por encima de PEEP) durante una respiración mandatoria de control de presión (PC).</td>
</tr>
<tr>
<td>PI</td>
<td>Transductor de presión inspiratoria.</td>
</tr>
<tr>
<td>P₁ END</td>
<td>Presión inspiratoria final. Presión al final de la fase de inspiración de la respiración actual. Si la meseta está activa, el valor mostrado refleja el nivel de presión de final de meseta.</td>
</tr>
<tr>
<td>P̅MEAN</td>
<td>Presión media del circuito, cálculo de la presión promedio del circuito del paciente medida durante todo un ciclo respiratorio.</td>
</tr>
<tr>
<td>P̅PEAK</td>
<td>Presión máxima del circuito, presión máxima durante las fases inspiratoria y espiratoria de una respiración.</td>
</tr>
<tr>
<td>problemas del paciente</td>
<td>Definición utilizada por la red de seguridad del respirador. Los problemas del paciente se declaran cuando los datos de paciente medidos son iguales o quedan fuera de los umbrales de alarma y suelen autocorregirse o pueden ser corregidos por un facultativo. El sistema de monitorización de alarma detecta y anuncia los problemas de los pacientes. Los problemas de los pacientes no suponen un riesgo para el rendimiento del respirador.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>pruebas continuas de funcionamiento</td>
<td>Pruebas que se ejecutan continuamente durante la ventilación y que evalúan el hardware electrónico y neumático del respirador.</td>
</tr>
<tr>
<td>pruebas de control</td>
<td>Pruebas que se ejecutan continuamente durante la ventilación y que evalúan el hardware electrónico y neumático del respirador.</td>
</tr>
<tr>
<td>PS</td>
<td>Mantenimiento de la presión, tipo de respiración espontánea en que el respirador administra una presión definida por el operador (además de la PEEP) durante la fase inspiratoria. Disponible en los modos SPONT, SIMV y BiLevel.</td>
</tr>
<tr>
<td>PSENS</td>
<td>Sensibilidad por presión. Descenso de la presión definida por el operador por debajo de la PEEP (causada por el flujo inspiratorio del paciente) requerido para iniciar una respiración iniciada por el paciente cuando se selecciona el accionamiento por presión.</td>
</tr>
<tr>
<td>PSOL</td>
<td>Válvula de solenoide proporcional.</td>
</tr>
<tr>
<td>PSUPP</td>
<td>Mantenimiento de la presión (Presión de soporte) Parámetro del nivel de presión de asistencia inspiratoria (por encima de la PEEP) en el circuito en "Y" del paciente durante una respiración espontánea (cuando el tipo de respiración espontánea es PS).</td>
</tr>
<tr>
<td>red de seguridad</td>
<td>Estrategia del respirador para responder a los problemas del paciente y a los fallos del sistema.</td>
</tr>
<tr>
<td>Relación I:E</td>
<td>Relación del tiempo inspiratorio y el tiempo espiratorio. También, variable de tiempo definida por el operador que se aplica a las respiraciones mandatorias PC y VC+.</td>
</tr>
<tr>
<td>resistencia</td>
<td>Descenso de presión dependiente del flujo a lo largo de un conducto. Medido en cmH₂O/L/s o hPa/L/s.</td>
</tr>
<tr>
<td>respiración asistida</td>
<td>Respiración mandatoria accionada por el esfuerzo inspiratorio del paciente en los modos A/C y SIMV.</td>
</tr>
<tr>
<td>respiración de control</td>
<td>Respiración mandatoria iniciada por el respirador administrada en modo A/C</td>
</tr>
<tr>
<td>respiración mandatoria</td>
<td>Respiración cuyos parámetros y tiempos están predefinidos; pueden ser accionados por el respirador, el paciente o el operador.</td>
</tr>
<tr>
<td>respiración superpuesta</td>
<td>Administración de una segunda inspiración antes de que se haya completado la primera espiración.</td>
</tr>
<tr>
<td>respirador no operativo (Vent. inop.)</td>
<td>Estado de emergencia en que entra el respirador si detecta un fallo de hardware o un error de software crítico que podría poner en riesgo la seguridad de la ventilación. Durante una situación no operativa del respirador, la válvula de seguridad se abre para permitir que el paciente respire el aire ambiental sin asistencia del respirador. El personal de servicio cualificado debe encender el respirador y realizar un EST antes de poder reiniciar la ventilación normal.</td>
</tr>
</tbody>
</table>

Tabla Glosario-1. Glosario de términos de ventilación (continuación)
Tabla Glosario-1. Glosario de términos de ventilación (continuación)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMV</td>
<td>Ventilación mandatoria intermitente sincrónica. Modo ventilatorio en el que el respirador administra una respiración mandatoria por ciclo de respiración y tantas respiraciones espontáneas como el paciente pueda accionar durante el resto del ciclo de respiración.</td>
</tr>
<tr>
<td>SIS</td>
<td>Sistema de índices de las mangueras Estándar para los conectores de entrada de gas de alta presión.</td>
</tr>
<tr>
<td>sistema de batería de reserva</td>
<td>Sistema para suministrar la alimentación de la batería de reserva a un dispositivo. El sistema de batería de reserva del respirador consta de una única batería principal que proporciona hasta una (1) hora de alimentación al respirador. Se dispone de una batería opcional de duración prolongada con las mismas características que la batería principal.</td>
</tr>
<tr>
<td>Sonido en pausa (silencio de alarma)</td>
<td>Utilizado indistintamente con el término “silencio de alarma”, el período de 2 minutos que empieza después de que se pulse la tecla de sonido en pausa (silencio de alarma), que silencia la parte audible de una alarma.</td>
</tr>
<tr>
<td>SPONT</td>
<td>Espontáneo Modo ventilatorio en que el respirador administra solo respiraciones espontáneas. En el modo SPONT, el paciente acciona todas las respiraciones administradas por el respirador sin frecuencia respiratoria mandatoria definida. El paciente controla las variables de respiración, aumentadas posiblemente por la presión de soporte.</td>
</tr>
<tr>
<td>SST</td>
<td>Autotest corto. Prueba que comprueba la integridad del circuito, calcula la compliancia del circuito y la resistencia de los filtros y comprueba el funcionamiento del respirador. El operador debe realizar SST a intervalos específicos y con cualquier sustitución o alteración del circuito del paciente.</td>
</tr>
<tr>
<td>STPD</td>
<td>Temperatura y presión estándares, en seco. Definido como gas seco en una atmósfera (760 mmHg, 101,333 kPa, aproximadamente 1,0 bar) y 0 °C.</td>
</tr>
<tr>
<td>SVO</td>
<td>Válvula de seguridad abierta. Estado de emergencia en que el respirador abre la válvula de seguridad para que el paciente pueda respirar aire ambiental sin asistencia del respirador. Un estado de SVO no indica necesariamente un estado no operativo del respirador. El respirador entra en un estado SVO si se produce un fallo de hardware o software que podría poner en riesgo la seguridad de la ventilación, con la pérdida de los suministros de aire y oxígeno, o si el sistema detecta una oclusión.</td>
</tr>
<tr>
<td>T_A</td>
<td>Intervalo de apnea, variable definida por el operador que define el intervalo de una respiración a otra que, si se supera, hace que el respirador declare la apnea e introduzca la ventilación de apnea.</td>
</tr>
<tr>
<td>T_b</td>
<td>Ciclo de tiempo de respiración durante la ventilación mecánica.</td>
</tr>
<tr>
<td>T_E</td>
<td>Tiempo espiratorio. Intervalo espiratorio de una respiración. También, variable de tiempo definida por el operador que determina el intervalo espiratorio para las respiraciones mandatorias controladas por presión (PC) o VC+.</td>
</tr>
<tr>
<td>T_i</td>
<td>Tiempo inspiratorio, intervalo inspiratorio de una respiración. También, la variable de tiempo definida por el operador que determina el intervalo inspiratorio para las respiraciones mandatorias controladas por presión (PC) o VC+.</td>
</tr>
<tr>
<td>Término/Descripción</td>
<td>Definición/Comentarios</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>tipo de humidificación</td>
<td>Parámetro correspondiente al tipo de sistema de humidificación (HME, tubo espiratorio no calentado o tubo espiratorio calentado) que se usa en el respirador.</td>
</tr>
<tr>
<td>tipo espontáneo</td>
<td>Parámetro que determina si las respiraciones espontáneas son con presión de soporte (PS), compensación del tubo (TC), volumen de soporte (VS) o asistidas proporcionalmente (PAV).</td>
</tr>
<tr>
<td>tipo mandatorio</td>
<td>Tipo de respiración mandatoria: control de volumen (VC), VC+ o control de la presión (PC).</td>
</tr>
<tr>
<td>Tm</td>
<td>Porción de intervalo mandatorio del ciclo de respiración SIMV; está reservado para un PIM.</td>
</tr>
<tr>
<td>TPL</td>
<td>Tiempo de meseta. La cantidad de tiempo de la fase de inspiración de una respiración mandatoria se prolonga una vez que el flujo inspiratorio ha cesado y se ha bloqueado la espiración. Aumenta el tiempo del gas en los pulmones del paciente.</td>
</tr>
<tr>
<td>Ts</td>
<td>Porción del intervalo espontáneo del ciclo de respiración SIMV; está reservada para la respiración espontánea durante el resto del ciclo de respiración.</td>
</tr>
<tr>
<td>V̇-TRIG</td>
<td>Trigger de flujo. Método de reconocimiento del esfuerzo inspiratorio del paciente en el que el respirador monitoriza la diferencia entre las mediciones del flujo inspiratorio y espiratorio. El respirador acciona una respiración cuando la diferencia entre los flujos inspiratorio y espiratorio aumenta hasta un valor que es como mínimo el valor seleccionado para la sensibilidad de flujo (V̇_SENS).</td>
</tr>
<tr>
<td>válvula de espiración (EV)</td>
<td>Válvula del ramal espiratorio del sistema que controla la PEEP.</td>
</tr>
<tr>
<td>válvula de seguridad (SV)</td>
<td>Válvula alojada en el módulo inspiratorio del respirador diseñada para limitar la presión del circuito del paciente. Cuando está abierta, permite al paciente respirar aire ambiental.</td>
</tr>
<tr>
<td>VBS</td>
<td>Sistema de respiración. Incluye los componentes de administración del gas del respirador, el circuito del paciente con tubos, filtros, humidificador y otros accesorios; y los componentes de medición espiratorios del respirador.</td>
</tr>
<tr>
<td>VC</td>
<td>Controlada por volumen, tipo de respiración mandatoria en la que el respirador administra un volumen corriente definido por el operador, el flujo máximo y el patrón de flujo. Disponible en los modos A/C y SIMV y para las respiraciones mandatorias iniciadas por el operador (IM) en el modo SPONT.</td>
</tr>
<tr>
<td>V̇_ETOT</td>
<td>Volumen minuto, volumen corriente espirado normalizado a la unidad de tiempo (L/min). El valor mostrado está compensado por la compliancia y la BTPS.</td>
</tr>
<tr>
<td>ventilación de reserva (BUV)</td>
<td>Función de la red de seguridad que se invoca en caso de fallo de sistema en el subsistema de combinación, en el subsistema inspiratorio o en el subsistema espiratorio que pone en peligro la capacidad del respirador de ventilar al paciente tal y como se ha definido.</td>
</tr>
<tr>
<td>ventilación de seguridad</td>
<td>Modo de ventilación activa si el circuito del paciente está conectado antes de que se inicie el respirador, o cuando la alimentación se restaura tras una pérdida de cinco (5) minutos o más.</td>
</tr>
</tbody>
</table>
Tabla Glosario-1. Glosario de términos de ventilación (continuación)

<table>
<thead>
<tr>
<th>Término</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ventilación invasiva</td>
<td>Ventilación del paciente mientras está entubado con un tubo endotraqueal (o traqueostomía).</td>
</tr>
<tr>
<td>ventilación no invasiva (NIV)</td>
<td>Ventilación del paciente sin utilizar un tubo endotraqueal; en su lugar se utilizan interfaces como máscaras, cánulas nasales o tubos endotraqueales sin balón.</td>
</tr>
<tr>
<td>ventilación normal</td>
<td>Estado del respirador cuando la respiración está en curso y no hay alarmas activas.</td>
</tr>
<tr>
<td>(\dot{V}_{\text{MAX}})</td>
<td>Flujo máximo. Parámetro del flujo máximo de gas administrado durante una respiración mandatoria VC. (Combinado con el volumen corriente, el patrón de flujo y meseta y el pico de flujo máximo constante, define el tiempo inspiratorio). Para corregir el volumen de compliancia, el respirador aumenta automáticamente el pico de flujo máximo.</td>
</tr>
<tr>
<td>volumen de compliancia</td>
<td>Volumen de gas que permanece en el circuito del paciente y que no entra en el sistema respiratorio de este.</td>
</tr>
<tr>
<td>(\dot{V}_{\text{SENS}})</td>
<td>Sensibilidad por flujo. Parámetro que determina el flujo inspirado por el paciente que acciona el respirador para que administre una respiración mandatoria o espontánea (cuando está seleccionado el trigger de flujo).</td>
</tr>
<tr>
<td>(V_T)</td>
<td>Volumen corriente. Parámetro que determina el volumen inspirado y espirado con cada respiración. El (V_T) administrado por algunos respiradores de Puritan Bennett es una variable definida por el operador que determina el volumen administrado al paciente durante una respiración mandatoria basada en el volumen. (V_T) está compensado por la compliancia y se corrige según la presión y la temperatura corporales saturadas (BTPS).</td>
</tr>
</tbody>
</table>

Tabla Glosario-2. Unidades de medida

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centímetro. Unidad de longitud.</td>
</tr>
<tr>
<td>ft</td>
<td>Pie. Unidad de longitud.</td>
</tr>
<tr>
<td>Hz</td>
<td>Herció. Unidad de frecuencia, indica los ciclos por segundo.</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogramo. Unidad de peso.</td>
</tr>
<tr>
<td>L</td>
<td>Litro. Unidad de volumen.</td>
</tr>
<tr>
<td>lb</td>
<td>Libra. Unidad de peso.</td>
</tr>
<tr>
<td>m</td>
<td>Metro. Unidad de longitud.</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitro. Unidad de volumen.</td>
</tr>
<tr>
<td>ms</td>
<td>Milisegundo. Unidad de tiempo.</td>
</tr>
<tr>
<td>S</td>
<td>Segundo. Unidad de tiempo.</td>
</tr>
<tr>
<td>V</td>
<td>Voltios. Unidad de voltaje.</td>
</tr>
<tr>
<td>VA</td>
<td>Voltiamperios. Unidad de potencia.</td>
</tr>
</tbody>
</table>
Tabla Glosario-3. Abreviaturas técnicas

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>Código estándar estadounidense para el intercambio de información (American Standard Code for Information Interchange). Esquema de codificación de caracteres estándar.</td>
</tr>
<tr>
<td>CA, también ca</td>
<td>Corriente alterna. Movimiento de la carga eléctrica que invierte su dirección periódicamente.</td>
</tr>
<tr>
<td>CC, también cc</td>
<td>Corriente continua. Movimiento de la carga eléctrica que fluye en una única dirección.</td>
</tr>
<tr>
<td>CE</td>
<td>Marca de certificación emitida bajo la autoridad del Mercado Común Europeo que indica el cumplimiento de la Directiva sobre dispositivos médicos, 93/42/CEE.</td>
</tr>
<tr>
<td>CRC</td>
<td>Comprobación o código de redundancia cíclica. Algoritmo o resultado informático basado en el resto de una división definida sobre el anillo de polinomios en el campo de Galois GF(2). Los algoritmos CRC son la base para las comprobaciones de integridad de los datos.</td>
</tr>
<tr>
<td>CSA</td>
<td>Asociación de estándares canadiense (Canadian Standards Association).</td>
</tr>
<tr>
<td>EMC</td>
<td>Compatibilidad electromagnéticas.</td>
</tr>
<tr>
<td>EN</td>
<td>Norma europea (en referencia al Mercado Común Europeo).</td>
</tr>
<tr>
<td>ETO</td>
<td>Óxido de etileno.</td>
</tr>
<tr>
<td>IEC</td>
<td>Comisión electrotécnica internacional. Organización de estándares.</td>
</tr>
<tr>
<td>ISO</td>
<td>Organización internacional de estándares. Organización de estándares.</td>
</tr>
<tr>
<td>LCD</td>
<td>Pantalla de cristal líquido. Tipo de interfaz visual equipo-operador.</td>
</tr>
<tr>
<td>LED</td>
<td>Diodo emisor de luz. Medio de proporcionar indicaciones visuales.</td>
</tr>
<tr>
<td>MRI</td>
<td>Imagen por resonancia magnética.</td>
</tr>
<tr>
<td>NVRAM, también NovRam</td>
<td>Memoria de acceso aleatorio no volátil. Memoria que se mantiene activa en todas los restablecimientos y ciclos de energía y que no se inicializa normalmente en el arranque.</td>
</tr>
<tr>
<td>POST</td>
<td>Autotest de encendido. Algoritmos de software para verificar la integridad del software de la aplicación y el entorno de hardware. El autotest de encendido, por lo general, se produce en el encendido, tras la pérdida de alimentación o cuando el dispositivo detecta un fallo interno.</td>
</tr>
<tr>
<td>RAM</td>
<td>Memoria de acceso aleatorio.</td>
</tr>
</tbody>
</table>
Índice

Símbolos
% de tiempo de rampa 10-69

A
accesorio .. 9-1
compatibilidad ... 9-3
números de pieza .. 9-3
Acciones .. 4-6-4-7
arrastrar ... 4-7
arrastrar y soltar .. 4-7
deslizamiento .. 4-6
doble toque .. 4-7
tocar y mantener ... 4-7
Administración de respiraciones espontáneas 10-22
Administración de respiraciones mandatorias 10-16
ajuste del diseño de gráfica 3-43
ajustes del respirador
configuración ... 3-35-3-44
sensibilidad de desconexión (DSEN) 10-70
Alarma
alarma .. 6-10
ALERTA DEL DISPOSITIVO 6-42
APNEA ... 6-40
de la alarma ... 6-8, 6-9
de las alarmas .. 6-17
dependiente ... 6-5
DESCONEXIÓN DEL CIRCUITO 6-41
ERROR DE PROCEDIMIENTO 6-48
Frecuencia respiratoria máxima 6-44
INSPIRACIÓN DEMASIADO LARGA 6-45
no técnica .. 6-20
PÉRDIDA ALIM. CA 6-40
PÉRDIDA DE ALIMENTACIÓN 6-41
Porcentaje máximo de O₂ administrado 6-43
Porcentaje mínimo de O₂ administrado 6-46
Presión del circuito baja 6-45
Presión máxima del circuito 6-42
principal ... 6-5
Símbolos ... 6-7
técnicas .. 6-19
Volumen corriente espirado espontáneo
bajo ... 6-47
Volumen corriente espirado mandatorio
bajo ... 6-47
Volumen corriente espirado máximo 6-44
Volumen corriente inspirado máximo 6-44
Volumen espirado máximo por minuto 6-43
Volumen total espirado bajo por minuto 6-47
alarma bloqueable .. 6-6
enganchada ... 6-6
asistencia técnica ... 1-15
ATC
cómo ejecutarlo ... 3-46
resultados .. 3-50
secuencia de la prueba 3-46
Autotest corto (SST) 10-78
Autotest de encendido (POST) 10-77
Autotest largo (EST) 10-78
Ayuda en pantalla ... 1-18
B
batería
vida útil .. 3-23
Bloqueo
brillo de pantalla ... 4-5
pantalla ... 4-6
C
cables que cumplen con los requisitos 11-38
Captura de pantalla de la GUI 5-2
capturas de pantalla 5-2
características configurables
brillo de la pantalla y retroiluminación del teclado .. 3-37
datos del paciente con tamaño de fuente grande .. 3-41
fecha y hora ... 3-36
formas de onda .. 3-42
PBW ... 3-37
relación mL/kg ... 3-37
valores predeterminados de la
configuración del nuevo paciente 3-37
tamaño del volumen 3-39
características configurables de
los datos del paciente 3-40
características configurables,
unidades de presión 3-36
características físicas 11-2
Clasificación IEC ... 2-3
Comandos en serie 5-5
Comandos RS-232 ... 8-22
RSET ... 5-6
SND ... 5-6
SNDF ... 5-10
cómo acceder al modo Servicio 3-32
CÓMO conectar el circuito del paciente 3-15
Cómo conectar el respirador a la
alimentación de CA 3-6
Cómo conectar los suministros de gas 3-7
CÓMO guardar el respirador durante
largos periodos de tiempo 7-24
Cómo instalar los accesorios 3-18-3-28
cómo utilizar el sistema de respirador 4-8-4-21
cómo utilizar la interfaz del usuario
del respirador ... 4-3-4-7
cómo visualizar los registros del respirador ... 8-4
Compensación de la compliancia 10-13-10-16
Compensación de la compliancia en
respiraciones basadas en volumen 10-13
Compensación del tubo (TC) 10-26
Comprobación de la instalación (pruebas a realizar
avantes de ventilar al paciente) 3-44-3-50
Índice

Conexión a sistemas externos de supervisión de pacientes 5-21
Configuración del respirador 4-2
configuración del respirador intervalo y resolución 11-8-11-16

D
datos del paciente monitorizados 6-49
Declaración del fabricante 11-30
Desconexión 10-47
Detección de la oclusión y la desconexión 10-45-10-49
Diagrama neumático 2-39

E
Eliminación de piezas usadas 8-1
compatibilidad 1-20
distancias de separación recomendadas 11-36
emisiones 11-31
escala de los ejes de la gráfica 3-43
especificaciones ambientales 11-8
características físicas 11-2
eléctricas 11-6
funcionamiento 11-8
neumáticas 11-3
técnicas 11-3
Esparación
límite de presión máxima del circuito
(método de reserva) 10-12
límite de presión máxima del respirador
(método de reserva) 10-12
límite de tiempo (método de reserva) 10-12
límite de volumen corriente inspirado
máximo (método de reserva) 10-12
método de ciclado por tiempo 10-11
método de porcentaje de flujo máximo 10-10
método de presión de las vías aéreas 10-9
Esparción: detección e inicio 10-9-10-12
Esterilización de componentes 7-20
Estrategias de protección del respirador 4-35-4-37

F
Fabricante 1-20
flujo cruzado de gas fallido 3-8
flujo inspiratorio máximo (V_{MAX}) 10-62
Frecuencia respiratoria (f) 10-61
Funcionamiento con alimentación de CA 3-2
Funciones de alarma 6-4, 6-5

I
iconos
alarma de prioridad alta 2-21
alarma de prioridad baja 2-21
alarma de prioridad media 2-21
aumentar O$_2$ 2-20
ayuda 2-20
captura de pantalla 2-20
configuración del respirador 2-19
configurar 2-20
diseño de gráfica 2-21
elementos sin leer 2-20
líneas de cuadrícula 2-21
maximizar forma de onda 2-21
pausar 2-20
recuperación de la gráfica 2-21
registros 2-19
Impresión de datos 5-20
Incertidumbre de la medición 11-1
Indicadores de la BDU
sonoros 2-37
visuales 2-28
Indicadores de la GUI
sonoros 2-25
visuales 2-18-2-21
Información sobre garantía 1-19
inspiración manual 4-28, 10-21
inspiración: detección e inicio 10-5-10-9
instalación de la batería de duración prolongada 3-23
instalación de la batería principal 3-20
instalación de las baterías 3-18
Instalación del filtro 3-10
instalación del humidificador 3-26
Interfaz gráfica del usuario (GUI) 2-16
interpretación del número de serie 1-19
intervalo, resolución y precisión de la configuración de las alarmas 11-16
intervalo, resolución y precisión de los datos del paciente 11-19-11-25

L
LED omnidireccional 3-28
Límite de tiempo inspiratorio espontáneo máximo ($T_{1 \text{SPONT}}$) 10-71
limite flexible 4-3
limite rígido 4-3
Limpieza de las superficies exteriores 7-5
Limpieza y desinfección de los componentes 7-7

M
Maniobra de P0.1 10-55
Maniobras de pausa espiratoria 4-31
Maniobras de pausa inspiratoria 4-30, 10-50
maniobras mecánicas respiratorias
maniobra de capacidad vital (VC) 10-55
maniobra de fuerza inspiratoria negativa (NIF) 10-54
Maniobra de P0.1 10-55
maniobras respiratorias
maniobra de NIF 10-54
maniobra de pausa espiratoria 10-53
maniobra de pausa inspiratoria 10-50
Marcador 4-5
Modo A/C 10-31-10-33
Modo espontáneo (SPONT) 10-38-10-40
Modo y tipo de respiración 10-59
Índice

<table>
<thead>
<tr>
<th>Índice</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modos de funcionamiento del respirador</td>
<td>3-28-3-33</td>
</tr>
<tr>
<td>estado en espera</td>
<td>3-29</td>
</tr>
<tr>
<td>modo Inicio rápido</td>
<td>3-29</td>
</tr>
<tr>
<td>modo Normal</td>
<td>3-28</td>
</tr>
<tr>
<td>modo Servicio</td>
<td>3-31</td>
</tr>
<tr>
<td>módulo de espiración</td>
<td>7-10-7-20</td>
</tr>
<tr>
<td>desmontaje, desinfección y reensamblaje</td>
<td>7-10-7-20</td>
</tr>
<tr>
<td>Montaje del producto</td>
<td>2-5</td>
</tr>
<tr>
<td>Pantalla de estado</td>
<td>2-29-2-37</td>
</tr>
<tr>
<td>Pantalla principal</td>
<td>2-16</td>
</tr>
<tr>
<td>parámetros</td>
<td>4-16-4-17</td>
</tr>
<tr>
<td>Alarma</td>
<td>4-16</td>
</tr>
<tr>
<td>apnea</td>
<td>4-15</td>
</tr>
<tr>
<td>respirador</td>
<td>4-10</td>
</tr>
<tr>
<td>volver a anteriores</td>
<td>4-20</td>
</tr>
<tr>
<td>Parámetros de BUV</td>
<td>10-76</td>
</tr>
<tr>
<td>Parámetros de los datos del paciente</td>
<td>6-49-6-56</td>
</tr>
<tr>
<td>parámetros del respirador</td>
<td>10-50-10-52</td>
</tr>
<tr>
<td>% de tiempo de rampa</td>
<td>10-50-10-52</td>
</tr>
<tr>
<td>flujo inspiratorio máximo (V_{MAX})</td>
<td>10-62</td>
</tr>
<tr>
<td>frecuencia respiratoria (f)</td>
<td>10-61</td>
</tr>
<tr>
<td>modo y tipo de respiración</td>
<td>10-59</td>
</tr>
<tr>
<td>patrón de flujo</td>
<td>10-63</td>
</tr>
<tr>
<td>PEEP</td>
<td>10-67</td>
</tr>
<tr>
<td>P_H</td>
<td>10-66</td>
</tr>
<tr>
<td>porcentaje de soporte en PAV+</td>
<td>10-69</td>
</tr>
<tr>
<td>porcentaje de soporte en TC</td>
<td>10-68</td>
</tr>
<tr>
<td>presión baja (P_L)</td>
<td>10-66</td>
</tr>
<tr>
<td>presión de soporte ($P_{SUPPORT}$)</td>
<td>10-68</td>
</tr>
<tr>
<td>presión inspiratoria (P_I)</td>
<td>10-65</td>
</tr>
<tr>
<td>Relación $I:E$</td>
<td>10-66</td>
</tr>
<tr>
<td>sensibilidad espiratoria (E_{SENS})</td>
<td>10-70</td>
</tr>
<tr>
<td>sensibilidad por flujo (V_{SENS})</td>
<td>10-64</td>
</tr>
<tr>
<td>sensibilidad por presión (P_{SENS})</td>
<td>10-64</td>
</tr>
<tr>
<td>tiempo de meseta (T_{P})</td>
<td>10-63</td>
</tr>
<tr>
<td>tiempo de presión alta (T_{H})</td>
<td>10-67</td>
</tr>
<tr>
<td>tiempo de presión baja (T_{L})</td>
<td>10-67</td>
</tr>
<tr>
<td>tiempo espiratorio (T_E)</td>
<td>10-66</td>
</tr>
<tr>
<td>tiempo inspiratorio (T_I)</td>
<td>10-65</td>
</tr>
<tr>
<td>tipo de circuito y PBW</td>
<td>10-58</td>
</tr>
<tr>
<td>tipo de humidificación</td>
<td>10-71</td>
</tr>
<tr>
<td>tipo de ventilación</td>
<td>10-59</td>
</tr>
<tr>
<td>ventilación de apnea</td>
<td>10-56</td>
</tr>
<tr>
<td>volumen corriente (V_T)</td>
<td>10-62</td>
</tr>
<tr>
<td>volumen de soporte ($V_{SUPPORT}$)</td>
<td>10-68</td>
</tr>
<tr>
<td>volumen del humidificador</td>
<td>10-72</td>
</tr>
<tr>
<td>Patrón de flujo</td>
<td>10-63</td>
</tr>
<tr>
<td>Pausa espiratoria</td>
<td>10-53-10-54</td>
</tr>
<tr>
<td>Pausa inspiratoria</td>
<td>10-50-10-52</td>
</tr>
<tr>
<td>PEEP</td>
<td>10-67</td>
</tr>
<tr>
<td>porcentaje de soporte en PAV+</td>
<td>10-69</td>
</tr>
<tr>
<td>porcentaje de soporte en TC</td>
<td>10-68</td>
</tr>
<tr>
<td>Precisión de la administración</td>
<td>11-25</td>
</tr>
<tr>
<td>Precisión de supervisión</td>
<td>11-26</td>
</tr>
<tr>
<td>precisión del valor calculado</td>
<td>11-27</td>
</tr>
<tr>
<td>Preparación del respirador para su uso</td>
<td>3-34</td>
</tr>
<tr>
<td>Presión alta (P_H) en BiLevel</td>
<td>10-66</td>
</tr>
<tr>
<td>Presión baja (P_L) en BiLevel</td>
<td>10-66</td>
</tr>
<tr>
<td>Presión de meseta (P_{PL})</td>
<td>6-52</td>
</tr>
<tr>
<td>Presión de soporte ($P_{SUPPORT}$)</td>
<td>10-68</td>
</tr>
<tr>
<td>Presión inspiratoria (P_I)</td>
<td>10-65</td>
</tr>
<tr>
<td>problemas relacionados con el paciente</td>
<td>10-74</td>
</tr>
<tr>
<td>pruebas de seguridad</td>
<td>11-38</td>
</tr>
<tr>
<td>registro de servicio</td>
<td>8-4</td>
</tr>
<tr>
<td>registro de diagnóstico del sistema</td>
<td>8-3</td>
</tr>
<tr>
<td>registro de configuración</td>
<td>8-2</td>
</tr>
<tr>
<td>registro de alarmas</td>
<td>8-2</td>
</tr>
<tr>
<td>registro de datos del paciente</td>
<td>8-2</td>
</tr>
<tr>
<td>registro de diagnóstico del sistema</td>
<td>8-3</td>
</tr>
<tr>
<td>Registro de estado de el EST/SST</td>
<td>8-3</td>
</tr>
<tr>
<td>registro de servicio</td>
<td>8-4</td>
</tr>
<tr>
<td>Registro general de eventos</td>
<td>8-3</td>
</tr>
<tr>
<td>Símbolos y descripciones de la etiqueta</td>
<td>5-10</td>
</tr>
<tr>
<td>trasera de la BDU</td>
<td>2-11-2-13</td>
</tr>
<tr>
<td>Vista frontal de la BDU</td>
<td>2-8</td>
</tr>
<tr>
<td>Vista frontal de la GUI</td>
<td>2-6</td>
</tr>
<tr>
<td>Vista lateral derecha de la BDU</td>
<td>2-14-2-15</td>
</tr>
<tr>
<td>Vista trasera de la BDU</td>
<td>2-10</td>
</tr>
<tr>
<td>Vista trasera de la GUI</td>
<td>2-7</td>
</tr>
<tr>
<td>Respuesta MISCA</td>
<td>5-6</td>
</tr>
<tr>
<td>Respuesta MISCF</td>
<td>5-10</td>
</tr>
<tr>
<td>Resultados del ATC</td>
<td>4-20</td>
</tr>
<tr>
<td>Actividad de soporte</td>
<td>10-68</td>
</tr>
<tr>
<td>Ruido de flujo</td>
<td>10-58</td>
</tr>
<tr>
<td>Registro de estado del EST/SST</td>
<td>8-3</td>
</tr>
<tr>
<td>registro de diagnóstico del sistema</td>
<td>8-3</td>
</tr>
<tr>
<td>registro de configuración</td>
<td>8-2</td>
</tr>
<tr>
<td>registro de datos del paciente</td>
<td>8-2</td>
</tr>
<tr>
<td>registro de diagnóstico del sistema</td>
<td>8-3</td>
</tr>
<tr>
<td>registro de servicio</td>
<td>8-4</td>
</tr>
<tr>
<td>registro general de eventos</td>
<td>8-3</td>
</tr>
<tr>
<td>Símbolos y descripciones de la etiqueta</td>
<td>5-10</td>
</tr>
<tr>
<td>trasera de la BDU</td>
<td>2-11-2-13</td>
</tr>
<tr>
<td>Vista frontal de la BDU</td>
<td>2-8</td>
</tr>
<tr>
<td>Vista frontal de la GUI</td>
<td>2-6</td>
</tr>
<tr>
<td>Vista lateral derecha de la BDU</td>
<td>2-14-2-15</td>
</tr>
<tr>
<td>Vista trasera de la BDU</td>
<td>2-10</td>
</tr>
<tr>
<td>Vista trasera de la GUI</td>
<td>2-7</td>
</tr>
<tr>
<td>Respuesta MISCA</td>
<td>5-6</td>
</tr>
<tr>
<td>Respuesta MISCF</td>
<td>5-10</td>
</tr>
<tr>
<td>Resultados del ATC</td>
<td>3-49</td>
</tr>
</tbody>
</table>
Índice

Sensibilidad de desconexión (D_{SENS}) 10-70
Sensibilidad espiratoria (E_{SENS}) 10-70
Sensibilidad por flujo (V_{SENS}) 10-64
Sensibilidad por presión ... 10-64
Sensor de oxígeno
 Calibración .. 4-34
 Función .. 4-32
 Prueba de calibración 4-34
Servicios técnicos .. 1-15
Servicios técnicos de Covidien
 Base de conocimientos del centro Solv-IT 1-18
 Lista de Centros de servicio internacionales 1-16
 Número de teléfono .. 1-15
Símbolos
 Definiciones de los símbolos de seguridad 1-3
 Símbolos y descripciones de la etiqueta del panel trasero de la BDÔ 2-11
 Símbolos y descripciones de las etiquetas de envío .. 1-2
Símbolos y abreviaturas en la pantalla 2-22-2-25
SIMV .. 10-33-10-38
Sistema de diagnóstico de segundo plano 10-75

T
TC
 Alarmas ... 10-28
 Datos del paciente monitorizados 10-28
 Descripción técnica .. 10-27
 PBW e ID del tubo .. 10-28
 Tipo de tubo, ID del tubo, humidificación 4-14
 Teclas de control de la GUI 2-16
 Tiempo de meseta (TPL) 10-63
 Tiempo de presión alta ($T_{P,HI}$) en BiLevel 10-67
 Tiempo de presión baja ($T_{P,LO}$) en BiLevel 10-67

U
Unidad neumática ... 2-26
Uso de alimentación por batería 3-2-3-3
Uso del inicio rápido .. 4-8

V
Variable de constante de tiempo para los cambios en la frecuencia 4-20
VC+
 Ajustes de presión máxima 10-20
 Inicio .. 10-20
Ventilación de apnea ... 10-40-10-44, 10-56
 Ventilación de apnea en SIMV 10-43
 Ventilación de un nuevo paciente 4-9
 Ventilación del mismo paciente 4-9
Ventilación no invasiva (NIV) 4-22-4-28
Verificación del funcionamiento 3-58
Volumen corriente (V_{T}) 10-62
Volumen de soporte ($V_{T, SUPP}$) 10-68
Volumen del humidificador 10-72
VS
 Ajustes de presión máxima 10-26
 Inicio .. 10-25-10-26