Work-Related Musculoskeletal Disorders and the Ergonomics of RAS: A Review of the Evidence

While surgeons work to heal their patients, technology advancements in the OR work to keep surgeons well, too.

By: Jed Farlow, Lead Human-Centered Design, Medtronic Surgical Robotics R&D

We often hear about the ergonomic challenges that result from long hours in the OR.

So we took a look at key data to explore how work-related musculoskeletal disorders (WMSDs) affect surgeons and how robotic-assisted surgery (RAS) may ultimately help keep surgeons well.

WMSDs are common preventable injuries that can affect a surgeon's muscles, nerves, and/or joints, especially in the neck, back, wrist, and hands.1  Risk factors include sustained non-neutral postures and repetitive forceful movements, both common in manual minimally invasive surgery (MIS).

WMSDs come with long-term health effects

Most common WMSDs1:

19%

Degenerative lumbar spine disease

544 of 2449 physicians

18%

Rotator cuff pathology

300 of 1513 physicians

17%

Degenerative cervical spine disease

457 of 2406 physicians

9%

Carpal tunnel syndrome

256 of 2449 physicians

20.4% of physicians are at risk for WSMDs1

Surgeons who perform manual MIS are part of the 20.4%1 of physicians considered at-risk for WMSDs because of the physical demands of holding and manipulating laparoscopic instruments and endoscopes for hours on end. Numerous cross-sectional studies report that more than 80% of at-risk physicians experience significant pain when performing procedures,1 and statistics suggest that actual incidence of WMSDs may be significantly higher due to underreporting. 

WMSD-related symptoms and injuries impact productivity –in a 2018 meta analysis, 35 out of 103 injured surgeons reduced their caseload – but, moreover, these symptoms impact their quality of life. Of those with a WMSD, 12% (277 of 2319 physicians) required a leave of absence, practice restriction or modification, or resulted in early retirement.1

Minimally invasive surgery offers significant benefits over open surgery,3 and has gained widespread adoption. Despite surgeons’ risk of pain and WMSD symptoms, they eagerly perform surgeries this way for their patients’ sake. Now, ergonomically-designed robotic-assisted surgery (RAS) systems have the potential to exceed the clinical benefits of manual MIS while reducing the ergonomic risks.

Robotics may offer relief

In most manual MIS, surgeons have to support and manipulate instrument handles with their hands often held between chest- and shoulder-height, balancing delicacy with significant force.4 This core physical challenge puts manual MIS at high-risk for WMSDs with sustained non-neutral posture for the shoulders, back and neck, combined with repetitive forceful movements, particularly for hands and wrists.

In particular, in a study measuring arm muscle activation, women surgeons had significantly increased use of the upper trapezius, flexor carpi radialis, and wrist extensor muscles compared to their male counterparts.5

Dr. Anna Fagotti knows first-hand how years of surgery can impact surgeons’ bodies

Director of the Ovarian Cancer Unit at Polyclinico Gemelli (Rome, Italy)

“I started to be a laparoscopist very young, so I've been practicing for at least 20 or 25 years. And unfortunately, I am experiencing problems with my right shoulder, specifically ‘frozen shoulder.’

It’s related to the excess of use due to a non-ergonomic position. My shoulder during laparoscopy is always in the upper position instead of the natural position. So, I think that robotics, in this specific case, could have allowed me, and other surgeons like me, not to suffer as I do today.”

Robotic-assisted surgery systems overcome some physical challenges of manual MIS by using robotic arms to support and manipulate the laparoscopic instruments and endoscope. A RAS system follows the movements of the surgeon’s hands, and allows the surgeon to work seated at an ergonomically designed visualization and control workstation. This supports the surgeon’s hands, arms, shoulders, back and neck in relaxed, neutral positions.

The ergonomic benefits of robotics

A 2020 study that employed objective measurement tools showed that robotics conferred superior ergonomic benefits and reduced workload compared to laparoscopy for both surgeons and trainees. Survey studies also demonstrated that self-reported discomfort was lower in robotic procedures compared to laparoscopy and open surgery.6

The study concluded, “Robotic surgery is ergonomically superior to open and laparoscopic surgery. However, rates of physical strain remain significant and should be addressed by formal ergonomic training and adequate console familiarization.”6

“Since these are very long procedures the surgeon is very tired at the end. So the possibility of having a robotic system assist during the procedure is a big advantage, not only for the patient, but also for the surgeon.”

–Professor Giovanni Scambia, M.D., Scientific Director of Policlinico (Rome, Italy), Gemelli Hospital (Rome, Italy)

Even with robotic-assisted surgery, ergonomic challenges remain

Surgeons who have been regularly practicing robotic surgery continue to report injury or discomfort. One challenge — while reducing strenuous loads on the surgeon’s back, neck and shoulders, robotic systems transfer more activity to the hands and wrists, and robotic workstation design can result in surgeons holding static seated or slouched postures for extended periods.

In a 2017 study of 289 gynecologic surgeons who regularly practice robotic surgery, 54% of the participants reported experiencing discomfort or physical symptoms of musculoskeletal disorders.7

While the design of a seated workstation can alleviate lower-extremity pain, it raises new concerns for surgeons — positioning of controls and displays can have major impacts on back and neck posture.

Poor seated posture can lead to atrophy of some muscle groups and problematic compensatory use of others. For example, prolonged downward neck flexion develops long and weak stabilizing musculature in the cervical spine and scapular region. This weakness is correlated with overuse of other muscles like the pectorals, upper trapezius, and levator scapulae.

Robotic systems have evolved to address some ergonomic challenges – but there is still work to be done. New RAS systems entering the market have the opportunity to improve on ergonomics and provide optimal experiences for surgeon safety and comfort.

Training and advancements offer promise

Even though WMSDs are prevalent among surgeons, little has changed in the world of surgery to address them. Tomorrow’s technology demands attention and action to address WMSDs. Future research can aim to develop objective surgical ergonomics instruments and guidelines, and to correlate ergonomics assessments with the pain and tissue-level damage in surgeons with WMSDs. Additionally, ergonomics training should be developed to protect surgeons from preventable, potentially career-altering injuries.8

How will ergonomic improvements affect your practice?

Look for the second article in this series where we will look at the potential for RAS to drive ergonomic improvements for surgeons.

References

1. Epstein S, Sparer EH, Tran BN, Ruan QZ, Dennerlein JT, Singhal D, Lee BT. Prevalence of Work-Related Musculoskeletal Disorders Among Surgeons and Interventionalists: A Systematic Review and Meta-analysis. JAMA Surg. 2018 Feb 21;153(2):e174947. doi: 10.1001/jamasurg.2017.4947. Epub 2018 Feb 21. PMID: 29282463; PMCID: PMC5838584. View abstract
2. Cardenas-Trowers O, Kjellsson K, Hatch K. Ergonomics: making the OR a comfortable place. Int Urogynecol J. 2018 Jul;29(7):1065-1066. doi: 10.1007/s00192-018-3674-7. Epub 2018 Oct 9. PMID: 30298292. View abstract
3. Wang R, Liang Z, Zihni AM, Ray S, Awad MM. Which causes more ergonomic stress: Laparoscopic or open surgery? Surg Endosc. 2017 Aug;31(8):3286-3290. doi: 10.1007/s00464-016-5360-5. Epub 2016 Dec 6. PMID: 27924389. View abstract
4. Gurvinder Kaur, Role of OT Table Height on the Task Performance of Minimal Access Surgery. World Journal of Laparoscopic Surgery, January-April 2008;1(1):49-55. View article
5. Armijo PR, Flores L, Pokala B, Huang CK, Siu KC, Oleynikov D. Gender equity in ergonomics: does muscle effort in laparoscopic surgery differ between men and women? Surg Endosc. 2022 Jan;36(1):396-401. doi: 10.1007/s00464-021-08295-3. Epub 2021 Jan 25. PMID: 33492502. View abstract
6. Wee IJY, Kuo LJ, Ngu JC. A systematic review of the true benefit of robotic surgery. Ergonomics. Int J Med Robot. 2020 Aug;16(4):e2113. doi: 10.1002/rcs.2113. Epub 2020 May 6. PMID: 32304167. View abstract
7. Lee MR, Lee GI. Does a robotic surgery approach offer optimal ergonomics to gynecologic surgeons?: a comprehensive ergonomics survey study in gynecologic robotic surgery.  J Gynecol Oncol. 2017;28(5):e70. doi:10.3802/jgo.2017.28.e70. View abstract
8. Catanzarite T, Tan-Kim J, Whitcomb EL, Menefee S. Ergonomics in Surgery: A Review. Female Pelvic Med Reconstr Surg. 2018 Jan/Feb;24(1):1-12. doi: 10.1097/SPV.0000000000000456. PMID: 28914699. View abstract

More articles

Building a Successful Robotic Surgery Program Through Partnership

Mineh Nazary, strategic business developer for surgical robotics, shares her insights on patient outcomes, challenges, and technology in RAS.

3 Barriers to Building a RAS Program (and Solutions to Overcome Them)

Dr. John Lenihan explores 3 key barriers you’ll likely face when starting a robotic-assisted surgery (RAS) program — and 3 solutions to help you successfully overcome them.

5 Questions to Answer Before Starting a RAS Program

Robotics industry expert Josh Feldstein shares the top five questions a hospital must consider before starting a robotic-assisted surgery (RAS) program – and why having clearly-defined answers is so important.

Changing the Training Game: One Path to Standardized Training for Robotic-assisted Surgery

Prof. Dr. Alexandre Mottrie shares his perspective on setting training standards for robotic-assisted surgery (RAS).

How to Start a Sustainable RAS Revolution in Your Hospital

Medtronic Robotics System Utilization Manager, Berta Ortiga, shares her perspective on the best way for hospitals to approach investing in robot-assisted surgery technology and building a successful robotics program.

Obesity and Robotic-Assisted Surgery (RAS)

Dr Anna Fagotti, Director of the Ovarian Cancer Unit at Polyclinico Gemelli, shares some of her insights about the challenges of surgically treating obese patients and how she uses robotic-assisted surgery (RAS) to overcome some of those challenges. 

Can RAS Drive Ergonomic Improvements for Surgeons?

Dr. Erik Wilson shares insight from his experience in performing over 4,000 cases of robotic general surgery since 2002 and the longest series of robotic gastric bypasses in the world.

How PBP is Transforming RAS Training

Learn how Proficiency-Based Progression (PBP) can maximize training outcomes in this article featuring the expert who invented it.

Want the latest RAS updates?

Sign-up now to stay up to date, share with your network, and continue learning from experts who are building best practices in RAS training and program development.

Sign up

The Medtronic Hugo™ RAS system is commercially available in certain geographies. Regulatory requirements of individual countries and regions will determine approval, clearance, or market availability. In the EU, the Hugo™ RAS system is CE marked. In the U.S., the Hugo™ system is an investigational device not for sale. Touch Surgery™ Ecosystem is not intended to direct surgery, or aid in diagnosis or treatment of a disease or condition.