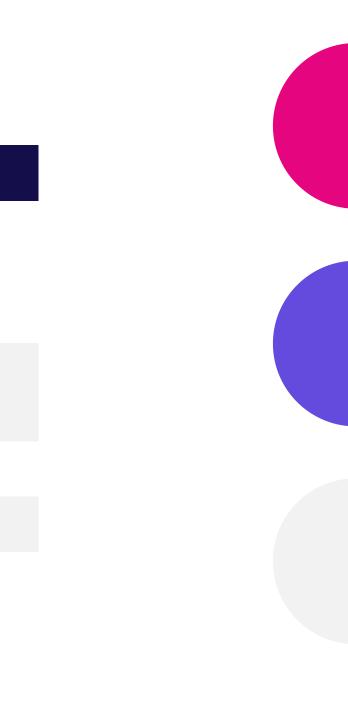

SMall Annuli Randomized to Evolut or SAPIEN

Self-Expanding Versus Balloon-Expandable TAVR in Patients with Aortic Stenosis and Small Aortic Annuli

Primary Outcomes from the Randomized SMART Trial

Howard C. Herrmann, MD | Roxana Mehran, MD | Didier Tchétché, MD on behalf of the SMART Trial Investigators



Disclosure of relevant financial relationships

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below:

Financial Relationship	Company
Institutional grants/research support	Abbott Vascular, Boston Scientific, Edwards LifeSciences, Medtronic, Highlife Med, Innovalve, Shockwave
Consulting fees/honoraria	Edwards Lifesciences, Johnson & Johnson, Medtronic, Prolifagen, Truffle Capital, Wells Fargo
Shareholder/equity	Microinterventional Devices, Holistick
Editorial	Mass Medical Society

Background

In multiple studies, the supra-annular self-expanding Evolut[™] valve has been shown to have superior hemodynamic properties compared with the intraannular balloon-expandable SAPIEN[™] platform.¹

- Hemodynamic valve performance is linked to longterm outcomes.²
- These hemodynamic differences may be particularly important in patients with a small aortic annulus who comprise up to 40% of patients, typically women who are under-represented in clinical trials.³
- Compared with men, women with aortic stenosis present differently⁴ and are at greater risk of complications following surgery and TAVR.

1. Abdel-Wahab M, et al. JACC Cardiovasc Interv 2020;13(9):1071-1082. 2. Playford D, et al. J Am Soc Echocardiogr 2020;33(9):1077-1086 3. Freitas-Ferraz AB, et al. Circulation 2019;139(23):2685-2702.

4. DesJardin JT, et al. Circulation Research. 2022;130:455-473.

The SMART Trial

was designed to compare the performance and safety of the supraannular, self-expanding Evolut valve (SEV) to the intra-annular, balloon-expandable SAPIEN valve (BEV) in TAVR patients with severe symptomatic aortic stenosis and a small aortic valve annulus.

Trial organization

Executive committee

- Howard Herrmann
- Roxana Mehran
- Didier Tchétché

Independent steering committee

- Sabine Bleiziffer
- Joshua Rovin
- Linda Gillam
- Mohammed Abdel-Wahab
- Guilherme Attizzani
- Wayne Batchelor
- Hemal Gada
- Mayra Guerrero
- Howard Herrmann
- Paul Mahoney
- Roxana Mehran
- Anna Sonia Petronio
- Toby Rogers
- Molly Szerlip
- Didier Tchétché
- Brian Whisenant

Independent physician case planning committee

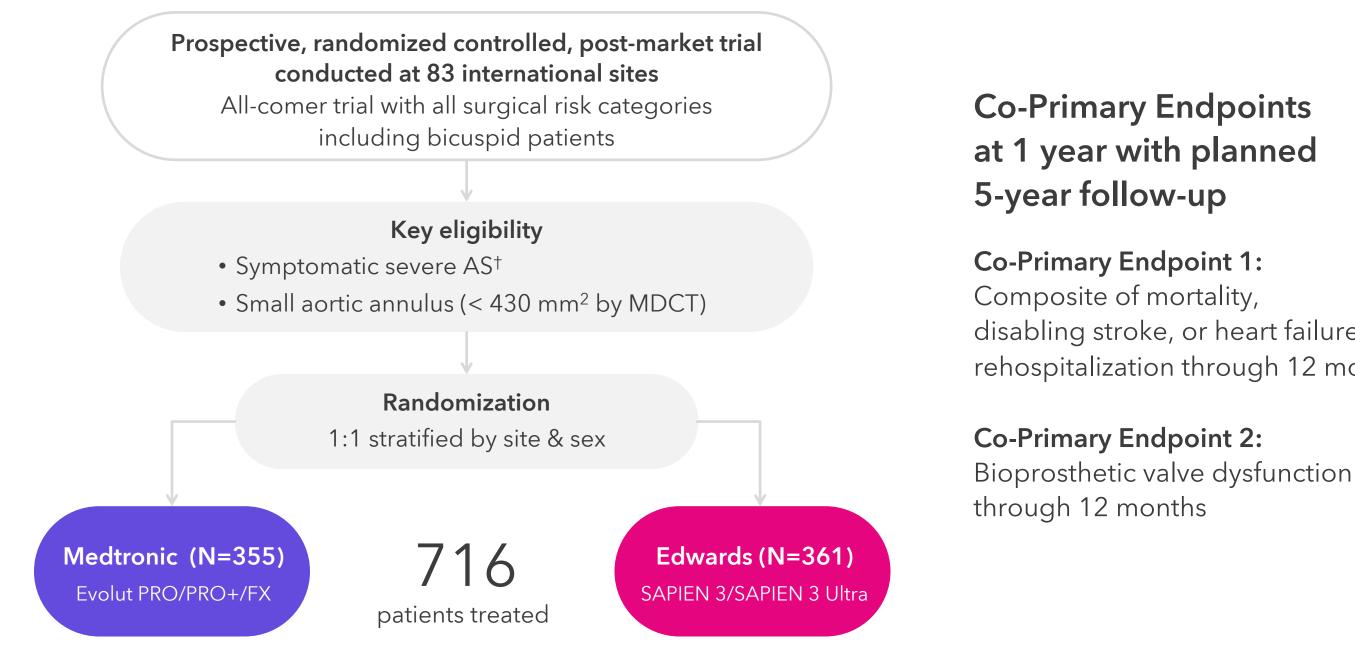
- Michael Deeb
- Kendra Grubb
- Joshua Rovin
- Guilherme Attizzani
- Philipe Genereux
- Howard Herrmann
- Paul Mahoney
- Roxana Mehran
- Toby Rogers
- Didier Tchétché
- Brian Whisenant

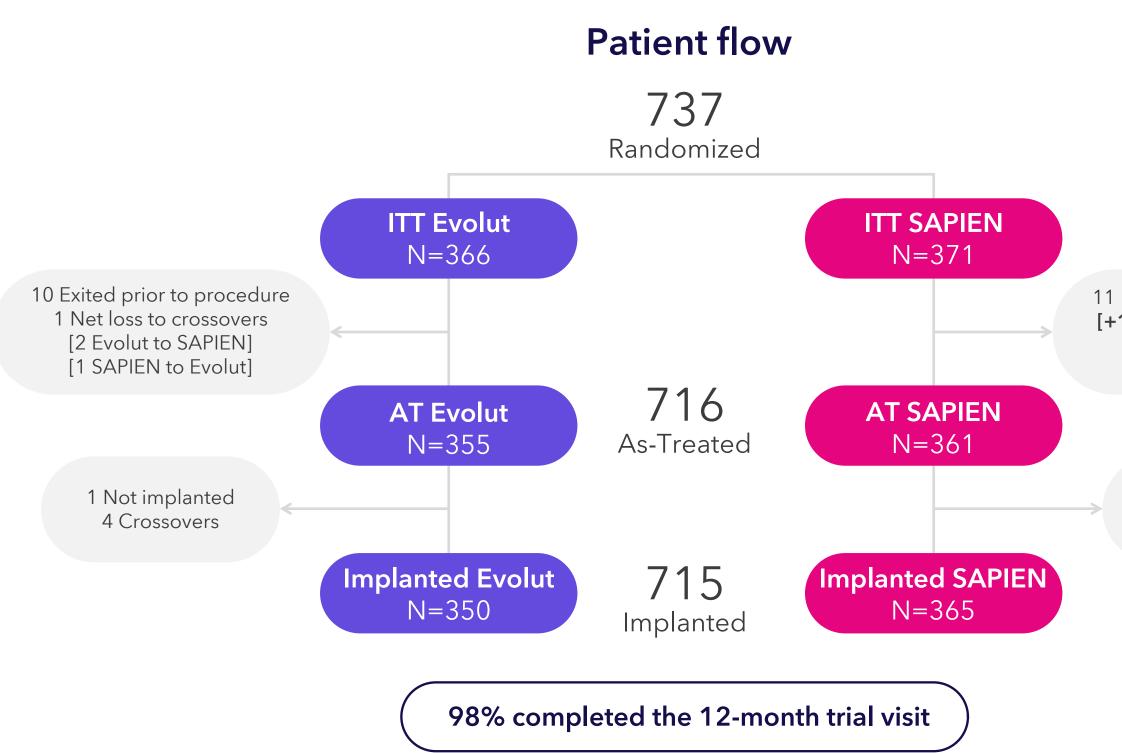
Independent CEC and DSMB

Core laboratories (blinded to clinical outcomes)

- Echocardiography: Mayo Clinic
- Angiography: Baim Institute for Clinical Research

Statistical analysis


- Performed by the sponsor
- Medtronic (Minneapolis, MN)


Trial design

[†]AVA ≤1.0 cm² (AVAi ≤0.6 cm²/m²) or mean gradient ≥40 mmHg or max velocity ≥4.0 m/s; 30-day predicted risk of surgical mortality <15% by heart team assessment.

disabling stroke, or heart failure rehospitalization through 12 months

11 Exited prior to procedure [+1 Net gain to crossovers] [2 Evolut to SAPIEN] [1 SAPIEN to Evolut]

0 Not implanted 0 Crossovers

Statistical methods

Co-primary endpoint #1

Clinical outcome composite through 12 months

- Mortality
- Disabling stroke
- Heart failure rehospitalization

Co-primary endpoint #2

Bioprosthetic valve dysfunction through 12 months

- Hemodynamic structural valve dysfunction: Mean gradient ≥20 mmHg
- Nonstructural valve dysfunction: Severe PPM (VARC-3), ≥moderate total AR
- Clinical valve thrombosis (VARC-2)
- Endocarditis (Duke criteria)
- Aortic valve reintervention

Powered for **noninferiority**, margin of 8%

- As-treated population (1st attempted device) (~)
- K-M estimate with risk difference (90% CI) through 12 months
- ✓ 85% power with 700 patients

- Powered for superiority
- Implanted population (final valve received)
- K-M estimate with risk difference (95% CI) through 12 months

>99% power with 700 patients

Statistical methods

If both primary endpoints were met, hierarchical testing of secondary endpoints occurred in a prespecified order.

Powered for superiority

Hypothesis-tested secondary endpoints

Hemodynamic mean gradient at 12 months

Effective orifice area at 12 months

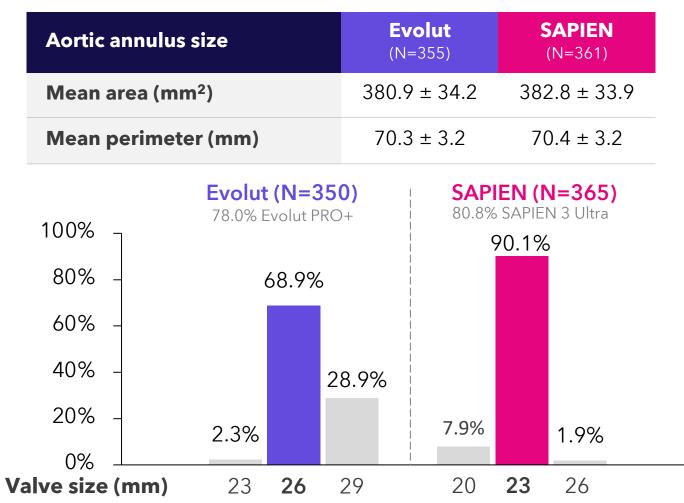
Hemodynamic SVD (mean gradient ≥20 3 mmHg) through 12 months

BVD in women through 12 months

Moderate/severe prosthesis-patient 5 mismatch at 30 days

Baseline characteristics

Characteristic	Evolut (N=355)	SAPIEN (N=361)
Age - yr	80.1 ± 6.3	80.3 ± 6.1
Female sex	87.9%	85.6%
STS-PROM score - %	3.3 ± 1.9	3.2 ± 1.7
NYHA functional class III/IV	43.3%	39.9%
Diabetes	29.3%	34.1%
Hypertension	82.5%	86.7%
COPD or chronic lung disease	18.0%	17.6%
Cerebrovascular disease	12.0%	11.4%
Previous CABG	3.4%	5.0%
Previous PCI	17.0%	23.3%
Previous myocardial infarction	5.4%	8.0%
History of RBBB	5.9%	6.9%
Coronary artery disease	35.2%	41.0%
Pre-existing permanent pacemaker/ICD	8.5%	6.9%
Bicuspid aortic valve morphology	3.9%	4.2%


Data presented as mean ± SD or %

Valve and procedural data

Valve size

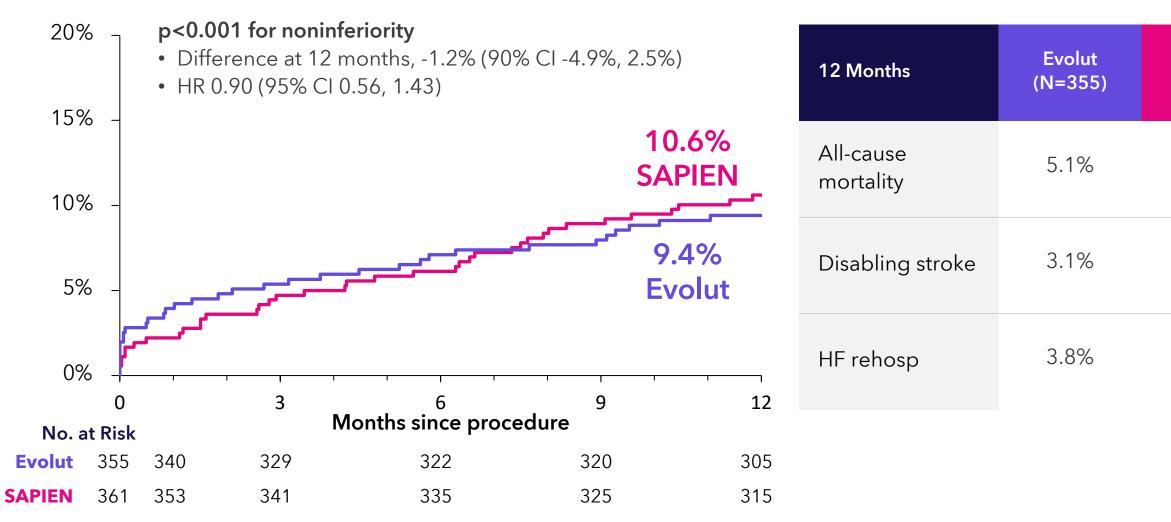
. . . • - 1

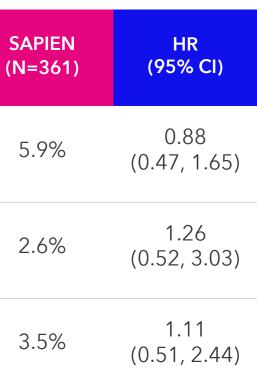
Procedural characteristics and outcomes							
Characteristic	Evolut (N=355)	SAPIEN (N=361)	P Value ^a				
Total time in the procedure room ^b (min)	116 ± 44	106 ± 43	0.002				
Catheter (device) time in the body (min)	18 ± 15	14 ± 12	<0.001				
Contrast volume ^c (ml)	121 ± 59	95 ± 43	<0.001				
Valve embolization	1.1	0.0	0.06				
Device success at 30 days (VARC-2) ^d	85.2%	59.2%	<0.001				
Device success at 30 days (VARC-3) ^e	94.5%	86.6%	<0.001				

^aContinuous variables compared using t-tests; categorical variables compared using chi-squared tests.

^bData available for 354 Evolut and 361 SAPIEN patients.

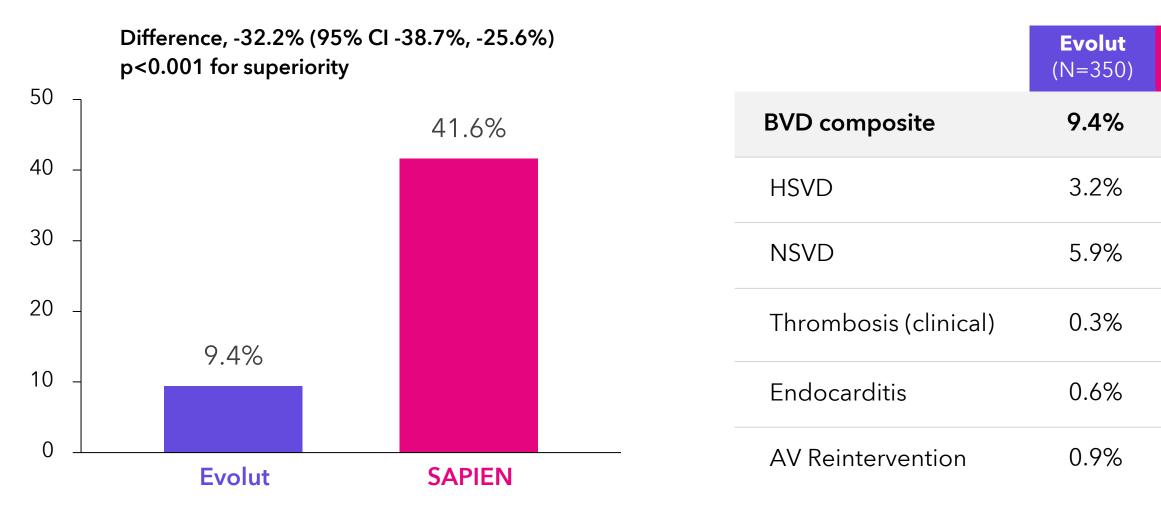
^cData available for 347 Evolut and 357 SAPIEN patients.


^dEvaluated according to VARC-2 criteria in 291 Evolut and 319 SAPIEN patients. ^eEvaluated according to VARC-3 criteria in 327 Evolut and 328 SAPIEN patients.


Co-primary endpoint 1:

Clinical outcome composite through 12 months powered for noninferiority

Mortality, Disabling Stroke, or HF Rehospitalization



Co-primary endpoint 2: BVD through 12 months powered for superiority

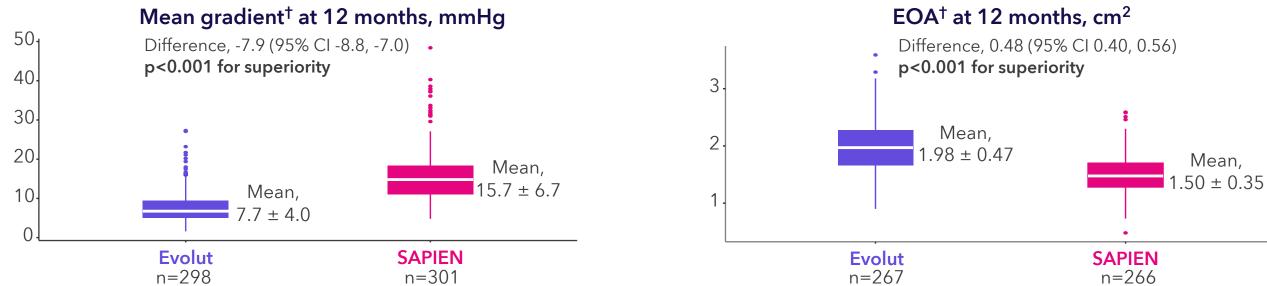
Bioprosthetic Valve Dysfunction through 12 months

HSVD = Mean gradient ≥ 20 mmHg

NSVD = Severe PPM per VARC-3 or ≥moderate total AR

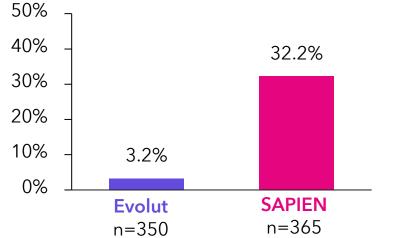
Prespecified subgroup analyses for the co-primary endpoints

Clinical Outcome Composite Through 12 Months

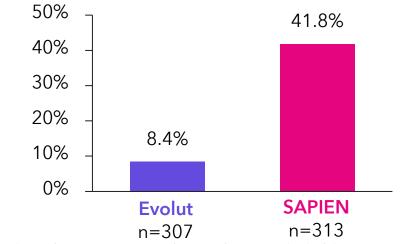

BVD Through 12 Months

Variable	SEV	BEV	SEV Better	BEV Better	HR (95% CI)	Variable	SEV	BEV	SEV Better	REV Rottor	HR (95% CI)
	KM rate throu	gh 12 months	OL V Detter		111((3370 CI)		KM rate throu	gh 12 months	SEV Deller	DEV Dellei	111(007001)
Age, years				_		Age, years					
<75	8.1%	3.1%			2.71 (0.53, 13.99)	<75	19.2%	52.8%			0.26 (0.13, 0.55)
≥75	9.7%	12.2%	-	f	0.79 (0.48, 1.30)	≥75	7.5%	39.0%	-		0.17 (0.10, 0.28)
Sex						Sex			_		
Female	9.4%	11.8%	-	+	0.80 (0.49, 1.31)	Female	8.4%	41.8%	-		0.17 (0.11, 0.27)
Male	9.3%	3.8%	_		2.54 (0.47, 13.88)	Male	16.5%	40.3%			0.35 (0.14, 0.89)
STS-PROM, %						STS-PROM, %					
<3	8.3%	6.3%	-	—	1.37 (0.64, 2.92)	<3	14.1%	39.8%	-		0.31 (0.19, 0.50)
≥3 - <5	9.9%	12.2%	-	i-	0.81 (0.38, 1.72)	≥3 - <5	5.0%	47.4%			0.09 (0.04, 0.22)
≥5 - <8	13.7%	17.8%	_		0.76 (0.23, 2.48)	≥5 - <8	3.4%	34.5%	_		0.12 (0.02, 0.69)
≥8	7.7%	41.7%		-	0.14 (0.02, 1.21)	≥8	0.0%	33.3%			0.15 (0.01, 3.32)
LVEF, %						LVEF, %					
<50	6.7%	27.3%		_	0.21 (0.03, 1.74)	<50	10.0%	46.3%		L	0.16 (0.02, 1.33)
≥50	9.3%	9.3%		-	1.02 (0.62, 1.68)	≥50	9.4%	41.2%	-		0.20 (0.13, 0.30)
Renal dysfunction (on dialysis)						Renal dysfunction (on dialysis)			_		
Yes	0.0%	0.0%			NA	Yes	0.0%	0.0%	_		NA
No	9.6%	10.7%	-	-	0.91 (0.57, 1.45)	No	9.6%	42.0%	-		0.20 (0.13, 0.29)
Atrial fibrillation/flutter						Atrial fibrillation/flutter					
Yes	14.7%	26.2%			0.52 (0.24, 1.14)	Yes	8.5%	41.9%			0.20 (0.07, 0.52)
No	8.3%	7.4%	-	-	1.16 (0.64, 2.10)	No	9.8%	40.6%	+		0.20 (0.13, 0.32)
Prior cerebrovascular accident						Prior cerebrovascular accident					
Yes	13.3%	16.7%		<u> </u>	0.83 (0.20, 3.47)	Yes	10.5%	33.7%		_	0.36 (0.08, 1.75)
No	9.3%	10.1%	-	⊢	0.93 (0.57, 1.53)	No	9.5%	42.2%	+		0.19 (0.12, 0.29)
Pre-existing LBBB/CHB						Pre-existing LBBB/CHB					
Yes	3.7%	16.1%			0.21 (0.02, 2.01)	Yes	13.1%	49.0%			0.22 (0.06, 0.81)
No	9.6%	10.2%		-	0.94 (0.58, 1.54)	No	9.3%	42.0%	+		0.19 (0.12, 0.29)
			Г Т	I I	7				r 1	1	
		0	.0 0.1 1	.0 10.0 10	0.0			0	.0 0.1 1.	0 10.0 10	0.0
			—	\longrightarrow					—	\longrightarrow	

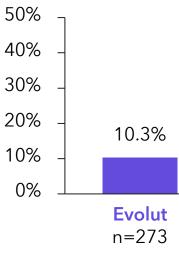
No significant interactions were observed between treatment and any of the prespecified baseline subgroups with respect to either of the co-primary endpoints.



Hypothesis-tested secondary endpoints


HSVD through 12 months, %

Difference, -29.1% (95% CI -34.6%, -23.5%) p<0.001 for superiority


BVD in women through 12 months, %

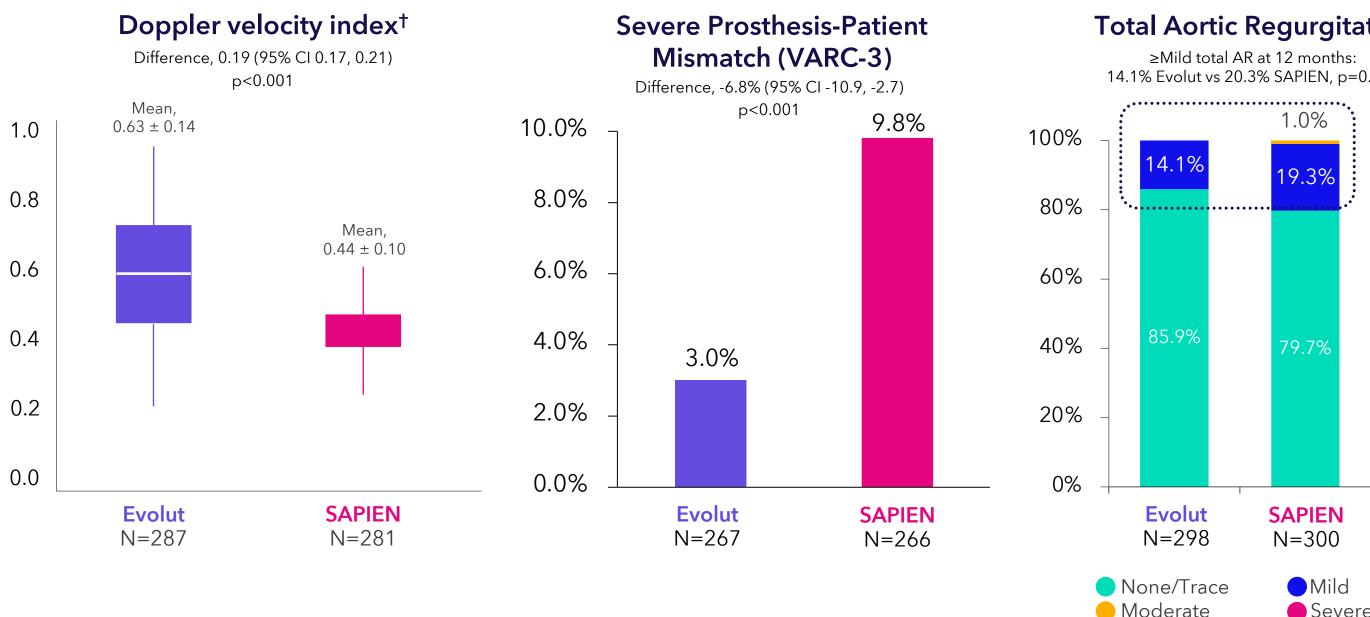
Difference, -33.4% (95% CI -40.4%, -26.4%) p<0.001 for superiority

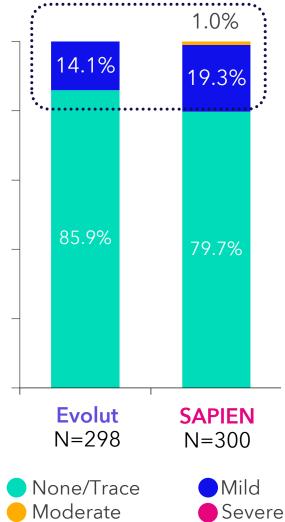
Moderate/severe PPM[‡] at 30 days, %

Difference, -24.9% (95% CI -31.4%, -18.4%) p<0.001 for superiority

⁺The center line represents the median and the box ends represent the first and third guartiles (Q1, Q3). Data outliers are shown as individual dots. [‡]VARC-3.

SAPIEN n=296


Additional safety outcomes


	30 Days			12 Months			
KM%	Evolut (N=355)	SAPIEN (N=361)	Log-Rank P Value	Evolut (N=355)	SAPIEN (N=361)	Log-Rank P Value	
Pacemaker implant ^a	12.1%	7.8%	0.055	14.0%	9.3%	0.051	
Pacemaker implant	11.1%	7.2%	0.067	12.8%	8.7%	0.063	
Prosthetic valve endocarditis	0.0%	0.0%	N/A	0.6%	2.3%	0.063	
Coronary artery obstruction	0.6%	0.3%	0.55	0.6%	0.3%	0.55	
Acute kidney injury stage 2/3	0.3%	0.3%	0.3% 0.99	0.3%	0.3%	0.99	
Cardiovascular hospitalizations	4.9%5.3%8.6%11.2%	5.3%	0.77	15.7%	16.6%	0.79	
Hospital readmission		11.2%	0.25	29.7%	32.1%	0.50	
Clinical valve thrombosis	0.0%	0.0%	N/A	0.3%	0.3%	0.99	
Sub-clinical valve thrombosis	0.0%	0.6%	N/A	0.0%	1.1%	N/A	

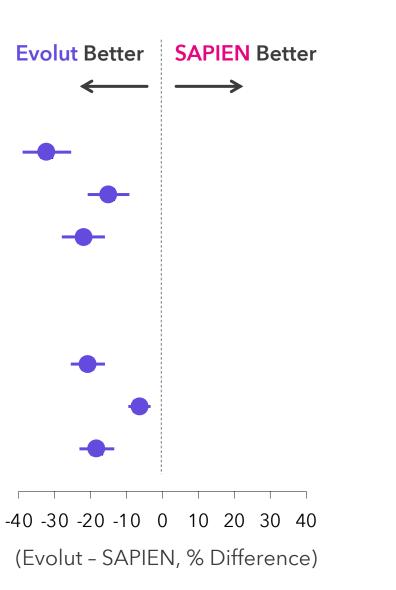
^aPatients with pacemaker/ICD at baseline are excluded

Other hemodynamic outcomes at 12 months

⁺The center line represents the median and the box ends represent the first and third quartiles (Q1, Q3).

Total Aortic Regurgitation

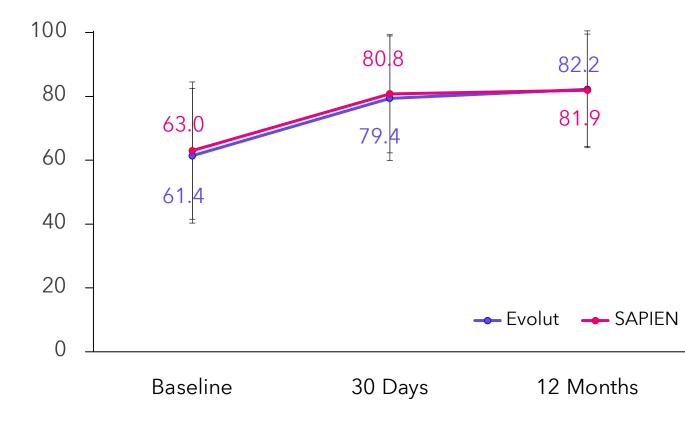
14.1% Evolut vs 20.3% SAPIEN, p=0.043

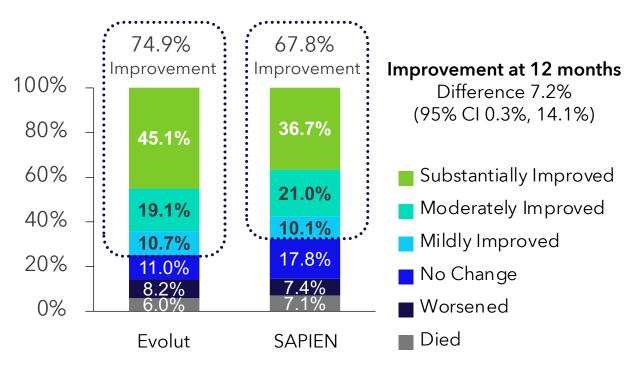

Alternative bioprosthetic valve dysfunction definitions

Alternative definition	nition Evolut (N=350)		Difference	P Value (Superiority)	
BVD composite					
ESC (Capodanno) ¹	11.5%	43.7%	-32.2%	<0.001	
VARC-3 ²	7.4%	22.4%	-15.0%	<0.001	
SMART (primary endpoint with 12 mo echo only) ³	6.3%	28.3%	-22.0%	<0.001	
HSVD					
Playford (NEDA) ⁴	1.3%	22.0%	-20.8%	<0.001	
O'Hair ⁵	0.4%	6.7%	-6.4%	<0.001	
SMART (HSVD w 12 mo echo only) ⁶	2.0%	20.3%	-18.3%	<0.001	

¹Capodanno D, et al. Eur Heart J 2017;38(45):3382-3390. ²Genereux P, et al. J Am Coll Cardiol 2021;77(21):2717-2746. ³12-month echocardiograms were available in 270 Evolut and 279 SAPIEN patients. ⁴Playford D, et al. J Am Soc Echocardiogr 2020;33(9):1077-1086.e1. ⁵O'Hair D, et al. JAMA Cardiol 2023;8(2):111-119. 612-month echocardiograms were available in 298 Evolut and 301 SAPIEN patients.

SMART Trial




Quality of life

Evolut demonstrated significantly better VARC-3 Ordinal Outcome for quality of life at 12 months

KCCQ Overall Summary Score, Mean ± SD

VARC-3 KCCQ ordinal outcome at 12 months Evolut vs SAPIEN, p=0.034

VARC-3 ordinal outcome:

(i) death; (ii) worsened: decrease from baseline >5 points; (iii) no change:
change between -5 and <5 points; (iv) mildly improved: increase between 5 and <10 points;
(v) moderately improved: increase between 10 and <20 points; (vi) substantially improved:
increase ≥20 points

Summary

The SMART trial is the largest, most rigorous trial to date, to randomize patients to the 2 most widely used TAVR devices, and the largest TAVR trial to enroll mostly women.

The SMART trial met both primary and all 5 prespecified secondary endpoints.

Compared with SAPIEN, the supra-annular Evolut demonstrated:

- Noninferior clinical outcomes at 1 year
- Superior valve performance at 1 year:
 - 32.2% lower incidence of BVD
 - 8 mmHg lower mean gradient
 - 0.5 cm² greater effective orifice area
 - 0.19 larger Doppler velocity index
 - 6.8% lower incidence of severe PPM
- Improvements in other secondary outcomes at 1 year:
 - Less total AR and better QOL per the KCCQ ordinal outcome

Based on the large differences observed in valve performance, Dr. Herrmann expects that Evolut will demonstrate improved valve durability and outcomes during longer follow-up

Thank You to All of Our Trial Investigators, Research Coordinators, and Top Enrolling Sites!

- The Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Allegheny General Hospital, Pittsburgh, PA
- Kath Saint Johannes-Gesellschaft, Dortmund, Germany
- Helios Health Institute Standort Leipzig, Germany
- Montreal Heart Institute, Montreal, Canada
- Sentara Norfolk General Hospital, Norfolk, VA
- Deutsches Herzzentrum München, Germany
- Hospital of the University of Pennsylvania, Philadelphia, PA
- Saint Paul's Hospital, Vancouver, Canada

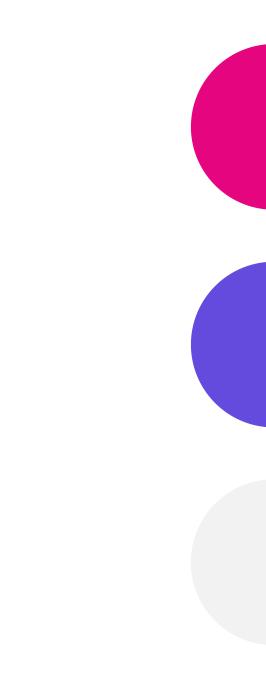
- Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Lankenau Medical Center, Wynnewood, PA
- UPMC Pinnacle Harrisburg Campus, Mechanicsburg, PA
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Tufts Medical Center, Boston, MA
- Clinique Pasteur, Toulouse, France
- Hospital Vall D'Hebron, Barcelona, Spain
- Spectrum Health Hospitals, Grand Rapids, MI

The NEW ENGLAND JOURNAL of MEDICINE

Published today in the **New England Journal of Medicine**

ORIGINAL ARTICLE

Self-Expanding or Balloon-Expandable TAVR in Patients with a Small Aortic Annulus


H.C. Herrmann, R. Mehran, D.J. Blackman, S. Bailey, H. Möllmann,
M. Abdel-Wahab, W. Ben Ali, P.D. Mahoney, H. Ruge, D.A. Wood, S. Bleiziffer,
B. Ramlawi, H. Gada, A.S. Petronio, C.D. Resor, W. Merhi, B. Garcia del Blanco,
G.F. Attizzani, W.B. Batchelor, L.D. Gillam, M. Guerrero, T. Rogers, J.D. Rovin,
M. Szerlip, B. Whisenant, G.M. Deeb, K.J. Grubb, R. Padang, M.T. Fan,
A.D. Althouse, and D. Tchétché, for the SMART Trial Investigators*

Backup

Definitions

Severe prosthesis-patient mismatch per VARC-3¹: indexed effective orifice area of $\leq 0.65 \text{ cm}^2/\text{m}^2$ for body-mass index (BMI) $< 30 \text{ kg/m}^2$ or $\leq 0.55 \text{ cm}^2/\text{m}^2$ for BMI $\geq 30 \text{ kg/m}^2$.

Bioprosthetic valve dysfunction per VARC-3¹: Based on a composite of (1) structural valve dysfunction, defined as mean gradient \geq 20 mmHg with a change from the reference echo of \geq 10 mmHg, AND an effective orifice area decrease of \geq 0.3 OR percent effective orifice area decrease of \geq 25% OR Doppler Velocity Index decrease of \geq 0.1 OR percent Doppler Velocity Index decrease of \geq 20%, OR moderate/severe transvalvular AR with an increase from the reference echo; (2) nonstructural valve dysfunction, defined as severe prosthesis-patient mismatch or moderate/severe paravalvular regurgitation at any follow-up echo from discharge through the 12-month study visit; (3) thrombosis (time to first event, \leq 365 days); and (4) endocarditis (time to first event, \leq 365 days). The reference echo was at 30 days or at discharge if the 30-day echo was unavailable.

Bioprosthetic valve dysfunction per the European Society of Cardiology (Capodanno)²: Based on a composite of (1) structural valve dysfunction, defined as mean gradient \geq 20 mmHg at any follow-up echo from discharge through the 12-month study visit; (2) nonstructural valve dysfunction, defined as severe prosthesis-patient mismatch using the VARC-2 definition without the obesity correction or moderate/severe total AR at any follow-up echo from discharge through the 12-month study visit; (3) thrombosis (time to first event, \leq 365 days); and (4) endocarditis (time to first event, \leq 365 days).

Bioprosthetic valve dysfunction per the SMART primary endpoint with 12-month echo only: Based on a composite of (1) structural valve dysfunction, defined as mean gradient \geq 20 mmHg on the 12-month visit echo; (2) nonstructural valve dysfunction, defined as severe prosthesis-patient mismatch or moderate/severe total AR on the 12-month visit echo; (3) thrombosis (time to first event, \leq 365 days); (4) endocarditis (time to first event, \leq 365 days); and (5) reintervention (time to first event, \leq 365 days).

Hemodynamic structural valve dysfunction per Playford³: Based on structural valve dysfunction, defined as mean gradient ≥22.5 mmHg at any follow-up echo from discharge through the 12-month study visit.

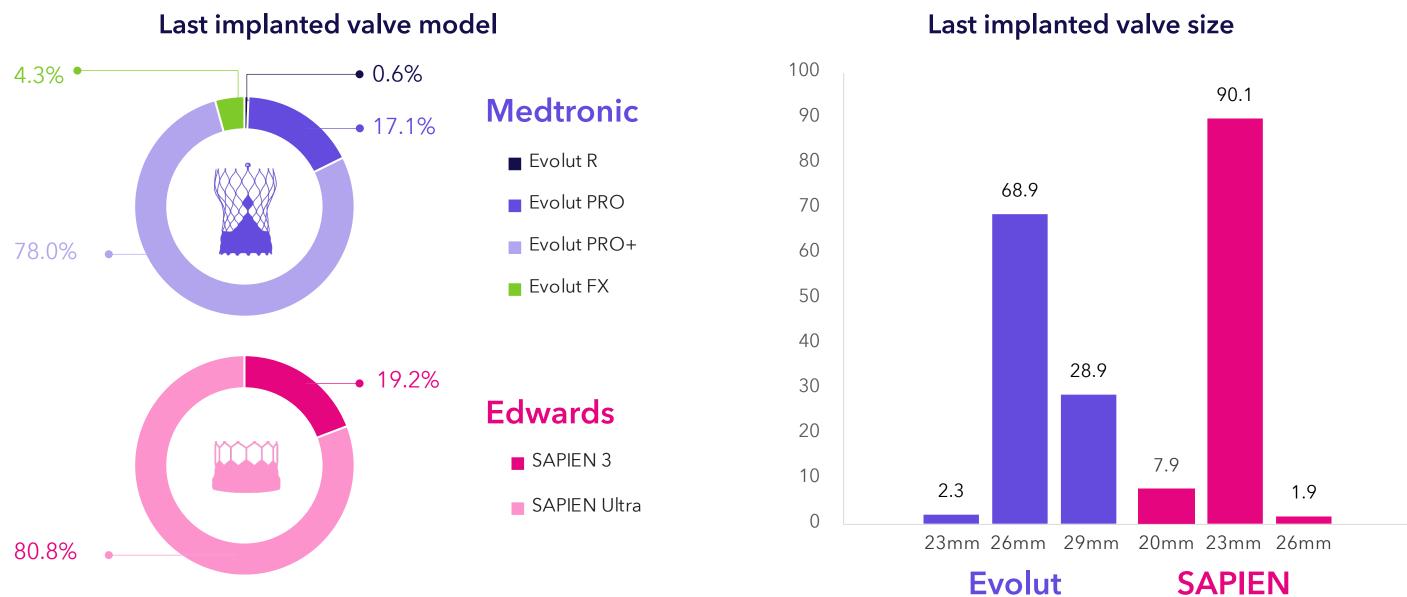
Hemodynamic structural valve dysfunction per O'Hair⁴: Based on structural valve dysfunction, defined as mean gradient \geq 20 mmHg with a change from the reference echo of \geq 10 mmHg OR moderate/severe transvalvular AR with increase from the reference echo. The reference echo was at 30 days or at discharge if the 30-day echo was unavailable.

Hemodynamic structural valve dysfunction per the SMART primary endpoint with 12-month echo only: Based on structural valve dysfunction, defined as mean gradient ≥20 mmHg on the 12-month visit echo

SMART Trial

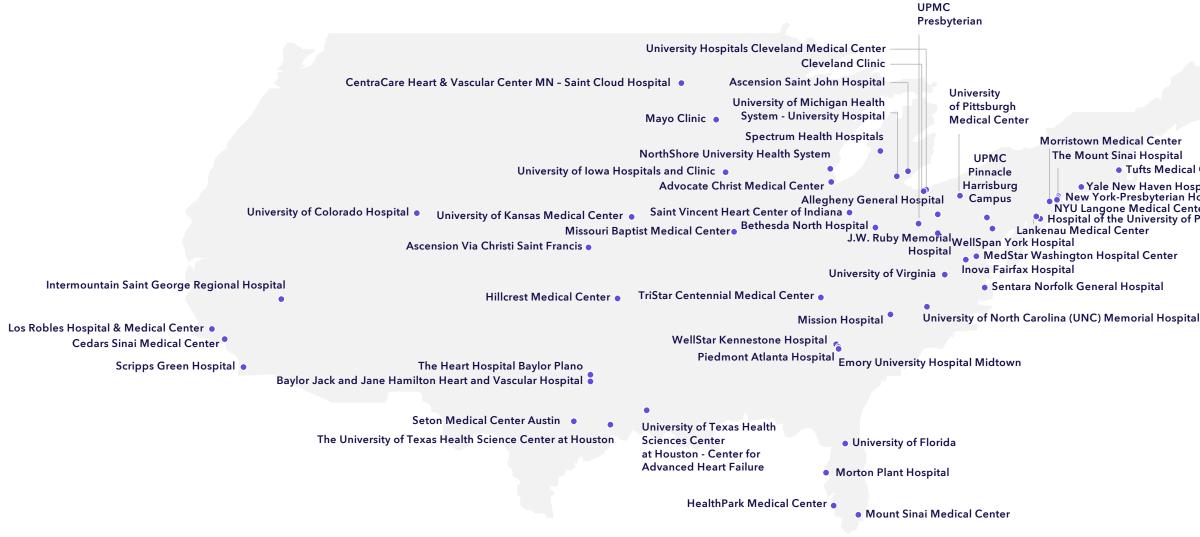
¹Genereux P, et al. *J Am Coll Cardiol* 2021;77(21):2717-2746. ²Capodanno D, et al. *Eur Heart J* 2017;38(45):3382-3390. ³Playford D, et al. *J Am Soc Echocardiogr* 2020;33(9):1077-1086.e1. ⁴O'Hair D, et al. *JAMA Cardiol* 2023;8(2):111-119.

SMART Trial Clinical Sites


•	The Leeds Teaching Hospitals NHS, Leeds, UK	•	University of Florida, Gainesville, FL	•	Morristown Medical Center, Morristown, NJ
•	Allegheny General Hospital, Pittsburgh, PA	•	Toronto General Hospital, Toronto, Canada	•	Los Robles Hospital & Medical Center, Thousan
•	Kath Saint Johannes-Gesellschaft, Dortmund, Germany	•	University of Pittsburgh Medical Center UPMC Presbyterian, Pittsburgh, PA	•	Catharina Ziekenhuis, Eindhoven, Netherlands
•	Helios Health Institute Standort Leipzig, Germany	•	NorthShore University Health System, Evanston, IL	•	University of Iowa Hospitals and Clinic, Iowa Cit
•	Montreal Heart Institute, Montreal, Canada	•	WellStar Kennestone Hospital, Marietta, GA	•	Inova Fairfax Hospital, Falls Church, VA
•	Sentara Norfolk General Hospital, Norfolk, VA, USA	•	Centro Hospitalar de Lisboa Ocidental, E.P.E. Hospital de Santa Cruz, Carnaxide, Portugal	•	Cleveland Clinic, Cleveland, OH
•	Deutsches Herzzentrum München, Germany	•	Ascension Saint John Hospital, Detroit, MI	•	Baylor Jack and Jane Hamilton Heart and Vascu
•	Hospital of the University of Pennsylvania, Philadelphia, PA	•	Rigshospitalet, København, Denmark	•	Inselspital - Universitätsspital Bern, Bern, Switze
•	Saint Paul's Hospital, Vancouver, Canada	•	MedStar Washington Hospital Center, Washington, DC	•	Piedmont Atlanta Hospital, Atlanta, GA
•	Herz- und Diabeteszentrum NRW - Ruhr-Universität Bochum, Bad Oeynhausen, Germany	•	Seton Medical Center Austin, TX	•	Ascension Via Christi Saint Francis, Wichita, KS
•	Lankenau Medical Center, Wynnewood, PA	•	WellSpan York Hospital, York, PA	•	Cedars Sinai Medical Center, Los Angeles, CA
•	UPMC Pinnacle Harrisburg Campus, Mechanicsburg, PA	•	Emory University Hospital Midtown, Atlanta, GA	•	Universitätsklinikum Schleswig-Holstein - Camp
•	Azienda Ospedaliero-Universitaria Pisana - Stabilimento di Cisanello, Pisa, Italy	•	Mission Hospital, Asheville, NC	•	Scripps Green Hospital, La Jolla, CA
•	Tufts Medical Center, Boston, MA	•	Universitätsklinikum Düsseldorf, Düsseldorf, Germany	•	NYU Langone Medical Center, NY, NY
•	Clinique Pasteur, Toulouse, France	•	Yale New Haven Hospital, New Haven, CT	•	University of Virginia, Charlottesville, VA
•	Hospital Vall D'Hebron, Barcelona, Spain	•	University of Michigan Health System - University Hospital, Ann Arbor, MI	•	University of Kansas Medical Center, Kansas Cit
•	Spectrum Health Hospitals, Grand Rapids, MI	•	Mayo Clinic, Rochester, MN	•	University of Colorado Hospital, Aurora, CO
•	Hillcrest Medical Center, Tulsa, OK	•	Intermountain Saint George Regional Hospital, Saint George, UT	•	Saint Vincent Heart Center of Indiana, Indianap
	Azienda Ospedaliera Universitaria Integrata Verona, Italy	•	University of Texas Health Sciences Center at Houston - Center for Advanced Heart Failure, Houston, TX	•	Bethesda North Hospital, Cincinnati, OH
•	Centre Hospitalier Universitaire de Clermont-Ferrand - Gabriel-Montpied, Clermont Ferrand, France	′ •	Policlinico Di Sant'Orsola Malpighi, Bologna, Italy	•	Mount Sinai Medical Center, Miami Beach, FL
•	University Hospitals Cleveland Medical Center, OH	•	Advocate Christ Medical Center, Oak Lawn, IL	•	TriStar Centennial Medical Center, Nashville, T
•	Morton Plant Hospital, Clearwater, FL	•	Maastricht Universitair Medisch Centrum, Maastricht, Netherlands	•	Royal Infirmary of Edinburgh, Edinburgh, UK
•	The Mount Sinai Hospital, NY, NY	•	Vancouver Island Health Authority / Royal Jubilee Hospital, Victoria, Canada	•	The University of Texas Health Science Center a
•	Saint Michaels Hospital, Toronto, Canada	•	Helsinki University Hospital, Helsinki, Finland	•	Charité - Universitätsmedizin Berlin, Berlin, Ger
•	Sheba Medical Center, Ramat Gan, Israel	•	HealthPark Medical Center, Fort Myers, FL	•	Universitätsklinikum Schleswig-Holstein - Camp
•	The Heart Hospital Baylor Plano, TX	•	Hôpital Haut-Lévêque - CHU de Bordeaux, Pessac, France	•	New York-Presbyterian Hospital/Weill Cornell N
•	J.W. Ruby Memorial Hospital, Morgantown, WV	•	Missouri Baptist Medical Center, Saint Louis, MO	•	University of North Carolina Memorial Hospital,
•	Saint Cloud Hospital, Saint Cloud, MN	•	Ichilov Medical Center Tel Aviv, Tel Aviv, Israel		

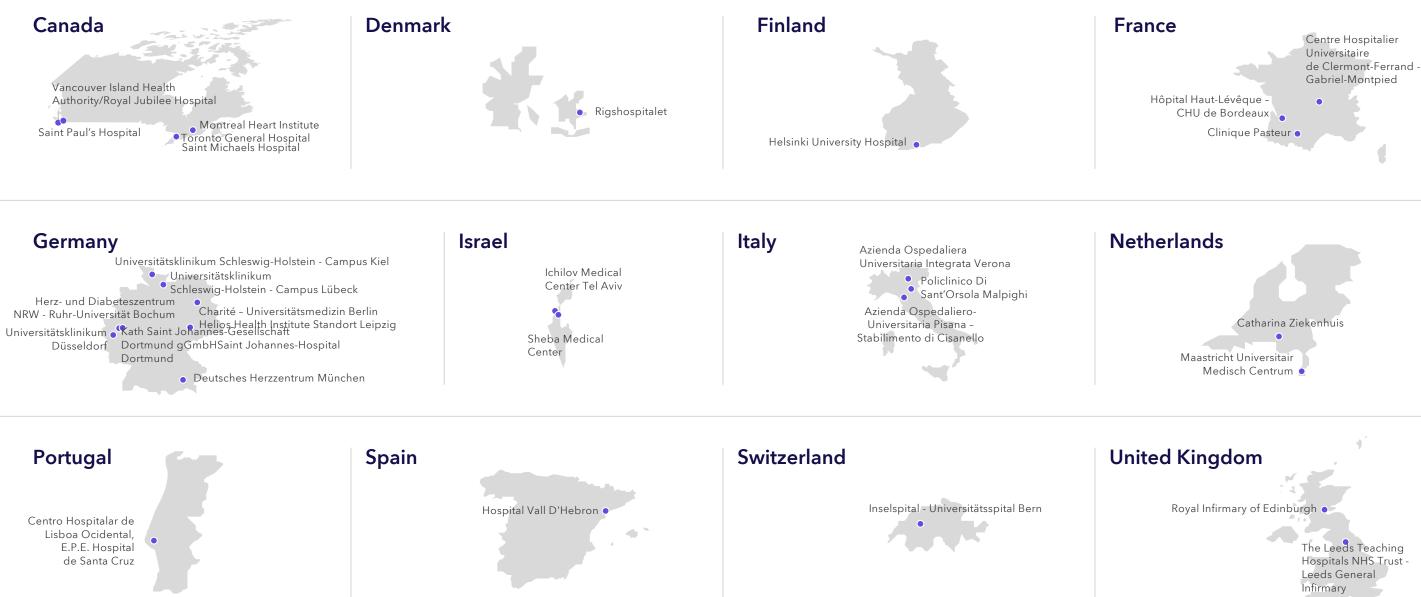
25 SMART Trial

er, Thousand Oaks, CA etherlands ic, Iowa City, IA VA t and Vascular Hospital, Dallas, TX ern, Switzerland GΑ Vichita, KS geles, CA ein - Campus Lübeck, Lübeck, Germany ΙY VA Kansas City, KS ora, CO a, Indianapolis, IN ОH Beach, FL lashville, TN urgh, UK ce Center at Houston, Houston, TX Berlin, Germany ein - Campus Kiel, Kiel, Germany l Cornell Medical Center, NY, NY l Hospital, Chapel Hill, NC


Summary of valve sizes and valves implanted

Global site participation

United States



Tufts Medical Center

• Yale New Haven Hospital New York-Presbyterian Hospital/Weill Cornell Medical Center NYU Langone Medical Center Hospital of the University of Pennsylvania

Global site participation

