MASTERGRAFT EVIDENCE Bone Grafting (spine and orthopedic)

SUMMARY: BONE GRAFT OUTCOMES

Evidence, preclinical, and clinical outcomes summarized include:


CELL DELIVERY WITH BMA

  • Product can be hydrated with cell-rich BMA.
  • Mastergraft acts as a carrier and delivers MSCs to the site.1
  • Histological evidence shows new bone formation came from transplanted cells versus host cells.1
Cells are colonized throughout graft material
Histological evidence shows new bone formation came from transplanted cells vs. host cells.

CONTROLLED RESORPTION

Mastergraft is a biphasic calcium phosphate that is comprised of β-TCP & HA; biphasic calcium phosphates resorb in a controlled manner following a cell mediated process.2,3 Biphasic calcium phosphates demonstrate enhanced osteoconductivity.4

  • Mastergraft mimics human cancellous bone – Porosity provides excellent basis for vascularization and penetration of associated cells into site.5,6
  • Mastergraft is biocompatible – it does not elicit immune response.7

Osteoconductive Scaffold

  • Bone producing cells migrate to and deposit new bone on the surface of the graft material.7
  • Bone growth by apposition from surrounding bone.7,8
  • Creeping substitution7,8

MASTERGRAFT GRANULES

Human Iliac Crest Back Fill Study

Burton. Backfilling of iliac crest defects with hydroxyapatite-calcium triphosphate biphasic compound: a prospective, randomized computed tomography and patient-based analysis. The Spine Journal (2013)

Study Design

Prospective, randomized, single-blind study

  • Iliac Crest back fill maintaining both cortical tables
  • 40 patients

Conclusion

Backfilling an iliac crest defect with a hydroxyapatite-tricalcium phosphate biphasic compound improves the body’s ability to reform new bone.

MASTERGRAFT PUTTY

Rabbit Posterolateral Spine Fusion Study*

Smucker. Assessment of Mastergraft Putty as a Graft Extender in a rabbit Posterolateral Fusion Model. Spine 37(12): 1017-21, 2012

Treatment Group Graft Type Manual Palpation Fusion Rate Radiographic Fusion Rate

Autograft

Autograft alone (3.0cc)

63%

63%

Putty + Autograft

Putty 50% (1.5cc) + Autograft 50% (1.5cc)

73%

91%

Putty + Autograft

Putty 25% (0.75cc) + Autograft 75% (2.25cc)

64%

73%

MasterGraft Putty/Autograft 50%/50% results at 1, 4, and 8 weeks

MasterGraft Putty/Autograft 50%/50%

Results*

  • Mastergraft putty effectively combined with autograft as a bone graft extender.
  • Histological evaluation showed bone forming directly on ceramic particles.
  • No evidence of inflammatory response.
  • Bone formation bridging the space between bony segments.

MASTERGRAFT STRIP

Clinical Case

Clinical case provided by Dr. Alexander Richter; Head of the center for Spinal Surgery, Asklepios Klink St. Georg, Hamburg, Germany.

Patient History and Diagnosis

  • 59-year-old female with progressive symptomatic low back pain
  • Degenerative disc disease with increasing back pain since 2 years radiating in left leg down to the foot
  • Signs of mechanical instability and spondylolisthesis, and increased back pain under strain
  • VAS = 8
  • NSAID
  • Periradicular therapy

Treatment

  • Posterior instrumented fusion L4-S1 (CD Horizon® Solera® System 5.5/6.0)
  • L4/L5 Decompression by TLIF cage (Crescent® spinal implant) was inserted from the left side and filled with local autologous bone
  • Lamina has been decorticated and local autologous bone was used for bone grafting in combination with Mastergraft strip to enhance posterolateral fusion.

Follow-up

Three months postoperative:

Patient was very pleased with the results of the surgery. Pain was reduced by about 60% and VAS was reduced to 2. Pain medication is not necessary anymore.

Pain was reduced by about 60%

Immediate post-op lateral lumbar spine X-ray

VAS was reduced to 2

3 months post-op a/p lumbar spine X-ray

Patient was pleased with results of the surgery

3 months post-op lumbar spine X-ray

Further Treatment

Physiotherapy


CONTRAINDICATIONS

This product is not intended to provide structural support during the healing process; therefore, MASTERGRAFT® is contraindicated where the device is intended as structural support in the skeletal system. Conditions representing relative contraindications include:

  • Severe neurological or vascular disease.
  • Uncontrolled diabetes.
  • Hypercalcemia.
  • Pregnancy.
  • Where stabilization of fracture is not possible.
  • Segmental defects without supplemental fixation.
  • Where there is significant vascular impairment proximal to the graft site.
  • When there are systemic and/or metabolic disorders that affect the bone or wound healing.
  • Any patient unwilling to follow postoperative instructions.
  • Any case not described in the indications.

MASTERGRAFT Strip, MASTERGRAFT EXT, and MASTERGRAFT Putty should not be used in patients with a known history of hypersensitivity to bovine derived materials.


POTENTIAL ADVERSE EVENTS

A listing of potential adverse events includes, but is not limited to:

  • Deformity of the bone at the surgical site.
  • Fracture or extrusion of MASTERGRAFT® with or without generation of particulate debris.
  • Wound complications including hematoma, site damage, infection, bone fracture, and other complications common to any surgical procedure.
  • Incomplete, or lack of, osseous ingrowth into bone void, as possible with any bone filler.

For more details see Indications, Safety, and Warnings.


CONTRAINDICATIONS

The following are contraindications for the use of Grafton DBM and Grafton Plus™ DBM:

  • The presence of infection at the transplantation site.
  • Treatment of spinal insufficiency fractures.

CAUTION

This allograft may contain trace amounts of antibiotics (gentamicin), surfactant, and other processing solutions. Caution should be exercised if the patient is allergic to these antibiotics or chemicals. Grafton Plus DBM Paste contains starch. Therefore, caution should be exercised in using Grafton Plus DBM Paste in a patient with a starch allergy and/or amylase deficiency.

For more details see Indications, Safety, and Warnings.


The CD Horizon™ Spinal System with or without Sextant™ instrumentation is intended for posterior, non-cervical fixation as an adjunct to fusion for the following indications: degenerative disc disease (defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies), spondylolisthesis, trauma (i.e., fracture or dislocation), spinal stenosis, curvatures (i.e., scoliosis, kyphosis, or lordosis), tumor, pseudarthrosis, and/ or failed previous fusion. Except for hooks, when used as an anterolateral thoracic/ lumbar system, the CD Horizon™ Spinal System may also be used for the same indications as an adjunct to fusion. With the exception of degenerative disc disease, the CD Horizon™ Legacy™ 3.5mm rods and the CD Horizon™ Spinal System PEEK rods and associated components may be used for the aforementioned indications in skeletally mature patients as an adjunct to fusion. The 3.5mm rods may be used for the specific pediatric indications noted below. When used for posterior non-cervical pedicle screw fixation in pediatric patients, the CD Horizon™ Spinal System implants are indicated as an adjunct to fusion to treat progressive spinal deformities (i.e., scoliosis, kyphosis, or lordosis) including idiopathic scoliosis, neuromuscular scoliosis, and congenital scoliosis. Additionally, the CD Horizon™ Spinal System is intended to treat pediatric patients diagnosed with the following conditions: spondylolisthesis/spondylolysis, fracture caused by tumor and/or trauma, pseudarthrosis, and/or failed previous fusion. These devices are to be used with autograft and/or allograft. Pediatric pedicle screw fixation is limited to a posterior approach.

CRESCENT® Spinal System Titanium - The CRESCENT® Spinal System Titanium is indicated for interbody fusion with autogenous bone graft in patients with degenerative disc disease (DDD) at one or two contiguous levels from L2 to S1. These DDD patients may also have up to Grade 1 spondylolisthesis or retrolisthesis at the involved levels. DDD is defined as discogenic back pain with degeneration of the disc confirmed by history and radiographic studies. These patients should be skeletally mature and have had six months of non-operative treatment. These implants are to be used with autogenous bone graft. These devices are intended to be used with Medtronic supplemental fixation instrumentation which has been cleared by the FDA for use in the lumbar spine.

The spacer is made of Ti Alloy (Ti-6Al-4V). It is available in 25mm, 30mm and 36mm lengths as well as two different anterior to posterior widths.

Caution: Federal law (USA) restricts these devices to sale by or on the order of a physician.
Caution: For use on or by the order of a physician only.

See package insert for labeling warnings, precautions, and other important information.


*

Animal studies are not necessarily predictive of human clinical results.


1

Kim Hyung-Jun. Transplanted xenogenic bone marrow stem cells survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits. Eur Spine J (2008)

2

Yuan. Tissue responses of calcium phosphate cement; a study in dogs. Biomaterials 21 (2000).

3

Yamada. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 18 (1997) 1037-1041.

4

Zannettino. Comparative Assessment of the Osteoconductive Properties of Different Biomaterials In Vivo Seeded with Human or Ovine Mesenchymal Stem/Stromal Cells. Tissue Engineering: part A Volume 16, Number 12, 2010.

5

Zou. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres. J Mater Sci: Mater Med (2008) 19:401-405.

6

Boschetti. Design, fabrication, and characterization of a composite scaffold for bone tissue engineering. Int J Artificial Organs 31(8) 2008.

7

Data on file.

8

Yusuf Khan. Tissue Engineering of the Bone: Material and Matrix Considerations. J Bone Joint Surg Am. (2008)