Overview

Reflect Site-Specific Tissue Perfusion Non-Invasively

INVOS™ system technology gives you a non-invasive “window” to the body’s microvasculature; a direct and dynamic site of gas exchange that transports about half the body’s blood volume. Measuring blood oxygenation in the microvasculature results in sensitive and site-specific insights on perfusion adequacy or – with multi-sensor monitoring – perfusion distribution across the brain and body.

Unlike parameters that measure only venous or arterial blood, INVOS™ technology includes contributions from both in a 3:1 ratio, yielding a venous-weighted percent saturation. This provides real-time data about the balance or imbalance of oxygen supply and demand, thus reflecting venous oxygen reserve - the oxygen remaining after extraction by tissues and vital organs. Decreases in venous oxygen reserve can be a warning of developing pathology and deteriorating patient condition. Published adult data has shown that an rSO2 of 50 or a 20% decline from baseline are cause for concern and intervention, and an rSO2 of 40 or a 25% decline from baseline are associated with neurologic dysfunction and other adverse outcomes.([FOOTNOTE=Edmonds HL, Jr Ganzel BL, Austin EH 3rd. Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8(2):147-166.],[ANCHOR=],[LINK=]),([FOOTNOTE=Alexander HC, Kronenefeld MA, Dance GR. Reduced postoperative length of stay may result from using cerebral oximetry monitoring to guide treatment. Ann Thorac Surg. 2002;73:373-C.],[ANCHOR=],[LINK=]),([FOOTNOTE=Cho H, Nemoto EM, Yonas H, Balzer J, Sclabassi RJ. Cerebral monitoring by means of oximetry and somatosensory evoked potentials during carotid endarterectomy. J Neurosurg. 1998;89(4):533-538.],[ANCHOR=],[LINK=]),([FOOTNOTE=Iglesias I, Murkin JM, Bainbridge D, Adams S. Monitoring oxygen saturation significantly decreases postoperative length of stay: a prospective randomised blinded study. Heart Surg Forum. 2003;6:204.],[ANCHOR=],[LINK=]),([FOOTNOTE=Edmonds HL Jr, Singer I, Sehic A, Strickland TJ. Multimodality neuromonitoring for neurocardiology. J Interv Cardiol. 1998;11(3):197-204.],[ANCHOR=],[LINK=]),([FOOTNOTE=Yao FSF, Tseng CC, Woo D, Huang SW, Levin SK. Maintaining cerebral oxygen saturation during cardiac surgery decreased neurological complications. Anesthesiology. 2001;95:A152.],[ANCHOR=],[LINK=]),([FOOTNOTE=Roberts KW, Crnkowic AP, Linnerman IJ. Near infrared spectroscopy detects critical cerebral hypoxia during carotid endarterectomy in awake patients. Anesthesiology. 1998;89(3A):A934.],[ANCHOR=],[LINK=),([FOOTNOTE=Higami T, Kozawa S, Asada T, et al. Retrograde cerebral perfusion versus selective cerebral perfusion as evaluated by cerebral oxygen saturation during aortic arch reconstruction.Ann Thorac Surg. 1999;67(4):1091-1096.],[ANCHOR=],[LINK=]),([FOOTNOTE=Singer I, Dawn B, Edmonds Jr. H, Stickland TJ. Syncope is predicted by neuromonitoring in patients with ICDs. PACE. 1999;22(1):216-222.],[ANCHOR=],[LINK=])

The INVOS™ system utilises near-infrared light at wavelengths that are absorbed by haemoglobin (730 and 810 nm). Light travels from the sensor’s light emitting diode to either a proximal or distal detector, permitting separate data processing of shallow and deep optical signals. INVOS™ system’s ability to localise the area of measurement, called spatial resolution, has been empirically validated in human subjects.([FOOTNOTE=Hongo K, Kobayashi S, Okudera H, Hokama M, Nakagawa F. Noninvasive cerebral optical spectroscopy. Depth-resolved measurements of cerebral haemodynamics using indocyanine green. Neurol Res. 1995;17(2):89-93.],[ANCHOR=],[LINK=]) Data from the scalp and surface tissue are subtracted and suppressed, reflecting rSO2 in deeper tissues. This same concept applies to somatic monitoring.

The result is continuous, real-time adequacy of perfusion data in up to four sites of your choice.

Complimentary Analytics Tool

Learn how the INVOS™ Analytics Tool (IAT) facilitates evaluation of regional oxygenation case data.

Learn More 

Intervene sooner,
reduce complications,
and improve outcomes
in cardiac surgery

Review recent clinical evidence (10,778 patients) supporting the use of INVOS™ technology in cardiac surgery.